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Abstract
In this study, we propose a method for obtaining a new index to evaluate the resolution properties of computed tomography 
(CT) images in a task-based manner. This method applies a deep convolutional neural network (DCNN) machine learning 
system trained on CT images with known modulation transfer function (MTF) values to output an index representing the 
resolution properties of the input CT image [i.e., the resolution property index (RPI)]. Sample CT images were obtained for 
training and testing of the DCNN by scanning the American Radiological Society phantom. Subsequently, the images were 
reconstructed using a filtered back projection algorithm with different reconstruction kernels. The circular edge method was 
used to measure the MTF values, which were used as teacher information for the DCNN. The resolution properties of the 
sample CT images used to train the DCNN were created by intentionally varying the field of view (FOV). Four FOV settings 
were considered. The results of adapting this method to the filtered back projection (FBP) and hybrid iterative reconstruction 
(h-IR) images indicated highly correlated values with the  MTF10% in both cases. Furthermore, we demonstrated that the RPIs 
could be estimated in the same manner under the same imaging conditions and reconstruction kernels, even for other CT 
systems, where the DCNN was trained on CT systems produced by the same manufacturer. In conclusion, the RPI, which 
is a new index that represents the resolution property using the proposed method, can be used to evaluate the resolution of 
a CT system in a task-based manner.

Keywords Task-based assessment · Resolution property · Modulation transfer function · Computer tomography · Deep 
convolutional neural network

1 Introduction

The measurement of the modulation transfer function (MTF) 
is a popular approach to determine the resolution properties 
of computed tomography (CT) images [1–3]. However, the 
linearity of the output values with respect to the dose is not 

ensured in nonlinear images such as hybrid iterative recon-
struction (h-IR) and model-based iterative reconstruction. 
In addition, contrast and noise with background materials 
can affect the MTF measurements, making conventional 
MTF measurement methods, such as edge and wire meth-
ods, unsuitable for evaluating the resolution properties under 
clinical conditions. Recently, Richard et al. [4] proposed a 
task-based MTF measurement method using the American 
College of Radiology (ACR) phantom that was closer to the 
contrast of the human body and could be measured at various 
contrasts. Multiple-contrast MTFs were obtained using this 
method with three rods prepared for Hounsfield unit (HU) 
accuracy measurements. In addition, multiple combinations 
of MTFs were obtained by varying the dose. However, with 
this method, it is necessary to add multiple slices to reduce 
the influence of noise when the MTF is obtained from low-
contrast rods. This leads to a problem where a small amount 
of misalignment of the phantom causes degradation of the 

 * Aiko Hayashi 
 hayashia@hiroshima-u.ac.jp

1 Department of Radiology, Hiroshima University Hospital, 
1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan

2 Graduate School of Health Sciences, Kumamoto University, 
4-24-1 Kuhonji, Kumamoto 862-0976, Japan

3 Department of Radiological Technology, Faculty of Health 
Sciences, Okayama University, 2-5-1 Shikatacho, 
Okayama 700-8558, Japan

4 Faculty of Life Sciences, Kumamoto University, 4-24-1 
Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s12194-023-00751-0&domain=pdf


84 A. Hayashi et al.

1 3

MTF [5]. Conversely, Takenaga et al. [6] reported a circular 
edge method without noise effects using a logistic curve 
fitting technique. They averaged the edge spread function 
(ESF) within the bin and fitted it with a logistic function 
to obtain the MTF without requiring additional multi-slice 
images. However, this method can only be used for recon-
structive kernels in low-frequency regions, and there is 
undershooting at the edges of the high-frequency functions. 
Therefore, it is difficult to perform preprocessing to obtain 
a more accurate MTF, owing to the addition of the acquired 
images and fitting of the ESF.

A reconstruction technique was developed in the late 
2010s to remove noise from CT images by using deep 
convolutional neural networks (DCNNs). This has led to 
a breakthrough in the tradeoff between resolution proper-
ties and noise, which is a drawback of nonlinear images 
[7]. Recently, DCNN technology has contributed to the 
improvement in the operational efficiency by reducing 
exposure, shortening image reconstruction time, and assist-
ing in diagnosis. There are a few reports on the evaluation 
of noise properties using DCNNs in the assessment of CT 
image quality [8]. However, to the best of our knowledge, 
there are no reports on the direct evaluation of the resolu-
tion properties of CT images using DCNNs. Thus, in this 
study, we propose a simpler method to calculate the indices 
of image resolution properties with an image input using 
DCNN to solve the problem of measuring the indices of CT 
resolution properties, which has become more complicated 
with the advent of nonlinear images. Although the linear-
ity is essential for the application of conventional meth-
ods such as MTF, the resolution properties of recent CT 
images include nonlinearly processed images. However, the 
DCNN allows comparison of the resolution properties of CT 
images, regardless whether the images are nonlinear or lin-
ear. To examine the consistency of the proposed method, we 
evaluated the correlations between the MTF values obtained 
using the conventional method and the estimated indices.

2  Methods

2.1  Experimental materials

An ACR-certified CT phantom (Model 464, Gammex-RMI, 
Middleton, WI, USA) was imaged using two CT scan-
ners (CT_A and CT_B). CT_A was a 320-row CT system 
(Aquilion ONE GENESIS edition, Canon Medical Systems 
Corporation (CMSC), Otawara, Japan) and CT_B was a 
160-row CT system (Aquilion precision, CMSC, Otawara, 
Japan). The CT images were acquired five times under the 
conditions listed in Table 1, with nonhelical imaging and 
reconstructed slice thickness of 5 mm. Axial images were 
reconstructed using two algorithms: filtered back projec-
tion (FBP) and h-IR (adaptive iterative dose reduction 3D, 
CMSC). The ACR phantom contained one cavity and an 
encapsulated rod composed of bone mimetic, acrylic, and 
polyethylene. An acrylic rod with a CT value of 120 HU, 
which was close to that of the organ, was used for the MTF 
measurements. As shown in Table 1, the sample images for 
training the DCNN were obtained by varying the exposure 
conditions and size of the FOV, while the sample images 
for testing the DCNN were obtained by varying the recon-
struction kernel only. In order to train the DCNN to learn 
the resolution properties, we acquired images by varying 
the FOV sizes and then created sample images with dif-
ferent resolution properties while maintaining the apparent 
image size, as detailed in Sect. 2.2.2. On the contrary, for 
the test images, sample images with different resolution 
properties were created by varying the reconstruction ker-
nel to evaluate changes in the resolution properties using 
our proposed method. The frequency enhancement (i.e., 
image resolution property) of the Canon CT systems can be 
changed by varying the reconstruction kernel from FC11 to 
FC15, centered at FC13, which is the standard kernel for the 
abdominal region. In addition, the larger the reconstruction 
kernel, the stronger the frequency enhancement. Therefore, 
in this study, the standard kernel (FC13) was selected as the 
image for training the DCNN, and the CT images recon-
structed by changing the reconstruction kernel from FC11 
to FC15 were used as the test images. Because differences 
in the measured resolution properties between FBP and h-IR 

Table 1  Acquisition parameters 
used for training and testing 
images obtained from CT_A 
and CT_B

Training Test

Exposure conditions SD4 (120 kV, 200 mA, 3 s/rot)
SD8 (120 kV, 200 mA, 0.5 s/rot)
SD12 (120 kV, 100 mA, 0.5 s/rot)

SD8 (120 kV, 
200 mA, 0.5 s/
rot)

Reconstruction Kernel FC13 FC11,12,13,14,15
Reconstruction FOV FOV 300, 350, 400, 500 mm FOV 300 mm
Image reconstruction FBP, h-IR
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could be attributed to noise, the standard deviation (SD) 
indices (SD4, SD8, and SD12) were used to vary the dose 
levels in the training images. Three dose levels were consid-
ered. However, to compare the difference in the resolution 
properties estimated by our proposed method for various 
reconstruction kernels, all test images were obtained at the 
SD8 dose level.

2.2  Regression learning of DCNN to estimate index 
of resolution properties

2.2.1  MTF measurement method

In this study, the MTF of the CT images measured using 
objective methods was used as the teacher signal in the 
training of the DCNN. Several methods are used to meas-
ure the MTF of CT images, such as the wire method [9, 
10] and circular edge method [11]. We used the circular 
edge method recommended by the American Association 
of Medical Physics to measure the resolution properties of 
the CT systems. In addition, this method allows task-based 
evaluation of nonlinear images [11]. Because the circular 
edge method requires additive averaging with a large number 
of sample images to eliminate the effect of noise, we chose 
the method of Takenaga et al. [6] to eliminate this problem 
by logistic curve fitting. In this method, a region of inter-
est (ROI) containing a rod of acrylic material was selected, 
and the oversampled ESF was obtained using the distance 
from the disk center. The obtained ESFs were averaged and 
rebinned within a bin one-tenth of the pixel size. A logistic 
curve fitting method was applied to remove noise from the 
rebinned ESFs, which is expressed as

where a, b, c, and d are the parameters obtained using the 
iterative nonlinear least squares method. The line spread 
function was obtained from the denoised ESF after fitting 
as described above, and the MTF was obtained by perform-
ing Fourier transform. The MTFs obtained from the images 

(1)ESF(x) =
a

1.0 + exp{−b(x − c)}
+ d.

were taken three times and averaged to reduce measurement 
errors. The MTFs were measured for all training and test 
images scanned from CT_A and CT_B, and the  MTF10% 
values were obtained for each MTF. It is noted that  MTF10% 
indicates the value of the spatial frequency (cycles/mm) at 
which the MTF value becomes 0.1. In general, the higher the 
 MTF10% value, the higher the resolution. Because the MTF is 
not affected by noise in the FBP method, the  MTF10% value 
obtained from the SD4 image was used as the teacher signal 
in the training, regardless of the SD setting [4].

2.2.2  Input sample images for the DCNN

Sample images with the same real and matrix sizes, but 
different resolution properties, were created to enable the 
DCNN to learn the resolution property index. These sam-
ple images were created using bilinear interpolation from 
images captured on a CT system at different FOVs. Fur-
thermore, the real MTF of each sample image was obtained 
using the method described in Sect. 2.2.1. The sample image 
and the method used to create the input image for the DCNN 
are described below.

First, the entire phantom was cropped from the images 
acquired with other FOV sizes with actual dimensions of 
300 mm × 300 mm and ROIs with a different matrix size 
as the 300-mm FOV images. Next, the ROI images with an 
actual size of 300 mm × 300 mm, cut from the images with 
an FOV size of 350, 400, and 500 mm, were resized to a 
matrix size of 512 × 512 pixels using bilinear interpolation 
(Fig. 1). Thus, the sample images can have the same pixel 
size as the 300-mm FOV image, but with different resolu-
tion properties. Hereinafter, the resolution properties of the 
sample image acquired with an FOV of 300 mm are defined 
as the original, and those of the resampled images acquired 
with an FOV of 350, 400, and 500 mm are defined as high, 
medium, and low, respectively.

The method used to obtain multiple patch images for 
the DCNN from a single sample image is shown in Fig. 2. 
First, the entire 120 HU acrylic rod was cut from the sam-
ple image with an ROI (76 × 76 pixels) centered on the 

Fig. 1  Adjustment with the 
same pixel size of 300-mm 
FOV from images acquired with 
multiple FOVs
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rod. The patch images were cut along the circumference 
of the acrylic rod with a matrix size of 16 × 16 pixels. 
Consequently, 288 patch images were obtained in a single 
shot. Five sample images were acquired for each condition, 
resulting in 288 × 5 = 1440 patch images being prepared 
for each imaging condition.

2.2.3  DCNN for classification of CT images with different 
resolution properties

The ability of the DCNN to classify groups of CT images 
with different resolutions was tested before estimating the 
CT image resolution property index. A Jupyter notebook 
was used as the deep learning development tool in Ana-
conda environment to construct the DCNN. The computer 
system used comprised an Intel Core i7-11370H proces-
sor (Intel, Santa Clara, CA, USA) and NVIDIA GeForce 
RTX 3050 Ti Laptop GPU (Nvidia, Santa Clara, CA, USA). 
Windows 10 Home 64-bit with Python 3.7 was used as the 
operating system, Tensorflow (Google, Mountain View, CA, 
USA) was used as the framework, and Keras was used as 
the wrapper. MiniVGG was selected as the original network 
structure because it has demonstrated high performance in 
noise classification in previous studies [12]. The DCNN was 
constructed using a structure search function based on the 
MiniVGG concept, as shown in Table 2 [13]. The learning 
parameters were set to 50 epochs, with a learning rate of 
0.001 and batch size of 64. Adam was used as the optimiza-
tion function and categorical cross-entropy was used as the 
loss function. The images used to construct the DCNN were 
acquired using CT_A and divided into five sub-sets to apply 
the holdout method. In the holdout method, one of the five 
sub-sets was used for testing and the remaining four sub-
sets were split in a training-to-validation ratio of 3:1. The 
FOV sizes of the acquired input images (300, 350, 400, and 
500 mm) were used as teacher labels to train the DCNN for 
classification using input images with different resolutions. 
Finally, the accuracy of the DCNN was evaluated using the 
test images.

2.2.4  Regression DCNN for estimating indices 
of the resolution properties of CT images

A part of the DCNN used for classification learning was 
modified to output an index of the resolution properties of 
the input CT images. In this modification, the outputs of 
the last coupling layers of the original DCNN were set to 1 
and the last activation function was removed, as shown in 
Table 3. This resulted in a regression learning DCNN that 
outputted estimates corresponding to the resolution proper-
ties rather than image classification. As in the classification 
learning case, the learning parameters were set to 50 epochs 
with a learning rate of 0.001 and batch size of 64. Adam was 
used as the optimization function and the mean squared error 
was used to evaluate the learning.

The training images for regression estimation of the 
DCNN were acquired using CT_A. The input images were 
the original, high-, medium-, and low-resolution images at 

Fig. 2  Multiple patch images created from a single image

Table 2  Network structure based on MiniVGG

Layer type Output size Filter size/stride 

Input image 16 × 16 × 32
Conv 16 × 16 × 32 3 × 3
ReLu 16 × 16 × 32
Conv 16 × 16 × 32 3 × 3
Tanh 16 × 16 × 32
Bach normalization 16 × 16 × 32
Max pooling 8 × 8 × 32 2 × 2/2 × 2
Flatten 2048
Dense 512
ReLu 512
Drop out(0.25) 512
Dense 4
Softmax 4

Table 3  Network structure based on MiniVGG for regression

Layer type Output size Filter size/stride 

Input image 16 × 16 × 32
Conv 16 × 16 × 32 3 × 3
ReLu 16 × 16 × 32
Conv 16 × 16 × 32 3 × 3
Tanh 16 × 16 × 32
Bach normalization 16 × 16 × 32
Max pooling 8 × 8 × 32 2 × 2/2 × 2
Flatten 2048
Dense 512
ReLu 512
Drop out(0.25) 512
Dense 1
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three dose levels (SD4, SD8, and SD12), as shown in Fig. 3. 
The total number of patch images used to train the DCNN 
was 17,280 images (1440 × 4 FOVs × 3 SDs). The training-
to-validation ratio was 3:1, and the  MTF10% value measured 
using the circular edge method was used as the teacher sig-
nal. Test images of different resolutions obtained using five 
reconstruction kernels (FC11–FC15) were used as the input 
images to evaluate the DCNN trained in this manner. The 
five outputs of the DCNN [i.e., the resolution property index 
(RPI)] for each test image were used to evaluate the correla-
tion with the real  MTF10% values.

2.3  Application of the proposed method

2.3.1  Application of the proposed method for nonlinear 
images

It has been reported that the MTF may exhibit different val-
ues in nonlinear images when there are changes in noise 
[4]. Therefore, it is often difficult to evaluate the resolution 
of nonlinear images using the MTF. To examine the useful-
ness of the proposed method for evaluating the resolution 
properties of nonlinear images, a nonlinear h-IR image was 
inputted into the DCNN, which was constructed and trained 
according to the procedure outlined in Sect. 2.2. As in the 
case of the FBP, the output of the DCNN is the RPI, which 
represents the resolution properties of the CT image, and 
this RPI can be used to compare the FBP (which is a linear 
image) with the h-IR (which is a nonlinear image). In addi-
tion, the changes in the DCNN output RPI were compared 
with the results obtained from the FBP image.

2.3.2  Application of the proposed method for CT images 
not used for training

In general, the resolution properties of CT systems must be 
calibrated and evaluated for each system, which is a compli-
cated task for facilities with multiple CT systems. Therefore, 
the proposed method is highly useful if it uses a DCNN 
constructed from images obtained from a single CT system 
to evaluate the resolution properties of other systems. The 

usefulness of the proposed method for evaluating the resolu-
tion properties of images obtained using the CT_B model 
that was different from that used to construct the DCNN was 
examined, even if the CT scanners were produced by the 
same manufacturer. Thus, the output of this DCNN is an RPI 
that represents the resolution properties of the input image of 
CT_B, but the DCNN itself was trained on the CT_A image.

3  Results

3.1  MTF measurements

The MTF values for the CT images scanned with CT_A 
when the resolution was varied at four levels (original, high, 
medium, and low) are shown in Fig. 4. The worse the resolu-
tion properties (larger FOV size), the worse the MTF. The 
 MTF10% results obtained for each MTF (Fig. 4) are shown in 
Fig. 5. Based on the  MTF10%, it was confirmed that the original 
showed the highest value, and the results decreased in the fol-
lowing order: high, medium, and low. The edges of the rods 
were also sharpened in the order of original, high, medium, 
and low, as shown in Fig. 6. The  MTF10% values obtained 
from the CT images scanned by varying the reconstruction 
kernels from FC11 to FC15 are shown in Fig. 7. The higher 
the number of reconstruction kernels, the more frequencies 

Fig. 3  Image dataset for training 
and  MTF10%

Fig. 4  MTF values obtained for four different FOV settings
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were emphasized, indicating that the  MTF10% tended to be 
higher. In addition, as shown in Fig. 8, the higher the number 
of reconstruction kernels, the sharper the edges of the rods.

3.2  Classification of CT images with different 
resolution properties

The accuracies of the DCNN constructed to classify the 
CT images at four different resolutions using the confusion 

matrix are listed in Table 4. The rows and columns of the 
confusion matrix indicate the actual and predicted resolu-
tion classes, respectively. Multiclass accuracy, which divides 
the number of correct predictions by the total number of 
records, was used as the evaluation index. The classification 
accuracies were 99.5, 99.8, 99.7, and 100% for the original, 
high, medium, and low, respectively, with a high accuracy 
of 99.7% for all labels included.

3.3  Estimation of indices of the resolution 
properties of CT images

The correlation between the  MTF10% and RPI values esti-
mated from the regression DCNN by varying the reconstruc-
tion kernel from FC11–FC15 is shown in Fig. 9. It should be 
noted that the  MTF10% and RPI values were obtained from 
the CT images captured under the same imaging conditions, 
whereas the DCNN was constructed and trained using dif-
ferent image sets. A strong positive correlation (R2 = 0.9233) 
was observed between the  MTF10% and RPI values.

3.4  Application results using the proposed method

3.4.1  Application results for nonlinear images using 
the proposed method

The  MTF10% values of the images reconstructed from the 
SD4, SD8, and SD12 scan data using the FBP and h-IR 
methods are shown in Fig. 10. Compared with the FBP 
reconstruction, the h-IR reconstruction tended to decrease 
the  MTF10% with a decrease in dose (increasing noise). 
Similar to the FBP reconstruction, the resolution tended to 
decrease in the order of high, medium, and low, where the 
original had the highest value.

The  MTF10% values for the images reconstructed from 
the SD8 scan data using the FBP and h-IR methods 
with five different reconstruction kernels are shown in 
Fig. 11. As in the case of the FBP, the higher the number 

Fig. 5  Relationship between the  MTF10% and resolution property 
level obtained for different FOV settings

Fig. 6  Rod images acquired for various FOVs (FC = 13)
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of reconstruction kernels, the higher the  MTF10% value of 
the image reconstructed using the h-IR method.

The correlation between the  MTF10% values of the 
images acquired by changing the reconstruction ker-
nel from FC11 to FC15 using the h-IR method and the 
RPI estimated from the same images using the proposed 
method is shown in Fig. 12. The  MTF10% and output RPI 
values showed a strong positive correlation (R2 = 0.9646) 
with the h-IR-reconstructed images.

3.4.2  Application results for CT_B images that were 
not used for training

The  MTF10% values of the CT_B sample images (SD8) 
reconstructed with five different reconstruction kernels 
using the FBP and h-IR methods are shown in Fig. 13. It 
is noted that the CT_B images were not used for DCNN 
training. Similar to the CT_A, a higher reconstruction 
kernel value tended to result in higher  MTF10% values. 
However, the difference in resolution between the FBP and 
h-IR methods was smaller than that of the CT_A.

Table 4  Confusion matrix 
showing DCNN classification 
accuracies for four resolution 
property levels

Original High Medium Low Accuracy (%) Overall accuracy (%)

Original 860 4 0 0 99.5 99.7
High 2 862 0 0 99.8
Medium 0 0 861 3 99.7
Low 0 0 0 864 100

Fig. 9  Comparison between the estimated RPI and real  MTF10%

Fig. 10  Relationship between the  MTF10% and resolution property 
level for FBP and h-IR CT images

Fig. 11  Relationship between the  MTF10% and kernel filters for FBP 
and h-IR CT images

Fig. 12  Comparison between the estimated RPI and  MTF10% for h-IR 
CT images
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The correlation between the  MTF10% obtained from the 
CT_B image and the RPI obtained from the DCNN trained 
on the input image obtained from CT_A for the same image 
is shown in Fig. 14. Similar to the results of CT_A, a strong 
positive correlation was observed between the  MTF10% and 
output RPI values for the FBP and h-IR reconstruction meth-
ods, as shown in Fig. 14a and b, respectively.

4  Discussion

In this study, we used a method to intentionally degrade 
the resolution at the same matrix size using bilinear inter-
polation after imaging with various FOV sizes to quantita-
tively change the resolution of the CT images, as described 
in Sect. 2.2.2. As a result of obtaining the MTF (using the 
conventional circular edge method) for the sample image 
(obtained using the proposed method), we verified that the 
measured MTF changed with respect changes in the FOV, as 
predicted and discussed in Sect. 3.1. Therefore, we believe 
that the images with different resolutions were valid for the 
purposes of this study.

The parameters used to construct the DCNN such as the 
convolution layer, activation function, and loss function 
can be changed. Therefore, the structure search function 
was used to adjust the combination of parameters to vary 
the performance [14]. In Sect. 3.2, we confirmed that the 
DCNN optimized using the structural search function could 
accurately classify the resolution properties by learning the 
resolution of intentionally degraded images.

The DCNN was trained using sample images whose 
resolution properties were modified by changing the FOV. 
In addition, it was confirmed that the DCNN could output 
resolution property indices for images whose resolution was 
changed by changing the reconstruction kernel provided by 
the CT system. One of the problems with deep learning is 
that the basis for deriving a solution is a black box, in which 
the two points of concern are the effects of bilinear inter-
polation and noise on learning. For bilinear interpolation, 
it is possible that factors other than resolution were learned 
because images with different resolutions were used during 
learning. We believe that this concern was eliminated using 
a test image with a resolution that varied with the frequency 
intensity of the reconstruction kernel and by outputting an 
RPI in the same manner. In addition, it is possible that the 
position dependence of noise was acquired during learn-
ing. Sugino et al. [12] reported that images considering the 
position dependence of noise in the dataset improved the 
learning results compared with those that did not consider 
the position dependence of noise. Therefore, the influence 
of the position dependence of noise was eliminated as much 
as possible by acquiring and training images with different 
resolutions by changing the FOV. The fact that the network 
could estimate the RPI by changing the dose level, even for 
images that exhibited different noise behaviors, confirmed 
that the variation in resolution properties with FOVs was the 
best way for the network to learn the resolution properties 
of an image.

The proposed method was used to compare the FBP 
(linear) and h-IR (nonlinear) images, making it possible 

Fig. 13  Relationship between the  MTF10% and kernel filters for FBP 
and h-IR CT images obtained from a different CT scanner

Fig. 14  Comparison between 
the estimated RPI and  MTF10% 
on (a) FBP and (b) h-IR CT 
images obtained from a differ-
ent CT scanner
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to estimate indices that showed a high correlation with the 
existing MTF values in both cases. The nonlinear images 
showed slightly lower properties than the linear images 
when the RPIs were compared. However, we believe that 
this can be attributed to the decreasing MTF of h-IR with 
decreasing dose in low-contrast regions such as acrylic 
rods, as reported by Higaki et al. [7]. Similarly, as shown in 
Fig. 11, as the reconstruction kernel increased, the difference 
in the MTF values between FBP and h-IR increased because 
of the increase in noise caused by frequency enhancement. 
Thus, as the reconstruction kernel increases, the MTF value 
of FBP (which is less susceptible to noise) increases and the 
difference between FBP and h-IR (which is more susceptible 
to noise) increases.

In general, the resolution properties of nonlinear images 
vary owing to the noise and contrast. Therefore, measur-
ing the resolution properties using conventional methods 
requires considerable time and effort. The proposed method 
is likely to simplify the RPI measurement of nonlinear 
images, because it can estimate the RPI even if the shooting 
conditions and functions are changed in a single training 
session.

The experimental results confirmed that the proposed 
method estimated RPIs that demonstrated a high correla-
tion with the existing MTF values as well as with the results 
estimated using the same equipment. This was true even if 
the equipment used was different from that used for train-
ing, provided that the equipment used was produced by the 
same manufacturer. We believe that this will improve the 
efficiency of resolution property measurements in hospitals 
with multiple CT systems. However, the adaptation of this 
method between CT systems produced by different manufac-
turers has not been confirmed, and future studies are needed 
to investigate learning with images that include images from 
CT systems produced by different manufacturers.

The proposed method offers a high degree of freedom in 
the shape of the object to be measured. Therefore, we believe 
that the resolution of CT images can be evaluated using, 
for example, a human phantom that is more similar to the 
human body or the clinical image itself. Therefore, optimi-
zation of the exposure dose using an evaluation index of the 
resolution property acquired under more clinically relevant 
conditions is a future challenge. Next, we would like to use 
a DCNN trained on phantom images to estimate the resolu-
tion properties using sample images extracted directly from 
clinical images rather than from phantom images. We intend 
to use this DCNN to evaluate high-resolution clinical images 
required in orthopedics and other fields.

The limitation of this method is that the higher the reso-
lution of the image input to the DCNN, the more the RPI is 
underestimated compared with the actual MTF. FC13 was 
used for all training samples, and therefore, the maximum 
value of the FC13 resolution property may have affected the 

maximum estimate. Therefore, it is necessary to use training 
samples with higher resolution properties to improve the 
training accuracy.

5  Conclusion

In this study, we proposed a method for obtaining a new 
index to evaluate the resolution properties of CT images 
in a task-based manner when the reconstruction method, 
function, and dose (image noise) were varied. The resolu-
tion property index obtained by the proposed method using 
DCNN was confirmed to be highly correlated with the 
 MTF10% values obtained by the conventional method. The 
proposed method is expected to improve the efficiency of 
measuring the resolution properties of CT images.
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