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Abstract
In compressed sensing magnetic resonance imaging (CS-MRI), undersampling of k-space is performed to achieve faster 
imaging. For this process, it is important to acquire data randomly, and an optimal random undersampling pattern is required. 
However, random undersampling is difficult in two-dimensional (2D) Cartesian sampling. In this study, the effect of ran-
dom undersampling patterns on image reconstruction was clarified using phantom and in vivo MRI, and a sampling pattern 
relevant for 2D Cartesian sampling in CS-MRI is suggested. The precision of image restoration was estimated with various 
acceleration factors and extents for the fully sampled central region of k-space. The root-mean-square error, structural similar-
ity index, and modulation transfer function were measured, and visual assessments were also performed. The undersampling 
pattern was shown to influence the precision of image restoration, and an optimal undersampling pattern should be used to 
improve image quality; therefore, we suggest that the ideal undersampling pattern in CS-MRI for 2D Cartesian sampling is 
one with a high extent for the fully sampled central region of k-space.

Keywords Undersampling pattern · Compressed sensing MRI · 2D Cartesian sampling · k-Space · Image reconstruction · 
Brain

1 Introduction

Compressed sensing magnetic resonance imaging (CS-MRI) 
allows scan times to be shortened by reducing the quantity of 
sampled data [1–11]. In MRI, a decrease in the sampling of 
data, known as undersampling, generally causes a decrease 
in spatial resolution or aliasing artifacts, and the quality of 
reconstructed images is subject to deterioration. However, 
CS-MRI permits image reconstruction without deteriora-
tions in image quality [12, 13], although it is important that 
data are acquired randomly.

In MRI, sampled data are stored in k-space, with the data 
in the central region of k-space contributing to the contrast 
of the reconstructed image, while data in the edge region 
contribute to spatial resolution. When the sampled data 
are randomly reduced in CS-MRI, the sampling pattern 
can affect the quality of the reconstructed image; an inap-
propriate sampling pattern will result in the degradation of 
image quality. Therefore, the choice of sampling pattern is 
an important factor in CS-MRI.

Two-dimensional (2D) and three-dimensional (3D) Car-
tesian sampling are used in MRI. In 2D Cartesian sampling, 
the data acquisition is performed in both phase-encode and 
read-out directions, with these directions being orthogonal. 
However, in 3D Cartesian sampling, an extra phase-encode 
direction is added. In CS-MRI, the reduced sampling of data 
is not performed in the read-out direction; thus, 3D Cartesian 
sampling is suitable for CS-MRI, because it is easier to per-
form random undersampling in 3D Cartesian sampling than 
in 2D Cartesian sampling. Many studies have reported on 
CS-MRI with 3D data acquisition [1, 2, 7–10, 14]. In these 
studies, satisfactory reconstruction images were obtained by 
applying various undersampling strategies, such as uniform 
distribution, variable density distribution, and Poisson-disk 
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distribution, and a shorter scan time was achieved using a 
high acceleration factor. In contrast, in studies using CS-
MRI with 2D data acquisition [3, 4, 6, 13], reducing the scan 
time, which is a principal benefit of CS-MRI, is difficult, 
because the undersampling strategy is rigid and it is difficult 
to utilize a high acceleration factor. However, 2D sampling 
of data is often performed in the clinical setting, so the use 
of CS-MRI with 2D data acquisition is useful. To apply CS-
MRI for 2D data more effectively, it would be helpful to 
investigate the use of CS-MRI with 2D sampling data.

The aim of this study was to clarify the influence of the 
random undersampling pattern on CS-MRI with 2D Carte-
sian sampling. Images reconstructed with 2D CS-MRI using 
various undersampling patterns were evaluated. The random 
undersampling pattern strategy and the estimation method 
were performed as mentioned below.

2  Materials and methods

A 3-Tesla MRI system (Discovery 750w, GE Healthcare, 
Wisconsin, USA) was used for data acquisition in this study. 
The data used in this study were from the imaging of a phan-
tom and in vivo imaging of the human brain. The imaging 
data were acquired using several patterns of random under-
sampling for k-space, and image reconstruction was then 
performed using the CS-MRI from these acquisitions. The 
reconstructed images were evaluated for quality and preci-
sion of restoration.

2.1  Random undersampling pattern

Figure 1 shows the details of the sampling patterns used in 
this study. The data of the central region of the k-space were 
acquired fully, while those of the edge region were randomly 
sampled according to a Gaussian distribution [4, 15]. The 
mean value and the standard deviation (SD) of the Gauss-
ian distribution were 0 and 0.21, respectively. The SD corre-
sponded to the full width at half maximum (FWHM), which 
equaled to 0.5. In the case of a large FWHM, the sampling 
data converged around the center of the k-space, with a few 
data on the edge. In contrast, a small FWHM vitiated the ran-
domness of the data sampling. Therefore, a moderate FWHM 
(0.5) was chosen in this study. The random sampling was per-
formed in the phase-encode direction only. Undersampled data 
were attainted by reducing the acquired data to 50%, 40%, and 
30%, with acceleration factors corresponding to 2×, 2.5×, and 
3.3×, respectively. For each acceleration factor, the extent of 
the central fully sampled region (hereinafter, referred to as 
CFSR extent) was varied from 20 to 80% in 10% intervals, and 
various sampling patterns were obtained. The influence of the 

random undersampling was observed by evaluating the qual-
ity of the images reconstructed using these sampling patterns.

2.2  CS‑MRI

In CS-MRI, the reconstructed image is usually obtained by 
solving the unconstrained optimization problem. In this study, 
a nonlinear conjugate gradient descent algorithm [16] was 
used to solve the following equation:

where x is the reconstructed image, y is the acquired under-
sampled k-space data, Fu is the partial Fourier transform, 
TV is the total variation as a sparsity transform, and λ is a 
regularization weight for the total variation term. We chose 
λ  = 0.01 to determine the trade-off between data consistency 
and sparsity. The conjugate gradient method requires the 
computation of ∇f (x), which is defined as follows:

where F∗
u
 represents the complex conjugate of Fu , and ∇f (x) 

and ∇‖TVx‖1 represent the finite differences of the object 
function and TV. ∇‖TVx‖1 was approximated as follows 
[17]:

where smoothing parameter � = 1 × 10−4 was used.

Algorithm for CS-MRI
Number of iterations: n = 50 was used for each CS 

reconstruction:

Iterations: for n = 0, 1, 2, …, do the following

Step 1: update the step size �n

(1)min
x
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we used back tracking line search [12],

where the line search parameters a = 0.05 and b = 0.6 were 
used. Then, �n is given by �n = t.

Step 2: update the image with

Step 3: calculate the residual image

(7)
t = 1;while f (xn + tdn) > f (xn) + at ⋅ Real

(
(gn)

∗dn
)
,

{t = bt}

(8)xn+1 = xn + �ndn.

(9)gn+1 = gn − �nF∗
u
Fud

n.

Step 4: calculate �n used to find the searching direction

Step 5: calculate the new searching direction for the next 
iteration

The reconstruction was carried out with code devel-
oped in C++ (Visual Studio 2015, Microsoft Corporation, 

(10)�n =

(
gn+1

)T
gn+1

(gn)Tgn
.

(11)
dn+1 = gn+1 + �ndn.

��� ���

Fig. 1  Pattern mask for undersampling in k-space. The acquired data 
increase as the acceleration factor increases, with the central fully 
sampled data increasing as the CFSR extent increases. The vertical 

and horizontal directions in the mask correspond to the phase-encode 
and frequency-encode directions, respectively
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Redmond, Washington, USA), on a computer equipped with 
an Intel 2.5 GHz processor and with 8GB of RAM.

2.3  Phantom study

A quality control phantom (90-401 SYSTEM2, Nikko Fins 
Industries, Tokyo, Japan) comprising acrylic and polyvinyl 

alcohol (PVA) gel was scanned. The scanning parameters 
were as follows: pulse sequence, 2D fast spin echo (FSE); 
trajectory of k-space, Cartesian; TR/TE, 600/13 ms; echo 
train length, 16; field of view (FOV), 220 × 220  mm; 
matrix size in frequency direction, 256; slice thickness, 
8 mm; bandwidth, 100 kHz. A parallel imaging technique 
was not used, and a single-channel birdcage coil was 

Fig. 2  RMSE and SSIM in the phantom study. Plots show a RMSE and b SSIM against the CFSR extent for the 2×, 2.5×, and 3.3× accelera-
tions. The light gray, gray, and black lines represent the 2×, 2.5×, and 3.3× accelerations, respectively

Table 1  P values of the root-
mean-square error (RMSE) for 
each acceleration factor in the 
phantom study

Kruskal–Wallis test was used for multiple comparisons

CFSR extent 
(%)

20% 30% 40% 50% 60% 70% 80%

2× 20 – 0.62 0.55 0.12 0.14 0.62 0.16
30 0.62 – 0.55 0.12 0.14 0.55 0.16
40 0.55 0.55 – 0.12 0.33 0.43 0.14
50 0.12 0.12 0.12 – 0.12 0.12 0.12
60 0.14 0.14 0.33 0.12 – 0.12 0.12
70 0.62 0.55 0.43 0.12 0.12 – 0.23
80 0.16 0.16 0.14 0.12 0.12 0.23 –

2.5× 20 – 0.91 0.12 0.12 0.58 0.27 0.38
30 0.91 – 0.12 0.12 0.73 0.38 0.62
40 0.12 0.12 – 0.62 0.19 0.62 0.08
50 0.12 0.12 0.62 – 0.12 0.19 0.09
60 0.58 0.73 0.19 0.12 – 0.27 0.12
70 0.27 0.38 0.62 0.19 0.27 – 0.10
80 0.38 0.62 0.08 0.09 0.12 0.10 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – < 0.05 < 0.05 0.16 0.78
50 < 0.05 < 0.05 < 0.05 – 0.09 0.09 0.06
60 < 0.05 < 0.05 < 0.05 0.09 – 0.68 0.06
70 < 0.05 < 0.05 0.16 0.09 0.68 – 0.12
80 < 0.05 < 0.05 0.78 0.06 0.06 0.12 –
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employed. The scan was repeated ten times to avoid the 
sources of measurement error such as signal inhomogene-
ity from the scanner, coil, and phantom.

To evaluate the precision of image restoration in the 
phantom study, the root-mean-square error (RMSE) and 
a structural similarity (SSIM) index [18] were measured 

on the images reconstructed with each sampling pattern, 
because the RMSE was generally applied for CS-MRI 
[1, 7, 19] and the SSIM [1, 10, 19] normalizes the image 
luminance and contrast, and is a good image quality index. 
The RMSE and the SSIM were calculated from the follow-
ing equations:

Table 2  P values of the 
structural similarity (SSIM) for 
each acceleration factor in the 
phantom study

Kruskal–Wallis test was performed for multiple comparisons

CFSR extent 
(%)

20% 30% 40% 50% 60% 70% 80%

2× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – 0.08 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 0.08 – < 0.05 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 < 0.05 – 0.09 0.09 < 0.05
60 < 0.05 < 0.05 < 0.05 0.09 – 0.79 0.12
70 < 0.05 < 0.05 < 0.05 0.09 0.79 – 0.16
80 < 0.05 < 0.05 < 0.05 < 0.05 0.12 0.16 –

2.5× 20 – 0.27 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 0.27 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 < 0.05 – 0.09 < 0.05 < 0.05
60 < 0.05 < 0.05 < 0.05 0.09 – 0.27 0.16
70 < 0.05 < 0.05 < 0.05 < 0.05 0.27 – 0.38
80 < 0.05 < 0.05 < 0.05 < 0.05 0.16 0.38 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 < 0.05 – 0.06 < 0.05 < 0.05
60 < 0.05 < 0.05 < 0.05 0.06 – < 0.05 < 0.05
70 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 – 0.73
80 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.73 –

Fig. 3  MTF for the 2×, 2.5×, and 3.3× acceleration factors used in 
the phantom study. The black, gray, and light gray lines show the 20, 
30, and 40% CFSR extents, respectively. The black, gray, and light 

gray dashed lines show the 50, 60, and 70% CFSR extents, respec-
tively. The black dotted line shows the 80% CFSR extent
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where x is the image reconstructed from fully sampled data, 
y is the reconstructed image from undersampled data, and N 
is the total number of data points in the reconstructed image:

where x and y are the local areas in the image reconstructed 
from the fully sampled data and undersampled data, respec-
tively, µx and µy are the averages of x and y, respectively, σx 

(12)RMSE(x, y) =

√√√√ 1

N

N∑

i=1

(xi − yi)
2
,

(13)SSIM(x, y) =

(
2�x�y + C1

)(
2�xy + C2

)
(
�2
x
+ �2

y
+ C1

)(
�2
x
+ �2

y
+ C2

) ,

and σy are the variances of x and y, σxy is the covariance of 
x and y, and C1 and C2 were constant values used to avoid 
instability. In this study, the local SSIM values were calcu-
lated within a local 8 × 8 square window, with the window 
being moved pixel-by-pixel over the entire image.

In CS-MRI, a reduction in the data in the high-fre-
quency region of the k-space due to undersampling causes 
a decrease in the spatial resolution. Therefore, to inves-
tigate spatial resolution quantitatively, a profile curve 
was drawn on the edge of the acrylic and PVA gel in the 
reconstructed image, and a modulation transfer function 
(MTF) was measured [20]. Because the undersampling 
was carried out in the phase-encode direction only, the 
profile curve was drawn horizontally to the phase-encode 
direction.

Fig. 4  Reconstructed images of the phantom for each condition. The vertical and horizontal directions in the image correspond to the phase-
encode and the frequency-encode directions, respectively
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2.4  In vivo study

Thirty-nine patients (20 male and 19 female patients; age 
range 88–24 years; mean age 66.1 ± 15.3 years) who under-
went brain MRI for evaluation of cerebrovascular disorders, 
brain tumor, vertigo, or other reasons during May 2017 were 
included; this study was approved by the institutional review 
broad of our facility. FSE T2-weighted imaging (T2WI) and 
FSE T1-weighted imaging (T1WI) were performed using 
a 12-channel phased-array head coil. The scan parameters 
for T1WI were TR/TE, 500/12.9 ms; echo train length 3, 
while for T2WI, they were TR/TE, 3000/90.8 ms; echo 
train length, 16. The following parameters were the same 
for both sequences: FOV, 220 × 220 mm; matrix size in 

frequency-encode direction, 256; slice thickness, 5 mm; 
bandwidth, 15.63 kHz. No parallel imaging technique was 
used.

The RMSE and the SSIM were measured in a similar 
manner to the phantom study. Furthermore, visual assess-
ments were performed by a radiologist and two radiologi-
cal technologists, each of whom had more than 15 years of 
experience in MRI. The reconstructed images were scored 
on a four-point scale with respect to aliasing artifacts and 
depiction of structure: 0 = nondiagnostic, conspicuous arti-
fact, indistinct depiction; 1 = poor, moderate artifact, moder-
ately indistinct depiction; 2 = adequate, mild artifact, slightly 
indistinct depiction; 3 = good, no artifact, distinct depiction. 
In the visual assessment, the images reconstructed from full 
sampling data were added as the reference images. A score 

Fig. 5  Enlarged portions of the phantom images. The depiction of the pin pattern is focused and the area of the pin pattern is expanded. The 
arrangement of the images is the same as in Fig. 4
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was determined for each image by consensus between the 
three assessors.

2.5  Data analysis

A Kruskal–Wallis test was performed for multiple compari-
sons between the images reconstructed using the various 
sampling patterns by varying the CFSR. A P value < 0.05 
was considered statistically significant. The analyses were 
carried out using JMP12.1 (SAS Institute, Cary, NC, USA).

3  Results

3.1  Phantom study

Figure 2a shows the RMSE for each acceleration factor. The 
RMSE increased with large acceleration factors. When the 
acceleration factor was 3.3×, the RMSE decreased as the 

CFSR extent increased, with the RMSE reaching a minimum 
when the CFSR extent was equal to 50%. The RMSE then 
increased slowly with further increases in CFSR extent. The 
same tendency was observed when the acceleration factors 
were 2.5× and 2×; however, the difference in the RMSE for 
each CFSR extent was small. Table 1 shows the P value for 
each acceleration factor. There was no significant difference 
between the different CFSRs when acceleration factors were 
2.5× and 2×. In the case of an acceleration factor of 3.3×, 
there was no significant difference between the moderate and 
high CFSRs (40–80%).

The results of the SSIM index analyses (Fig. 2b) show 
that when the acceleration factor was high, the SSIM 
was small, with the SSIM increasing as the CFSR extent 
increased at each acceleration factor, achieving a maxi-
mum when the CFSR extent was equal to 80%. With an 
acceleration factor of 3.3×, there was conspicuous dete-
rioration of the SSIM when a low CFSR extent was used. 
Table 2 shows the P values for the results of SSIM for 

Fig. 6  RMSE and SSIM of T1WI and T2WI for each condition. The plots a and c show the RMSE and the SSIM of T1WI, and b and d those of 
T2WI. The light gray, gray, and black lines represent the 2×, 2.5×, and 3.3× acceleration factors, respectively
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Table 3  P values of the root-
mean-square error (RMSE) 
for each acceleration factor in 
T1-weighted imaging (T1WI) of 
the brain

Kruskal–Wallis test was performed for multiple comparisons

CFSR extent 
(%)

20% 30% 40% 50% 60% 70% 80%

2× 20 – < 0.05 0.65 < 0.05 < 0.05 0.42 0.14
30 < 0.05 – 0.75 0.43 < 0.05 0.92 0.52
40 0.65 0.75 – < 0.05 < 0.05 0.76 0.27
50 < 0.05 0.43 < 0.05 – 0.63 < 0.05 < 0.05
60 < 0.05 < 0.05 < 0.05 0.63 – < 0.05 < 0.05
70 0.42 0.92 0.76 < 0.05 < 0.05 – 0.50
80 0.14 0.52 0.27 < 0.05 < 0.05 0.50 –

2.5× 20 – 0.97 < 0.05 < 0.05 0.27 0.11 0.14
30 0.97 – < 0.05 < 0.05 0.23 0.13 0.23
40 < 0.05 < 0.05 – 0.62 < 0.05 0.06 < 0.05
50 < 0.05 < 0.05 0.62 – < 0.05 < 0.05 < 0.05
60 0.27 0.23 < 0.05 < 0.05 – 0.55 < 0.05
70 0.11 0.13 0.06 < 0.05 0.55 – < 0.05
80 0.14 0.23 < 0.05 < 0.05 < 0.05 < 0.05 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 0.10 0.12 < 0.05 0.18
40 < 0.05 < 0.05 – < 0.05 < 0.05 0.22 < 0.05
50 < 0.05 0.10 < 0.05 – 0.90 0.08 < 0.05
60 < 0.05 0.12 < 0.05 0.90 – 0.09 < 0.05
70 < 0.05 < 0.05 0.22 0.08 0.09 – < 0.05
80 < 0.05 0.18 < 0.05 < 0.05 < 0.05 < 0.05 –

Table 4  P values of the root-
mean-square error (RMSE) 
for each acceleration factor in 
T2-weighted imaging (T2WI) of 
the brain

Kruskal–Wallis test was performed for multiple comparisons

CFSR extent 
(%)

20% 30% 40% 50% 60% 70% 80%

2× 20 – 0.09 < 0.05 < 0.05 < 0.05 0.31 0.45
30 0.09 – 0.54 < 0.05 < 0.05 0.40 0.28
40 < 0.05 0.54 – < 0.05 < 0.05 0.22 0.10
50 < 0.05 < 0.05 < 0.05 – 0.25 < 0.05 < 0.05
60 < 0.05 < 0.05 < 0.05 0.25 – < 0.05 < 0.05
70 0.31 0.40 0.22 < 0.05 < 0.05 – 0.66
80 0.45 0.28 0.10 < 0.05 < 0.05 0.66 –

2.5× 20 – 0.97 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 0.97 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – 0.06 0.61 0.42 0.17
50 < 0.05 < 0.05 0.06 – < 0.05 < 0.05 < 0.05
60 < 0.05 < 0.05 0.61 < 0.05 – 0.79 0.29
70 < 0.05 < 0.05 0.42 < 0.05 0.79 – 0.51
80 < 0.05 < 0.05 0.17 < 0.05 0.29 0.51 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – 0.09 0.08 0.41 0.11
50 < 0.05 < 0.05 0.09 – 0.91 < 0.05 0.93
60 < 0.05 < 0.05 0.08 0.91 – < 0.05 0.82
70 < 0.05 < 0.05 0.41 < 0.05 < 0.05 – < 0.05
80 < 0.05 < 0.05 0.11 0.93 0.82 < 0.05 –



312 S. Kojima et al.

Table 5  P values of the 
structural similarity (SSIM) 
for each acceleration factor in 
T1-weighted imaging (T1WI) of 
the brain

Kruskal–Wallis test was performed for multiple comparisons

CFSR extent 
(%)

20% 30% 40% 50% 60% 70% 80%

2× 20 – 0.95 0.95 0.25 < 0.05 < 0.05 < 0.05
30 0.95 – 0.98 0.21 < 0.05 < 0.05 < 0.05
40 0.95 0.98 – 0.24 < 0.05 < 0.05 < 0.05
50 0.25 0.21 0.24 – 0.15 0.24 0.12
60 < 0.05 < 0.05 < 0.05 0.15 – 0.84 0.93
70 < 0.05 < 0.05 < 0.05 0.24 0.84 – 0.84
80 < 0.05 < 0.05 < 0.05 0.12 0.93 0.84 –

2.5× 20 – 0.89 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 0.89 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 < 0.05 – 0.94 0.97 0.45
60 < 0.05 < 0.05 < 0.05 0.94 – 0.96 0.48
70 < 0.05 < 0.05 < 0.05 0.97 0.96 – 0.48
80 < 0.05 < 0.05 < 0.05 0.45 0.48 0.48 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – 0.93 0.70 < 0.05 0.06
50 < 0.05 < 0.05 0.93 – 0.90 < 0.05 0.07
60 < 0.05 < 0.05 0.70 0.90 – < 0.05 0.09
70 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 – 0.50
80 < 0.05 < 0.05 0.06 0.07 0.09 0.50 –

Table 6  P values of the 
structural similarity (SSIM) 
for each acceleration factor in 
T2-weighted imaging (T2WI) of 
the brain

Kruskal–Wallis test was performed for multiple comparisons

CFSR extent 
(%)

20% 30% 40% 50% 60% 70% 80%

2× 20 – 0.70 0.43 0.25 < 0.05 < 0.05 < 0.05
30 0.70 – 0.81 0.11 < 0.05 < 0.05 < 0.05
40 0.43 0.81 – < 0.05 < 0.05 < 0.05 < 0.05
50 0.25 0.11 < 0.05 – < 0.05 0.23 0.08
60 < 0.05 < 0.05 < 0.05 < 0.05 – 0.36 0.82
70 < 0.05 < 0.05 < 0.05 0.23 0.36 – 0.47
80 < 0.05 < 0.05 < 0.05 0.08 0.82 0.47 –

2.5× 20 – 0.77 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 0.77 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – < 0.05 < 0.05 0.07 < 0.05
50 < 0.05 < 0.05 < 0.05 – 0.43 0.33 0.54
60 < 0.05 < 0.05 < 0.05 0.43 – 0.71 0.12
70 < 0.05 < 0.05 0.07 0.33 0.71 – 0.08
80 < 0.05 < 0.05 < 0.05 0.54 0.12 0.08 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – 0.59 0.38 < 0.05 < 0.05
50 < 0.05 < 0.05 0.59 – 0.76 < 0.05 < 0.05
60 < 0.05 < 0.05 0.38 0.76 – < 0.05 < 0.05
70 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 – 0.21
80 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.21 –



313Undersampling patterns in k-space for compressed sensing MRI using two-dimensional Cartesian…

Table 7  Score of visual 
assessment for T1-weighted 
imaging (T1WI) and 
T2-weighted imaging (T2WI) of 
the brain

Values are presented as the mean ± standard deviation. (n = 39)
a Full sampling in k–space

CFSR extent (%) Aliasing artifact Depiction of structure

Acceleration factor Acceleration factor

2× 2.5× 3.3× 2× 2.5× 3.3×

T1WI 20 2.00 ± 0.47 1.58 ± 0.50 0.28 ± 0.45 1.86 ± 0.42 1.42 ± 0.50 0.14 ± 0.35
30 1.92 ± 0.44 1.42 ± 0.50 1.08 ± 0.50 2.02 ± 0.51 1.36 ± 0.49 0.58 ± 0.60
40 2.08 ± 0.37 1.64 ± 0.49 1.31 ± 0.44 1.94 ± 0.53 1.39 ± 0.55 1.00 ± 0.48
50 2.08 ± 0.37 1.81 ± 0.41 1.31 ± 0.44 2.02 ± 0.51 1.78 ± 0.49 1.06 ± 0.41
60 2.28 ± 0.51 1.94 ± 0.47 1.28 ± 0.45 2.25 ± 0.55 2.00 ± 0.63 1.14 ± 0.55
70 2.36 ± 0.48 1.89 ± 0.46 1.53 ± 0.51 2.19 ± 0.52 1.78 ± 0.49 1.39 ± 0.55
80 2.39 ± 0.49 2.00 ± 0.34 1.61 ± 0.49 2.27 ± 0.45 1.94 ± 0.33 1.39 ± 0.49
Fulla 2.67 ± 0.48 2.94 ± 0.23

T2WI 20 1.94 ± 0.23 1.36 ± 0.49 0.58 ± 0.50 1.92 ± 0.55 1.44 ± 0.50 0.31 ± 0.47
30 1.97 ± 0.47 1.36 ± 0.54 0.94 ± 0.47 1.89 ± 0.57 1.36 ± 0.49 1.03 ± 0.44
40 1.86 ± 0.35 1.42 ± 0.50 1.25 ± 0.55 1.86 ± 0.49 1.52 ± 0.51 1.17 ± 0.56
50 1.97 ± 0.47 1.61 ± 0.49 1.44 ± 0.50 2.00 ± 0.41 1.56 ± 0.35 1.05 ± 0.48
60 2.11 ± 0.40 1.72 ± 0.45 1.25 ± 0.50 2.13 ± 0.35 1.41 ± 0.50 1.03 ± 0.44
70 2.08 ± 0.50 1.55 ± 0.51 1.25 ± 0.50 2.03 ± 0.51 1.61 ± 0.49 1.22 ± 0.48
80 2.11 ± 0.29 1.97 ± 0.38 1.67 ± 0.49 2.17 ± 0.38 1.66 ± 0.48 1.24 ± 0.42
Fulla 2.52 ± 0.51 2.89 ± 32

Table 8  P values of visual 
assessment with respect 
to aliasing artifact for 
each acceleration factor in 
T1-weighted imaging (T1WI)

Kruskal–Wallis test was performed for multiple comparisons

CFSR 
extent (%)

20% 30% 40% 50% 60% 70% 80% Full

2× 20 – 0.45 0.42 0.42 < 0.05 < 0.05 < 0.05 < 0.05
30 0.45 – 0.09 0.09 < 0.05 < 0.05 < 0.05 < 0.05
40 0.42 0.09 – 1.00 0.06 < 0.05 < 0.05 < 0.05
50 0.42 0.09 1.00 – 0.06 < 0.05 < 0.05 < 0.05
60 < 0.05 < 0.05 0.06 0.06 – 0.52 0.38 < 0.05
70 < 0.05 < 0.05 < 0.05 < 0.05 0.52 – 0.81 < 0.05
80 < 0.05 < 0.05 < 0.05 < 0.05 0.38 0.81 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

2.5× 20 – 0.16 0.64 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 0.16 – 0.06 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 0.64 0.06 – 0.12 < 0.05 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 0.12 – 0.21 0.46 < 0.05 < 0.05
60 < 0.05 < 0.05 < 0.05 0.21 – 0.62 0.56 < 0.05
70 < 0.05 < 0.05 < 0.05 0.46 0.62 – 0.24 < 0.05
80 < 0.05 < 0.05 < 0.05 < 0.05 0.56 0.24 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – 0.06 0.07 0.10 < 0.05 < 0.05 < 0.05
40 < 0.05 0.06 – 1.00 0.80 < 0.05 < 0.05 < 0.05
50 < 0.05 0.07 1.00 – 0.80 < 0.05 < 0.05 < 0.05
60 < 0.05 0.10 0.80 0..80 – < 0.05 < 0.05 < 0.05
70 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 – 0.48 < 0.05
80 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.48 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –
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each acceleration factor. For each acceleration factor, sig-
nificant difference was almost recognized; however, for 
high CFSR (60–80%), there was no significant difference.

Figure 3 shows the MTF, which deteriorated when the 
acceleration factor was high. At each acceleration factor, 
the MTF decreased as the CFSR extent increased; how-
ever, the variation in the MTF was minimal when an accel-
eration factor of 2× was used.

Figure 4 shows the reconstructed images and Fig. 5 shows 
enlarged images. Aliasing artifacts are recognizable in the 
image with an acceleration factor of 3.3× and a CFSR extent 
of 20%, although such artifacts were seldom observed in the 
other images. The depiction of a pin pattern was obscured as 
the acceleration factor and CFSR extent increased (Fig. 5), 
with the blurring of the pin pattern occurring in the phase-
encode direction (vertical direction on the images).

3.2  In vivo study

Figure 6a, c shows the RMSE of the T1WI and T2WI. In 
both cases, the RMSE increased with increasing accelera-
tion factor, while, at each acceleration factor, the RMSE 
decreased as the CFSR extent increased. The RMSE was 

the lowest when the CFSR extent was near 50%. Tables 3, 
4 show the P values in T1WI and T2WI. When the accel-
eration factor was 2×, there was no significant difference 
between low (20–40%) and high CFSRs (70–80%).

Figure 6b, d shows the SSIM indices of the T1WI and 
T2WI. Similar to the phantom study, the SSIM indices 
showed corruption in both the T1WI and T2WI when the 
acceleration factor was large, while at each acceleration fac-
tor, the SSIM improved with higher CFSR extents. Tables 5, 
6 show the P values of results for the SSIM in T1WI and 
T2WI. When the acceleration factors were 2.5× and 2×, 
there was significant difference between low (20–40%) and 
high CFSRs (70–80%).

Table 7 lists the results of the visual assessments. In 
both the T1WI and T2WI, the scores for artifact and the 
depiction of structure were low when a high acceleration 
factor was used. Furthermore, the score was high when 
the CFSR extent was high at each acceleration factor. The 
images reconstructed from full sampling data had the 
highest score in both T1WI and T2WI. Tables 8, 9, 10, 11 
show the P values in the visual assessment with respect 
to aliasing artifact and depiction of structure for T1WI 
and T2WI, respectively. There was a significant difference 

Table 9  P value of visual 
assessment with respect 
to aliasing artifact for 
each acceleration factor in 
T2-weighted imaging (T2WI)

Kruskal–Wallis test was performed for multiple comparisons

CFSR 
extent (%)

20% 30% 40% 50% 60% 70% 80% Full

2× 20 – 0.77 0.24 0.73 < 0.05 0.13 < 0.05 < 0.05
30 0.77 – 0.27 1.00 0.17 0.32 0.07 < 0.05
40 0.24 0.27 – 0.21 < 0.05 < 0.05 < 0.05 < 0.05
50 0.73 1.00 0.21 – 0.13 0.28 < 0.05 < 0.05
60 < 0.05 0.17 < 0.05 0.13 – 0.84 0.57 < 0.05
70 0.13 0.32 < 0.05 0.28 0.84 – 0.48 < 0.05
80 < 0.05 0.07 < 0.05 < 0.05 0.57 0.48 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

2.5× 20 – 0.94 0.64 < 0.05 < 0.05 0.10 < 0.05 < 0.05
30 0.94 – 0.71 < 0.05 < 0.05 0.13 < 0.05 < 0.05
40 0.64 0.71 – 0.10 < 0.05 0.24 < 0.05 < 0.05
50 < 0.05 < 0.05 0.10 – 0.32 0.64 < 0.05 < 0.05
60 < 0.05 < 0.05 < 0.05 0.32 – 0.14 < 0.05 < 0.05
70 0.10 0.13 0.24 0.64 0.14 – < 0.05 < 0.05
80 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – 0.15 0.95 0.95 < 0.05 < 0.05
50 < 0.05 < 0.05 0.15 – 0.11 0.11 0.06 < 0.05
60 < 0.05 < 0.05 0.95 0.11 – 1.00 < 0.05 < 0.05
70 < 0.05 < 0.05 0.95 0.11 1.00 – < 0.05 < 0.05
80 < 0.05 < 0.05 < 0.05 0.06 < 0.05 < 0.05 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –
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between the full sampling images and CS-MRI images. 
For each acceleration factor, a significant difference was 
recognized for almost CFSR; however, no significant dif-
ference was observed when the CFSRs were close to each 
other.

Figures 7 and 8 show reconstructed T1WI and T2WI of 
the brain. Similar to the phantom images, aliasing artifacts 
were conspicuous when the acceleration factor was high 
and the CFSR extent was low. This tendency was especially 
prominent with an acceleration factor of 3.3 × according to 
the data.

4  Discussion

In this study, to clarify the influence of the random under-
sampling pattern in CS-MRI, the RMSE and SSIM were 
estimated to determine the precision of image restoration, 
while the MTF was measured to determine spatial resolu-
tion. Furthermore, visual assessments were performed for 
the qualitative evaluation of T1WI and T2WI of the brain. 
The results of the RMSE analysis show that the optimum 
CFSR extent was near 50% at each acceleration factor. 

However, according to the results of the SSIM indices, the 
optimal CFSR extent was 80%. These results indicate that 
the optimal CFSR extent can vary according to the evalu-
ation method used. Furthermore, the MTF was improved 
when the CFSR extent was small.

A large CFSR extent results in a decline in the spatial 
resolution; therefore, the MTF was improved by the use of 
a low CFSR extent, because the data in the edge region of 
k-space increased. Conversely, a small CFSR extent resulted 
in aliasing artifacts in the reconstructed image. For the 
RMSE, the optimal CFSR extent was near 50%, because 
the occurrence of aliasing artifacts and the decline in spatial 
resolution were moderate. Regarding the SSIM, as the preci-
sion of image restoration depends on the degree of the alias-
ing artifact rather than the spatial resolution, the appropriate 
CFSR extent was 80%. On the visual assessments, the high 
CFSR extent provided a high score, similar to the SSIM. In 
a previous study, it was reported that there was a correlation 
between the visual assessment and the SSIM [19], and our 
results are in accordance with this. Therefore, we conclude 
that the optimal CFSR extent was 80% in this study.

The previous studies have recommended the use of a low 
CFSR [4], which is in contrast with the results of this study. 

Table 10  P values of visual 
assessment with respect to 
depiction of structure for 
each acceleration factor in 
T1-weighted imaging (T1WI)

Kruskal–Wallis test was performed for multiple comparisons

CFSR 
extent (%)

20% 30% 40% 50% 60% 70% 80% Full

2× 20 – 0.17 0.50 0.14 < 0.05 < 0.05 < 0.05 < 0.05
30 0.17 – 0.53 1.00 0.10 0.21 < 0.05 < 0.05
40 0.50 0.53 – 0.50 < 0.05 < 0.05 < 0.05 < 0.05
50 0.14 1.00 0.50 – 0.06 0.15 < 0.05 < 0.05
60 < 0.05 0.10 < 0.05 0.06 – 0.64 0.92 < 0.05
70 < 0.05 0.21 < 0.05 0.15 0.64 – 0.53 < 0.05
80 < 0.05 < 0.05 < 0.05 < 0.05 0.92 0.53 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

2.5× 20 – 0.64 0.71 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 0.64 – 0.94 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 0.71 0.94 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 < 0.05 – 0.12 1.00 0.09 < 0.05
60 < 0.05 < 0.05 < 0.05 0.12 – 0.12 0.67 < 0.05
70 < 0.05 < 0.05 < 0.05 1.00 0.12 – 0.09 < 0.05
80 < 0.05 < 0.05 < 0.05 0.09 0.67 0.09 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
40 < 0.05 < 0.05 – 0.61 0.20 < 0.05 < 0.05 < 0.05
50 < 0.05 < 0.05 0.61 – 0.41 < 0.05 < 0.05 < 0.05
60 < 0.05 < 0.05 0.20 0.41 – < 0.05 < 0.05 < 0.05
70 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 – 0.93 < 0.05
80 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.93 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –
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This may be attributed to a number of reasons. First, the 
evaluation method used in this study differed from those 
used in the previous studies. In the previous studies, only the 
concordance correlation coefficient was applied and visual 
assessment was not performed for the evaluation of image 
quality. For CS-MRI, only quantitative evaluation is not 
sufficient for the evaluation of the image quality [19], and 
visual assessment is also important. Second, it appears that 
the reconstruction algorithm used in our study was differ-
ent, although the algorithm used in the previous study was 
unclear. In the case of low CFSR, the sampling data of the 
edge in the k-space were relatively higher compared to that 
with high CFSR. As a result, the aliasing artifact was con-
spicuous. In CS-MRI, it is essential to suppress the aliasing 
artifact, and it is believed that the reconstruction algorithm 
used in the previous study was better. In any case, we believe 
that a high CFSR should be employed to obtain good image 
quality using 2D CS-MRI when using the reconstruction 
algorithm used in this study.

Parallel imaging, such as sensitivity encoding (SENSE) 
or generalized autocalibrating partially parallel acquisitions 
(GRAPPA), is a fast imaging technique generally used in the 
clinical environment. It provides good image quality using 

2D data, even if the acceleration factor is greater than 2. 
In contrast, as observed in this study, the image quality of 
2D CS-MRI deteriorated when the acceleration factor was 
greater than 2. Therefore, we cannot assume that, for 2D 
data, CS-MRI is superior to parallel imaging. However, CS-
MRI can be applied in combination with parallel imaging 
[11]. Thus, we believe that a combination of CS-MRI and 
parallel imaging may be useful when using 2D data.

Our study has several limitations. First, the image resto-
ration was performed using the conjugate gradient method. 
There are various methods for image restoration, such as 
the fast iterative shrinkage threshold algorithm [19] or the 
split Bregman algorithm [9]. Since the suitable technique 
for 2D CS-MRI is not yet established, the conjugate gra-
dient method that was reported initially was used in this 
study. Therefore, it is debatable whether other methods 
would present the same results, and further investigations 
with other algorithms would prove meaningful in the future. 
Second, only brain images were used, and the influence of 
contrast differences in the precision of image restoration 
was only evaluated according to T1WI and T2WI. Investi-
gations using the images of other regions, such as the spine 
or abdomen, are important, because the structure within an 

Table 11  P values of visual 
assessment with respect to 
depiction of structure for 
each acceleration factor in 
T2-weighted imaging (T2WI)

Kruskal–Wallis test was performed for multiple comparisons

CFSR 
extent (%)

20% 30% 40% 50% 60% 70% 80% Full

2× 20 – 0.83 0.68 0.46 < 0.05 0.37 < 0.05 < 0.05
30 0.83 – 0.87 0.33 < 0.05 0.27 < 0.05 < 0.05
40 0.68 0.87 – 0.19 < 0.05 0.16 < 0.05 < 0.05
50 0.46 0.33 0.19 – 0.14 0.80 0.09 < 0.05
60 < 0.05 < 0.05 < 0.05 0.14 – 0.31 0.75 < 0.05
70 0.37 0.27 0.16 0.80 0.31 – 0.22 < 0.05
80 < 0.05 < 0.05 < 0.05 0.09 0.75 0.22 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

2.5× 20 – 0.48 0.49 < 0.05 0.82 0.06 0.16 < 0.05
30 0.48 – 0.16 < 0.05 0.63 < 0.05 < 0.05 < 0.05
40 0.49 0.16 – < 0.05 0.35 0.24 0.48 < 0.05
50 < 0.05 < 0.05 < 0.05 – < 0.05 < 0.05 < 0.05 < 0.05
60 0.82 0.63 0.35 < 0.05 – < 0.05 0.10 < 0.05
70 0.06 < 0.05 0.24 < 0.05 < 0.05 – 0.63 < 0.05
80 0.16 < 0.05 0.48 < 0.05 0.10 0.63 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –

3.3× 20 – < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
30 < 0.05 – 0.23 0.80 1.00 0.08 0.29 < 0.05
40 < 0.05 0.23 – 0.35 0.26 0.71 0.74 < 0.05
50 < 0.05 0.80 0.35 – 0.82 0.15 0.45 < 0.05
60 < 0.05 1.00 0.26 0.82 – 0.11 0.34 < 0.05
70 < 0.05 0.08 0.71 0.15 0.11 – 0.43 < 0.05
80 < 0.05 0.29 0.74 0.45 0.34 043 – < 0.05
Full < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 –
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image can affect the precision of image restoration. Third, 
in this study, the sampling pattern of the edge of the k-space 
(high-frequency region) exhibited a Gaussian distribution, 
and the parameters, such as the SD, were fixed. To improve 
the spatial resolution, the number of phase encode in the 
high-frequency region should be increased. It was surmised 
that the optimal CFSR depended on the sampling pattern of 
the high-frequency region, even if the acceleration factor 
was the same. Therefore, the optimization of parameters in 
Gaussian distribution would be useful in future.

5  Conclusions

In this study, the influence of the random undersampling 
pattern on the quality of a reconstructed image with CS-
MRI using 2D data was clarified. The results demonstrate 
that the undersampling pattern has a considerable effect on 
the reconstructed images. Based on the results of this study, 
when using undersampling for 2D CS-MRI, we recommend 
the use of a high CFSR to improve the precision of image 
restoration.

Fig. 7  Reconstructed T1WI of the brain for each condition. The vertical and horizontal directions in the image correspond to the frequency-
encode and phase-encode directions, respectively
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