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Abstract
Computer-aided diagnosis systems for assisting the classification of various diseases have the potential to improve radiolo-
gists’ diagnostic accuracy and efficiency, as reported in several studies. Conventional systems generally provide the prob-
abilities of disease types in terms of numerical values, a method that may not be efficient for radiologists who are trained 
by reading a large number of images. Presentation of reference images similar to those of a new case being diagnosed can 
supplement the probability outputs based on computerized analysis as an intuitive guide, and it can assist radiologists in their 
diagnosis, reporting, and treatment planning. Many studies on content-based medical image retrievals have been reported 
on. For retrieval of perceptually similar and diagnostically relevant images, incorporation of perceptual similarity data by 
radiologists has been suggested. In this paper, studies on image retrieval methods are reviewed with a special focus on quan-
tification, utilization, and the evaluation of subjective similarities between pairs of images.
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1  Introduction

Content based image retrieval (CBIR) has been one of the 
active research topics in computer vision and medical image 
analysis for decades. In the era of big data and high-per-
formance computing, interest in medical image retrieval is 
growing rapidly. There are two levels of “similarity” consid-
ered in medical image retrieval: (1) images are of the same 
imaging modality, the same body orientation (such as poster-
oanterior or lateral view and axial, sagittal or coronal slices), 
and the same body parts or organs under examination; and 
(2) the images depict the same pathologic condition. In the 
former situation, the purpose of the image retrieval can be 
image indexing. In the latter, on the other hand, the retrieved 
images are most likely to be used for computer-aided diag-
nosis (CAD) purposes. With advances in medical imaging 
devices, radiologists are exposed to a large amount of data 
from multimodality imaging systems. Providing an accurate 
diagnosis while maintaining efficiency is not an easy task. 

Images depicting a similar pathologic condition based on 
past studies can assist radiologists in their diagnosis, filing of 
radiologic reports, and treatment planning. Image retrieval 
systems can also be useful for educational purposes.

There have been several review papers about CBIR 
applied to the medical imaging field in the past 15 years 
[1–5]. Muller et al. published the first comprehensive review 
paper about CBIR in medical imaging [1]. Long et al. high-
lighted the status of CBIR and the problems yet to be solved 
in the implementation of CBIR systems based on the evalu-
ation of example systems [2]. Akgul et al. reviewed features 
and similarity measures used in medical CBIR systems in 
the literature [3]. Kumar et al. placed a special focus on the 
application of CBIR to multidimensional and multimodality 
data [4]. Most recently, Li et al. introduced recent method-
ologies as well as challenges and opportunities in the context 
of big data [5]. These papers addressed the methodologies, 
status, and future direction of CBIR at the time of their writ-
ing. All of these papers discussed the semantic gap, which 
is the difference between the information expressed by the 
image features and the findings perceived by human observ-
ers, i.e., medical doctors.

The author has been studying the selection methods for 
similar images of breast lesions in CAD framework, with 
special emphasis on trying to fill the gap between perceptual 
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and objective (computer-derived) similarities. In this paper, 
an overview of image retrieval studies, especially in the 
breast CAD framework, is presented. The review places a 
special focus on the quantification and utilization of subjec-
tive similarities of images for medical image retrieval.

2 � Basic methodology of CBIR

Conventional image retrieval methods generally have two 
main components: feature extraction (off-line) and similarity 
determination/image selection (on-line) stages.

2.1 � Image features

The image features employed in image retrieval systems are 
generally common to those used in computerized detection 
or classification schemes. They may include morphologic 
or shape features, gray-level or color features, and edge-
characteristic features, depending on the target anatomy 
or the disease under study. In the examination of blob-like 
lesions such as breast masses on mammograms and ultra-
sonograms, lung nodules on computed tomography (CT) 
images, and tumors on PET images, the lesion shape is one 
of the important characteristics. Features such as the circu-
larity, compactness, irregularity, eccentricity, and the major 
and minor axis ratio are some of the shape-related types. 
The size, number, and density (number per unit area) of 
lesions are other geometric features that may be employed 
for searching of images of some tumor types in which the 
size is important, or of images such as microcalcification 
clusters on mammograms and microaneurysms on retinal 
fundus images.

Gray level features may include the contrast, average 
and variance of pixel values, and various features based on 
pixel value histograms. Color features are employed mostly 
for pathologic images in medical images. These features 
based on pixel values are among the fundamental features 
representing perceptual similarity. Textural features can be 
particularly useful for images with characteristic patterns, 
such as CT images of diffuse lung diseases and pathologic 
images. Features based on co-occurrence matrix [6], gray 
level run length matrix [7], Gabor filter [8], Markov random 
field [9], and local binary patterns (LBP) [10] are some of 
the texture features often used in CBIR methods.

The edge gradient features can describe the boundary 
characteristics of lesions. One characteristic finding for 
breast cancer on mammograms and lung cancer on radio-
graphs or CT is the presence of spicula. Edge features such 
as the radial gradient index (RGI) [11] and the vector con-
vergence index [12] can describe boundary shapes and the 
distinctiveness of margins.

2.2 � Similarity measures

The most simple and frequently used similarity measure 
is the Euclidean distance in feature space. It is based on 
a simple idea: the closer the feature values, the greater 
the similarity. In general, each feature is normalized, 
in which the Euclidean distance becomes equivalent to 
the Mahalanobis distance. However, with this measure, 
all features are treated equally. It is often the case with 
medical image diagnosis, however, that some findings are 
more important than others. In such case, the weighted 
distance is a possible index if appropriate weights corre-
sponding to the relative contributions of the features can 
be determined.

An alternative approach to the selection of similar 
images is that of graph matching [13]. In graph matching, 
an image is represented by a graph, i.e., features and their 
relationships. In a study by Sharma et al. [14], the simi-
larities of histologic images were determined using graph 
matching method. The histologic images were first seg-
mented into regions that contained different tissue types. 
Features such as the area and perimeter of the regions 
as well as the relationship between the regions, such as 
the distance between the centroids and common boundary 
length, were determined. Based on this graph representa-
tion, the best-matching images were searched.

Similarly in a study by Kumar et  al. [15], a graph-
based approach was employed in the retrieval of PET/CT 
images. A graph was generated by segmenting of anatomic 
regions (lung in this case) from CT and tumors from PET 
images. The features based on the segmented regions and 
their relationships were determined. In the Kumer study, 
the gold standard of “similarity” was tumor localiza-
tion; images that had the similar tumor distribution with 
respect to the organs were considered relevant. Therefore, 
the graph approach was considered effective in matching 
spatial arrangements of the tumors.

3 � Retrieval of perceptually similar images

A large number of studies is related to content-based medi-
cal image retrieval and CAD. The application of CBIR 
includes, but has not been limited to breast masses [16–27] 
and microcalcification clusters [28–30] on mammograms, 
breast masses on ultrasound images [31, 32], lung nodules 
[33–37] and diffuse lung diseases [38, 39] in CT, focal 
liver lesions in CT [40–44], brain tumors on MRI [45, 
46], brain hemorrhages in CT [47], diabetic retinopathy 
on retinal fundus images [48, 49], tumors on PET images 
[50], histopathologic images of breast [51, 52] and skin 
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[53] cancers, skin lesions on dermoscopic images [54], 
and lesions in endomicroscopic video [55]. Not all of these 
studies can be described in this paper; instead, some of the 
early studies are introduced briefly, and studies involving 
quantification, utilization, and evaluation of subjective 
similarity of images are discussed in more detail in this 
section.

3.1 � Early studies

One of the early studies on similar image retrieval for 
diagnosis of breast lesions on mammograms was reported 
by Qi and Snyder [16]. Their system determines simple 
features related to lesion shape, and the images with a 
small vector distance to a query image are retrieved. Giger 
et al. proposed a system called an intelligent workstation, 
which provides the likelihood of malignancy of a queried 
mass as well as the similar images selected on the basis 
of the closeness of a single feature, multiple features, or 
the likelihood of malignancy measure [17]. Sklansky et al. 
proposed a mapped-database system for mammographic 

regions of interest (ROIs) with microcalcifications, as 
shown in Fig. 1 [28]. An artificial neural network com-
putes a relational map, which is a 2-dimensional map 
showing the distributions of benign and malignant ROIs 
in the database and the location of a query. The map also 
depicts the area where biopsy recommended cases are 
located. Based on this map, similar ROIs can be selected 
for display. The study indicated the usefulness of the pro-
posed system for the diagnosis of benign and malignant 
clusters by aided radiologists in a receiver operating char-
acteristic (ROC) study.

Presentation of similar images was considered useful in 
assisting radiologists’ diagnosis; however, it was uncertain 
and difficult to evaluate whether retrieved images were 
visually similar. To select visually similar images, Li et al. 
proposed the use of a machine learning system, which was 
trained on subjective similarities of lesions as assessed by 
expert radiologists [34]. The similarity determined, called 
a psychophysical similarity measure, takes into account 
the image features and the perceptual similarity through 
iterative training.

Fig. 1   User interface of a mapped-database system proposed by Sklansky et al. [28]
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3.2 � Quantification of subjective similarity

The gold standard of similarity must be established for 
machine learning and evaluation of a system. Perceptual 
similarities assessed by a group of radiologists can be 
employed as the gold standard. Some of the challenges in 
obtaining such data are that there is a large variation in sub-
jective similarities for image pairs of lesions/abnormalities, 
and radiologists/diagnosticians are not accustomed to assess-
ing image similarities. Whether subjective similarities of 
image pairs can be determined consistently and reliably has 
been questioned by researchers.

Nishikawa et al. examined observers’ ability to make a 
similarity judgement for clustered microcalcifications on 
mammograms [56]. Thirty pairs of images were used in their 
experiment. First, each pair was rated for its similarity on a 
5-point scale (called an absolute rating method). Next, all 
possible combinations of 2 pairs were judged as which pair 
was more similar than the other by use of a paired compari-
son method. Four observers, including 3 experienced radiol-
ogists and one experienced research technician, participated 
in the study, in which two of them completed the reading 
twice for intra-reader agreement analysis. The intra-reader 
agreements were 0.51 and 0.82 for the absolute and paired 
comparison methods, respectively, in terms of the intra-class 
correlation. The inter-reader agreements were 0.39 and 0.37, 
respectively. The Pearson correlation coefficient between the 
average ratings by the two methods was 0.77. The authors 
concluded that the readers were internally more consistent 
in the paired comparison than in the absolute rating; how-
ever, if the readers had different criteria for image similarity, 
agreement between readers would be reduced, even though 
each reader was internally consistent. Overall, the high cor-
relation between the two methods indicated that observers 
can judge similarity in a consistent manner.

In a follow-up study by Wong et al. [57], 1000 pairs of 
microcalcification images were rated on a 10-point scale. 
Before and during the rating session, if requested, five 
anchor images for precalibration were provided, so that a 
uniform measure was established among the readers. The 
average inter-reader correlation coefficient among 5 radi-
ologists was 0.489. Despite the variation among these indi-
viduals, the group of readers achieved a high level of con-
sistency, as indicated by a correlation coefficient of 0.698 
between the average scores for the 5 radiologists and for 5 
non-radiologist readers.

Muramatsu et al. investigated the intra- and inter-observer 
variation as well as the intergroup correlation in the rating 
of subjective similarities for pairs of microcalcifications on 
mammograms [58]. One hundred fourteen pairs of clus-
tered microcalcifications were rated on a continuous rat-
ing scale by 13 breast radiologists, 10 general radiologists, 
and 10 non-radiologists, of whom 1, 1, and 5 observers, 

respectively, repeated the study 5 times, whereas 8, 0, and 
3, respectively, repeated it twice. Figure 2 shows the trend of 
the intraobserver correlation between two consecutive read-
ings for 7 observers in 5 repeated reading sessions. When the 
time between two readings was very short, the correlations 
were generally increased, which could be due in part to an 
improvement in memory. The general trend was that, as the 
study is repeated, intracorrelations were improved slightly 
or stayed high. The authors expected that this result might be 
due to a training effect. The observers were likely to become 
familiar with the extraordinary task and established their 
own criteria for image similarity.

The authors expected that averaging of the repeated read-
ing data would reduce the inter-reader variation. The aver-
age interobserver correlations between the first and second 
readings and between the averages of two readings are listed 
in Table 1. Although the interobserver correlations were 
relatively low for the single readings, they were improved 
slightly when the average of the two readings was taken. 
Similarly, when the ratings were averaged for a group of 
observers, the intergroup correlation increased as the num-
ber of observers in each group increased, as shown in Fig. 3. 
The intergroup correlations between breast radiologists and 
general radiologists and between breast radiologists and non-
radiologists were 0.846 [95% confidence interval (0.789, 
0.888)] and 0.817 [0.747, 0.869], respectively, values which 
were significantly higher than those between single observ-
ers. These results indicate that multiple readings by single 

Fig. 2   Trend in intraobserver correlation between consecutive read-
ings with time elapsed from the first reading session. Data were 
obtained for seven observers who repeated the study five times [58]



113Overview on subjective similarity of images for content-based medical image retrieval﻿	

observers and ratings by multiple observers can increase the 
reliability of subjective similarity.

Subjective similarities of pairs of mass images and pairs 
of microcalcification images based on the absolute rating 
and on paired comparison were compared in a study by 
Muramatsu et al. [59]. Pairs of masses and pairs of microc-
alcifications had been rated previously [19, 58] on an abso-
lute scale by groups of radiologists. By the absolute rating 
method, 6 pairs of ratings were obtained simultaneously on 
one monitor by placement of an index case in the center and 
three comparison cases each on the right and left sides so 
that they could serve as scaling cases for each other. From 
these cases in the previous studies, 8 pairs of masses and 8 
pairs of microcalcifications were selected for the paired com-
parison. The selection criteria were: (1) the absolute similar-
ity ratings were approximately evenly distributed from 0 to 
1, (2) the standard deviations of the ratings were relatively 
small, and (3) no image was included in more than one pair. 

Figure 4 shows the study cases. Using 2-alternative forced 
choice (2AFC, also known as paired comparison) method, 
a similarity rating in absolute scale cannot be determined; 
instead, pairs can be ranked for their relative similarities. 
Each pair was compared with seven other pairs in each group 
of 8 pairs one by one, and the number of times selected 
as more similar than the other was summed; the result was 
defined as the similarity ranking score, in which the highest 
possible score was 7. Ten observers, including four breast 
radiologists, one breast imaging fellow, two general radiolo-
gists, and three radiology residents, participated in the study. 
Two reading sessions were set up: in the first session, 8 pairs 
of masses and 8 pairs of microcalcifications were grouped 
separately, and in the second session, 4 odd-ranked masse 
pairs and 4 even-ranked calcification pairs were grouped, 
and vice versa (mixed groups).

As in the study by Nishikawa et al. [56], the observers in 
this study were very consistent in selecting the most similar 
pairs. Based on the first session, the average intraobserver 
correlations for the mass and microcalfication groups were 
0.92 and 0.90, respectively, whereas the average interob-
server correlations were 0.74 and 0.86, respectively. The 
correlation coefficients between the average absolute simi-
larity ratings and the average ranking scores were 0.94 and 
0.98 for the mass and the calcification pairs, respectively. 
The relationships between the average absolute similarity 
ratings and the average similarity ranking scores for the two 
sessions are shown in Fig. 5. The results indicate that radi-
ologists can judge the similarities of pairs of lesions in a 
consistent manner. In the second session, it was questioned 
whether the similarity of a mass pair can be compared with 
that of a calcification pair. The correlations between the 
average absolute ratings and ranking scores were 0.92 and 
0.96 for the two groups. The results indicate that observers 
have a basic concept of similarity and can quantify their 
impression of similarity in an absolute scale. Even if the 
lesion types are different, a mass pair with a similarity of 
0.8, for example, can be compared with a calcification pair 
with a similarity of 0.4 in a consistent way.

This conclusion was confirmed in a study by Kumazawa 
et al. in which similarities of pairs of masses on mammo-
grams and pairs of nodules on CTs were compared [60]. 

Table 1   Averages and ranges of interobserver correlation within the group of observers for the first and second readings and average of two 
readings [58]

Data from 9 breast radiologists and 8 non-radiologists with at least two readings and all general radiologists were used
P values between the first and second, first and averaged, and second and averaged readings were determined using paired t test [58]

First reading Second reading Averaged reading

Breast radiologists (36 combinations) 0.36 [0.16, 0.58] 0.37 [0.14, 0.61] (P12 = 0.6) 0.47 [0.30, 0.67] (P1A, P2A < 0.00001)
General radiologists (45 combinations) 0.25 [0.06, 0.36] – –
Nonradiologists (28 combinations) 0.34 [0.10, 0.55] 0.30 [0.07, 0.58] (P12 = 0.2) 0.41 [0.20, 0.62] (P12, P2A < 0.0001)

Fig. 3   Effect of the numbers of observers in each group on the inter-
group correlation, Two groups of observers were randomly sampled 
from 13 breast radiologists and the rating were averaged in each 
group. The random sampling process was repeated for 100 times [58]
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Fig. 4   Pairs used in 2AFC 
study. Left: 8 mass pairs rated 
as the most similar to most 
dissimilar from top to bottom, 
right: 8 calcification pairs rated 
as the most similar to most dis-
similar from the top to bottom
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Even for the different diseases (breast abnormalities vs lung 
abnormalities) on different image modalities (mammography 
vs chest CT) read by different groups of observers (breast 
radiologists vs chest radiologists), similarity of images were 
assessed reliably proving that the image similarity is a shar-
able concept. While observers were more consistent in deter-
mining similarity using the 2AFC method, it is desirable to 
obtain similarities on an absolute scale because reading of 
all possible pairs in the 2AFC method is a demanding task 
for radiologists, and the ranking scores by the 2AFC method 
are dependent on the cases included in the study. The results 
of the above studies indicated that subjective similarities of 
lesions in an absolute scale can be determined reliably.

Tourassi et al. compared different data collection methods 
for obtaining subjective similarities of masses on mammo-
grams [61]. Three methods were compared: a rating method 

in which a similarity score for a pair was obtained using a 
continuous scale; a preference method which is analogous 
to a paired comparison method in which three masses (e.g., 
A, B, and C) are shown at once and observers are asked to 
select the most similar pair (A and B, A and C, or B and C) 
or no particular pair; and a hybrid method, in which a query 
mass is placed in the center of a display and other masses 
are placed in a circular format around the query. The hybrid 
method is somewhat analogous to the method employed 
by Li et al. [34] and Muramatsu et al. [19, 58], in which 
observers provide rating scores while adjusting their judg-
ment using all possible pairs in the display. Using the data 
collected, the authors developed individualized user models 
for predicting radiologists’ perceptual judgments. The result 
indicated that the hybrid method was the most accurate in 
constructing the user models, whereas the rating method 

Fig. 5   Relationships between average absolute similarity ratings and ranking scores by 2AFC methods. Top left: for 8 pairs of massed; top right: 
for 8 pairs of microcalcifications; and bottom: for two sets of mixed 8 pairs [59]
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was the most time-efficient. They concluded that the hybrid 
method provides an intuitive and efficient way of obtaining 
perceptual similarity data.

Faruque et al. performed a simulation study on perceptual 
similarity measures for focal liver lesions [62]. Similarity 
scores for 171 pairwise comparisons of 19 lesions on CT 
images were obtained from three radiologists. Based on their 
model, the number of readers required for achieving accept-
able levels of similarity was estimated. The result indicated 
that an excellent estimate of a simulated ground truth of 
similarity scores could be obtained with a relatively small 
number of readers whose ratings exhibited moderate to good 
inter-reader agreement.

3.3 � Incorporation of subjective data

For the selection of perceptually similar images, a similarity 
index that agrees well with the subjective similarity deter-
mined by radiologists is desired. In their study, Li et al. [34] 
employed an artificial neural network (ANN) with a single 
hidden layer to train the relationship between the image fea-
tures and subjective ratings. Seven units corresponding to 
the diameter, CT values, and the RGI of the two nodules 
and the pixel difference were used as the input. For teacher 
data, subjective similarity scores from 0 to 3, allowing the 
fractional scores, for 240 pairs of nodules were determined 
by 10 radiologists. Using a leave-one-out cross validation 
method, the ANN was trained with 239 pairs of nodules, and 
the trained ANN provided the output, called a psychophysi-
cal similarity measure, for a test case. A relatively high cor-
relation (0.72) between the subjective ratings and the psy-
chophysical measure was achieved as compared with those 
by the conventional feature-distance-based method and the 
cross-correlation-based method.

Similarly, Muramatsu et  al. employed ANNs for the 
determination of similarity measures for pairs of masses 
and pairs of microcalcifications on mammograms [30, 63]. 
In both studies, 300 pairs of lesions were examined by breast 
radiologists for obtaining subjective similarity ratings, and 
the average ratings were used as teacher data in the train-
ing of the ANNs. By incorporation of the subjective aspect 
of lesion similarities through machine learning, similar-
ity measures that were in relatively good agreement with 
the radiologists’ perception on lesion similarity could be 
determined.

El-Naqa et al. investigated a machine learning approach 
with use of sequential networks [29]. In their method, the 
first network was used for triage to eliminate images that 
were not similar at all. In the first stage, a classifier such as 
a support vector machine (SVM) was employed for classify-
ing a pair as sufficiently similar or not similar. In the second 
stage, a regression network, e.g., another SVM, was trained 
to estimate similarities of pairs. Thirty microcalcification 

clusters which constituted 435 pairwise comparisons were 
examined by 6 observers for providing a similarity score for 
each pair in terms of the spatial distribution of the calcifica-
tions on a 10-point scale. An additional 30 artificial pairs 
made of identical images with a similarity score of 10 were 
included in the study. Based on the cross-validation test, a 
higher retrieval precision was achieved using the two-stage 
network than using a single regression network or a conven-
tional Euclidean metric.

Zheng et al. proposed a retrieval method that included 
an “interactive step” to improve the visual similarity of 
retrieved images for masses on mammograms [21]. The 
masses were subjectively rated from 1 to 9 for their margin 
spicularity, and similar images were retrieved from those 
which margin scores were within ± 1 of that of a query case.

Another type of two stage selection methods was inves-
tigated by Nakayama et al. [64], in which combinations of 
a distance-based measure and a psychophysical similarity 
measure were compared. They examined the subjective simi-
larities of 20 pairs of masses and 20 pairs of microcalcifi-
cations, of which 5 pairs each were selected by 4 different 
methods: selection by the distance-based measure, selection 
by the psychophysical measure, a sequential selection by the 
distance measure followed by the psychophysical measure, 
and a sequential selection by the psychophysical measure 
followed by the distance-based measure. They discussed the 
potential utility of preselection by the distance measure with 
more refined selection by the psychophysical measure for 
retrieving perceptually similar images.

A machine learning method, in general, requires a large 
number of training samples with a variety of cases. How-
ever, it is not easy to prepare such a database with subjective 
data. In the study by Muramatsu et al. [19], pairs of spicu-
lated masses had high similarity ratings as well as strong 
(very high or very low) feature values. These samples had a 
strong influence in training of an ANN, because the number 
of training samples was small. As a result, a trained ANN 
tends to yield high scores for a pair that includes a spiculated 
mass, causing bias during image retrieval. As a potential 
solution, a similarity space modeling method, rather than 
direct estimation of similarity for each pair, was investigated.

A subjective similarity space was modeled using a mul-
tidimentional scaling (MDS) [65] in a study by Muramatsu 
et al. [66]. Twenty-seven breast mass images of different 
pathologic types were selected, and subjective similarity 
ratings for 351 pairwise comparisons were obtained from 
eight experienced physicians who were certified for breast 
image reading. Figure 6 shows the sample mass images of 
different subtypes of breast lesion pathologies. A similarity 
map was obtained by application of the MDS to the aver-
age similarity (dissimilarity) ratings, as shown in Fig. 7, 
which reflected the readers’ intuition of similarities between 
lesions of these subtypes. Despite the small sample size, 
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cysts and fibroadenomas, which are almost indistinguishable 
on mammograms, were clustered and located away from the 
typical malignant cases. Likewise, ductal carcinomas in situ, 
papilotubular carcinomas, and solid-tubular carcinomas 
were mapped close by, whereas scirrhous carcinomas and 
invasive lobular carcinomas were mapped close together. If 
such a perceptual similarity space can be reliably modeled 
and cases without subjective data can be projected to the 
space, perceptually similar images may be retrieved.

Similarity spaces spanned by MDS using subjective simi-
larity ratings for mass pairs on mammograms and ultrasound 
images were reconstructed using 3 layered ANNs [67, 68]. 
The ANNs were trained with the image features as input and 
3-dimensional coordinates of the MDS spaces based on 351 
pairs of masses on mammograms and 666 pairs of masses 
on ultrasound images. Using a leave-one-case-out cross 

validation method, the perceptual similarity spaces were 
estimated. The similarity measures based on the distances 
in the reconstructed spaces correlated relatively well with 
the subjective similarity ratings. The performance of image 
retrieval was evaluated in terms of the precision, which 
is the fraction of relevant images in the retrieved images; 
images with the same pathology (benignity or malignancy) 
are considered to be relevant. High precisions above 0.8 
for the independent test cases without subjective data were 
obtained for masses on mammograms and for masses on 
ultrasonograms.

The direct similarity estimation method and the similarity 
space modeling method have advantages and disadvantages. 
One such advantage of the space modeling method is that 
the ANN training is simpler. The ANN takes a feature vec-
tor of an image as input for the estimation of a coordinate 

Fig. 6   Sample mass images 
with different subtypes [66]
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in each dimension, which can be a more focused task than 
is the estimation of similarity ratings from two feature vec-
tors for a pair. On the other hand, more abundant subjective 
data are generally required for modeling of the space with 
MDS, because all possible pairwise comparisons must be 
made. This could be partially solved using MDS analysis 
which allows missing data. When applying to an unknown 
case, it must be paired with all of the cases in the database 
for estimating similarities by the direct estimation method, 
whereas such a process can be avoided by projecting of the 
unknown case to the modeled similarity space. Preselection 
may be useful in both methods, especially when the database 
becomes very large. Further studies are needed for the evalu-
ation of objective similarity and image retrieval methods.

3.4 � Interactive/feedback methods

When similar images are retrieved, they may include cases 
that are very similar and useful, but also cases that are not 
very similar or useful for assisting radiologists in their diag-
nosis. If such information, whether the retrieved images are 
useful assessed by users, can be fed back, the image retrieval 
system can be improved. Several research groups have pro-
posed such interactive methods or methods with relevance 
feedback. Oh et al. proposed a relevance feedback system 
based on incremental learning with SVM, which takes into 
account the feedback samples and already trained samples 
that are in the neighborhood of the feedback samples in the 
hyperplane of SVM [69]. They reported that the perfor-
mance of image retrieval in terms of precision and recall 
curves was improved considerably with one feedback sam-
ple per case compared with the offline mode (no feedback), 
although the improvement became less with three and five 
feedback samples.

Wei et al. also proposed an interactive retrieval method 
for masses and microcalcifications on mammograms [70]. 
Images were first retrieved by the feature-based hierarchi-
cal selection method, in which features with greater impor-
tance were given larger weights in determining the similarity 
measure. After the first image retrieval, users may provide 
relevance feedback to an arbitrary number of images, which 
were used for training of an SVM for classification of rel-
evant and irrelevant cases. Superior precision and recall 
curves were obtained for both mass and calcification cases 
when the relevance feedback mode was used.

Bugatti et al. proposed a CBIR system, which employs a 
relevance feedback system to refine the search through user 
profiles [39]. The concept of the system is to collect static 
and dynamic user profiles to maintain users’ preference for 
system utility. In their experiment, retrieval methods for dif-
fuse lung diseases in CT images and breast lesions on mam-
mograms were studied. After an initial search, feedbacks for 
retrieved images were obtained by asking users to select 5 
relevant images in the order of perceived similarity. Based 
on the differences in the initial selection order and the per-
ceived similarity order, the best distance function used for 
the similarity measure was selected.

Another interactive system with an adaptation module 
that integrates radiologists’ similarity ratings as a relevance 
feedback was proposed by Cho et al. [71]. An original fea-
ture vector of a query was modified by the sets of feature 
vectors of relevant images and irrelevant images so that the 
virtual query vector is moved toward the relevant samples. 
The virtual vector was computed as the weighted sum of the 
original vector, relevant-group vector, and irrelevant-group 
vector. In their experiment, 9 point similarity ratings by radi-
ologists were employed as relevance feedback with a thresh-
old, and balancing weights for the original, relevant, and 

Fig. 7   Similarity map obtained by MDS using the average subjective 
similarity ratings for mass pairs on mammograms [66]. FA fibroaden-
ima, PT phyllodes tumor, DCIS ductal carcinoma in situ, PTC papilo-
tubular carcinoma, STC solid tubular carcinoma, MC mucinous car-
cinoma, SC scirrhous carcinoma and ILC invasive lobular carcinoma
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irrelevant vectors were iteratively adjusted through train-
ing. A higher average similarity and a higher classification 
performance were obtained by the interactive system with 
retrieval of breast masses on ultrasonography.

4 � Current trends

In the field of medical image analysis, deep learning based 
methods are rapidly replacing the conventional hand-crafted 
feature based methods. Several CBIR methods that use deep 
learning techniques have been proposed. Liu et al. proposed 
a method using a convolutional neural network (CNN) for 
retrieval of radiographs with the same image modality, body 
orientation, body region, and biological system examined 
[72]. The network was trained with radiographs from Image 
Retrieval in Medical Application (IRMA) database which 
includes images with more than 193 categories. Once the 
network was trained, features from the last full connection 
layer having 1000 units were extracted for obtaining a CNN 
code. This code was combined with a conventional radon 
barcode for image retrieval.

Similarly, Anavi et al. [73] extracted features from the 
last layers of a CNN which was pre-trained with the Ima-
geNet [74] database. The CNN features were either used 
directly for the determination of a distance measure based 
on the intersection of the feature histograms or for training 
of an SVM for classification of 8 classes of diseases on chest 
radiographs. In the latter, 8 output probabilities for pairs of 
images were then employed for determination of a distance 
measure to retrieve similar images.

For retrieval of similar images of 24 classes of radio-
graphs of different body parts, Qayyam et al. employed CNN 
features from the last three full connection layers [75]. The 
Euclidean distance metric was calculated with the feature 
vectors of a query and images in the database. In addition, a 
class label predicted by the CNN was used for limiting the 
search area in the database.

Khatami et al. employed a CNN for shrinking of the 
search space [76]. For retrieval of radiographs using the 
IRMA database, the classification result from the CNN was 
used for limiting the search space, followed by a second 
search-space shrinking with Radon projection vectors. The 
final selection was made with the LBP-based Manhattan 
distance measures.

The CNN features from the full connection layer-6 of 
the AlexNet [74] model were also employed for similar-
ity measure determination by Pang et al. [77]. The image 
retrieval performance was evaluated with three different 
databases: the NEMA-CT database that includes different 
body parts (different levels of axial sections), the TCIA-
CA database with different body parts, and the OASIS-MR 
database including images classified based on the shape of 

the ventricular. Deep features (CNN features) combined with 
a preference learning model obtained a high performance 
compared with the conventional feature based methods.

Most of the above methods employed a CNN as a feature 
extractor. Muramatsu et al. investigated the use of the CNN 
to determine the similarity measures directly for pairs of 
images [78] and to model the similarity space for image 
retrieval [79]. In the former, the network consisted of two 
input layers for taking a pair of images followed by a few 
sets of convolutional layers and pooling layers, a concatena-
tion layer, another sets of convolutional layers and pooling 
layers, and full connection layers with a regression output 
layer. Sample pairs of images with subjective similarity rat-
ings were used for training of the network. Because of the 
small sample size of training cases with the subjective data, 
the network was pre-trained for classification of benign and 
malignant lesions by entering the same image as two input 
images. Subsequently, the network was fine-tuned with the 
paired data for the similarity estimation by changing the 
last layer with the regression output. A schematic diagram 
is shown in Fig. 8.

In the similarity space modeling method, a regular net-
work structure, such as the AlexNet and VGG-net, was 
employed, but with the regression outputs corresponding 
to 3-dimensional space coordinates. The network was pre-
trained using the classification dataset as the direct estima-
tion method, which was then fine-tuned for similarity space 
modeling. Figure 9 is a schematic diagram of the proposed 
method. In a preliminary investigation, a comparable per-
formance was obtained using CNN and the conventional 
methods.

5 � Commercial systems

There are a few commercial diagnostic support systems with 
a reference image retrieval feature. Quantitative Insights [80] 
is a company that provides CADx (computer aided classifi-
cation) workstations which are based on technology devel-
oped by a research group at the University of Chicago. The 
company obtained the first FDA clearance for a machine-
learning-driven cancer diagnosis system, which includes 
image retrieval of breast lesions on MRI (Fig. 10).

A medical imaging and information management sys-
tem, called SYNAPSE, by Fujifilm allows a case match of 
lung cancer images [81]. Based on the seed point entered 
by a user, the system automatically segments the lesion 
and retrieves similar cases with confirmed diagnosis and 
radiologic report. Combined search with keywords is also 
allowed.

A similar case retrieval system by Panasonic selects 
similar cases of lung CT images with nodular and dif-
fused opacities [82]. The system extracts keywords from 
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diagnostic report and features from images, and it finds the 
best matched images from the database. They have incorpo-
rated a CNN in the classification of image patches into 12 
disease categories, which results are used for case matching.

6 � Conclusion

Conventional computer-aided classification systems gen-
erally provides the probabilities of diseases in question. 
Although such computer aids were reported to have poten-
tial utility, users, i.e., physicians, may question the basis of 
the results of computer analysis. Presentation of reference 
images that are perceptually similar and diagnostically rel-
evant can supplement the numerical outputs in an intuitive 
way and sometimes provide different opinions.

There have been many studies on content based medi-
cal image retrieval for image indexing and diagnostic aid. 
For promoting the utility of reference images in assist-
ing disease classification, the perceptual similarity of the 
retrieved images is one of the important factors. In this 
paper, studies on the quantification and incorporation 

of subjective similarity for retrieval of visually similar 
images were introduced. In these studies, the feasibility 
of determining subjective similarities for pairs of images 
with various abnormalities was discussed, and the result 
supported the fact that perceptual similarity is a robust 
concept that are shared by radiologists/physicians and can 
be quantified reliably. The experimental results on com-
puterized determination of similarity measures and image 
retrieval indicated the potential usefulness of the similarity 
measures based on subjective data.

The field of computerized medical image analysis has 
entered an era of big data and high-performance comput-
ing, allowing deep learning and high-speed data mining. 
Effective utilization of a vast amount of information from 
accumulated medical data is imperative. However, at pre-
sent, much of the valuable data supply is left unused. One 
way to make use of the data is to perform image retrieval. 
Although perceptual evaluation is important, acquisition 
of subjective data is a challenging task. A design for sys-
tematic and efficient acquisition of subjective similarity 
data or feedback is still needed.

Fig. 8   Schematic diagram for direct similarity estimation method using CNN
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Some studies suggested the use of metadata and com-
bined information from multiple image modalities [83, 84]. 
Methods for the fusion of multidisciplinary information 
must be investigated for a multimodality reading environ-
ment. The size and variety of the database are essential for 
image retrieval and computerized image analysis. An auto-
matic update of the database with and without truth marking 
remains necessary. When the database becomes exceedingly 

large, an exhaustive search could be time-consuming and 
the database may include some undesirable cases (outliers). 
Techniques for optimization of a reference library [85] could 
be a research topic of interest. Imaging systems and com-
puter technology are continuously improving, and new cases 
are constantly obtained. Therefore, computer algorithms 
must also be improved continuously. Self-learning systems 
are one of the exciting topics that need to be investigated.

Fig. 9   Schematic diagram for similarity space modeling method using CNN
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