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Abstract This paper presents an iterative image recon-

struction method for radial encodings in MRI based on a

total variation (TV) regularization. The algebraic recon-

struction method combined with total variation regular-

ization (ART_TV) is implemented with a regularization

parameter specifying the weight of the TV term in the

optimization process. We used numerical simulations of a

Shepp–Logan phantom, as well as experimental imaging of

a phantom that included a rectangular-wave chart, to

evaluate the performance of ART_TV, and to compare it

with that of the Fourier transform (FT) method. The trade-

off between spatial resolution and signal-to-noise ratio

(SNR) was investigated for different values of the

regularization parameter by experiments on a phantom and

a commercially available MRI system. ART_TV was in-

ferior to the FT with respect to the evaluation of the

modulation transfer function (MTF), especially at high

frequencies; however, it outperformed the FT with regard

to the SNR. In accordance with the results of SNR mea-

surement, visual impression suggested that the image

quality of ART_TV was better than that of the FT for

reconstruction of a noisy image of a kiwi fruit. In con-

clusion, ART_TV provides radial MRI with improved

image quality for low-SNR data; however, the

regularization parameter in ART_TV is a critical factor for

obtaining improvement over the FT.

Keywords Radial MRI � Total variation � Inverse

problem � Iterative reconstruction � Algebraic

reconstruction

1 Introduction

In MRI, the Cartesian scan is the most common technique

used for the trajectory of k-space. On the other hand, a

radial scan is frequently employed; it fills the k-space

radially. Because the radial scan collects data densely at

the center of k-space, it is relatively insensitive to motion

artifacts [1–4]. Furthermore, an aliasing artifact is not

caused in the radial scan [5, 6] and thus it can be applied

to cardiac MRI [7–11]. By use of a small field of view

(FOV), a high-resolution image can be obtained with the

radial scan; however, the signal-to-noise ratio (SNR) is

decreased. A conventional image reconstruction for radial

encodings in MRI uses the Fourier transform (FT). A

rearrangement of the polar coordinate data to a rectan-

gular grid is required for that reconstruction [1, 3, 12].

However, the rearrangement of the coordinates is not

performed when a projection reconstruction such as the

filtered back-projection method is employed for image

reconstruction [4, 13]. Recently, iterative image recon-

struction has been employed in radial MRI [14–16].

Iterative image reconstruction has an affinity for the radial

scan, because it does not require rearrangement of k-space

data. In addition, it can perform the reconstruction by

incorporating various techniques, such as a noise reduc-

tion that is effective for low-SNR images [16].
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Total variation (TV), initially presented by Radin et al.

[17], is used in image processing for reducing noise and

blur in images while preserving sharp edges. The basic

assumption of TV is that the object consists of areas with

constant (or only mildly varying) intensity; this assumption

applies quite well to tomographic images [14]. Image re-

construction with TV has produced feasible images from a

reduced number of projections in clinic. Sidky et al. [18]

studied the algebraic reconstruction method with TV

regularization for few-view and limited-angle data in di-

vergent-beam CT. Block et al. [14] reported on the con-

jugate gradient method with TV regularization for

undersampled radial MRI and compared it with the FT

method, showing that the former is superior to the latter

with regard to reconstructed image quality. Block et al.

performed pioneering work in the application of TV to

radial MRI, but their results were mainly concerned with

the visual impression of the spatial resolution and artifacts

of the reconstructed images. Quantitative evaluations that

include the spatial resolution and SNR have not been re-

ported. Therefore, it is as yet not certain whether iterative

image reconstruction regularized with TV can be applied

not only to undersampled radial MRI, but also to conven-

tional radial MRI (without undersampling). In the present

work, the algebraic reconstruction method with total var-

iation regularization was implemented for conventional

radial MRI sampling with low-SNR data, and the quality of

the reconstructions was investigated quantitatively.

2 Materials and methods

In the rest of this work, algebraic reconstruction with TV

regularization is referred to as ART_TV. First, we used

ART_TV on computer-simulated data to carry out a fun-

damental investigation. Next, we examined experimental

data from a commercially available MRI system. A 1.5-T

MRI system (Magnetom Avanto, Siemens Medical Solu-

tions, Erlangen, Germany) was employed. In addition, the

reconstructed images from ART_TV were compared with

those from the FT. The computer simulations and the im-

age reconstruction were carried out with use of a program

written in C?? (Visual Studio 2010, Microsoft Corpora-

tion, Redmond, Washington, USA), on a computer equip-

ped with an Intel 2.0 GHz processor and with 8 GB of

RAM.

2.1 Algebraic reconstruction method based on total

variation regularization

We expressed the gradient of image f as rf ði; jÞ, where

each pixel with indices (i, j),

rf i; jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

of
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The total variation (TV) of the image, denoted as fk kTV ,

is the L1 norm of gradient rf ði; jÞ, where the L1 norm of

vector f is defined by Eq. (2):
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fk kTV is given numerically in Eq. (3):

fk kTV¼
X

i;j

rf ði; jÞ ¼
X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfi;j � fi�1;jÞ2 þ ðfi;j � fi;j�1Þ2
q

:

ð3Þ

The projection data for the object were obtained by in-

verse FT of radial MRI encodings with complex data, and

the reconstruction was performed to minimize the total

variation, expressed as

Minimize fk kTV subject to C f ¼ y; ð4Þ

where f is the reconstructed image with N2 dimensions

(N = 256), y is the projection data (sinogram) with N2

dimensions, and C is the system matrix with N4

dimensions.

TV is the measure of the total variation of the image,

and its use enforces a nearly flat image with the gradient

being zero in most area [19, 20]. The resultant image tends

to be piecewise constant. The fidelity between the recon-

structed image and the projection data in Eq. (4) is in-

creased by iterative changes when using the algebraic

reconstruction technique (ART). These changes are ex-

pressed as

f k;mþ1 ¼ f k;m þ CT ðy� C f k;mÞ
CTC

; ð5Þ

with CT being the transpose of the system matrix and f k;m

being the image at the mth subiteration within the kth it-

eration. Minimization of the total variation of the update of

image in Eq. (5) is done by use of the gradient-descent

algorithm expressed as

f
k;mþ1
TV ¼ f k;mþ1 � br f k;mþ1

�

�

�

�

TV
; ð6Þ

where r f k;mþ1
�

�

�

�

TV
is the partial derivative of f k;mþ1

�

�

�

�

TV
.

b is the regularization parameter that specifies the weight

of TV at the m ? 1th subiteration within the kth iteration.

We chose to look at b = 0.01, 0.1, and 1 % of the max-

imum signal intensity of the updated image at the m ? 1th

subiteration within the kth iteration. In practice, a small

number e that is 1 9 10-4 is necessary for calculation of
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the partial derivative in Eq. (6) so that the L1 norm is

differentiable [18]:

r f k;mþ1
�

�

�

�
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The number of iterations of ART_TV was varied in

three steps 10, 30 and 90.

2.2 Computer simulation

Figure 1 shows the object (Shepp–Logan phantom) used

for the computer simulation. White noise with mean 0 and

standard deviation 10 was added to the object according

to the Gaussian probability density function, and the

sinogram was obtained by Radon transform. The max-

imum signal intensity of the object was 100, and the

matrix size was 256 9 256. The bias–noise curve for the

reconstructed images was evaluated [21]. The metrics

were calculated as

Bias ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j qj � rj
� �2

M

s

; ð8Þ

Noise ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j xj � qj
� �2

M

s

; ð9Þ

where M is the number of pixels in the image, q the re-

constructed image without noise, r the object image, and

x the reconstructed image with noise. The estimations were

carried out 10 times, and the mean values were calculated.

2.3 Phantom studies with a commercially available

MRI system

To compare ART_TV with the FT experimentally, we

first imaged a quality-control phantom (5128754 Rev7,

AllParts MEDICAL, Nashville, USA). The phantom was

made of acrylic and filled with distilled water. The

phantom included a series of rectangular waves and a

disk region (Fig. 2). The scanning parameters were as

follows: pulse sequence, TrueFISP; trajectory of k-s-

pace, radial; TR/TE, 11.8/5.9 ms; flip angle, 70�; FOV,

120 9 120 mm2; base matrix size, 256; number of

views, 256; slice thickness, 10 mm; bandwidth, 130 Hz/

pixel. The parallel imaging technique was not used; a

single-channel flex coil was used. The scan was repeated

Fig. 1 Process of numerical simulation. Noise with a Gaussian

probability density function was added to the object (Shepp–Logan

phantom), and a sinogram was obtained by Radon transform. The line

integral along the straight line connected pixel (i, j) and the detector.

The sinogram was reconstructed by ART_TV to yield the evaluation

images
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10 times so as to avoid sources of measurement errors

such as signal inhomogeneity from the scanner, coil, and

phantom. For the FT method, the conversion from polar

data to Cartesian data was done by bilinear interpolation.

The reconstruction by ART_TV was performed with the

polar data. To evaluate resultant images, we drew a

profile curve through the series of rectangular waves, and

the modulation transfer function (MTF) was measured

[22, 23]. In addition, a region of interest (ROI) was set

on the disk region, and the SNR was estimated by the

subtraction method [24]. The positions of the profile

curve and of the ROI are shown in Fig. 2.

2.4 Investigation with use of a kiwi fruit

Our second experimental test involved scanning of a kiwi

fruit. The scanning parameters were the same as for the

quality-control phantom, with the exception of the FOV

and the slice thickness. The new FOV was 60 9 60 mm2,

and the new slice thickness was 5 mm. Two kinds of re-

ceiver coils, a single-channel flex coil (high-SNR) and a

single-channel body coil built in the MRI system (low-

SNR), were employed. The influence of the iteration

number and the regularization parameter, b, was investi-

gated, and a comparison of images reconstructed by

ART_TV and FT was carried out. A visual assessment of

the images was performed by two technologists, each of

whom had more than 10 years of experience in MRI.

3 Results

3.1 Computer simulation

Figure 3 shows the bias–noise curve for ART_TV. As the

iteration number increased, the bias decreased for all b,

although the noise increased as well. Figure 4 shows the

reconstructed images with b = 0.01 %. When the iteration

number was 10, the image was somewhat blurred (Fig. 4a).

As the iteration number increased, the image sharpened,

but the noise eventually became conspicuous (Fig. 4c).

Figure 5 shows the reconstructed images after 90 it-

erations. The largest b obscured the detail of the image, but

the noise was reduced (Fig. 5c).

3.2 Experimental images of the phantom

Figure 6 shows the results for the MTF of the phantom

images. The MTF improved considerably as the iteration

number increased for b = 0.01 % (Fig. 6a). For

b = 0.1 %, the improvement of the MTF as the number of

iterations increased was smaller, as shown in Fig. 6b. For

b = 1 %, the MTF was almost unchanged as the number of

iterations increased (Fig. 6c).

Figure 7 shows images with b = 0.01 %. These images

were obtained by enlarging the part of the main image that

shows the rectangular-wave chart. After 10 iterations, the

Fig. 2 The quality-control phantom included a series of rectangular-

wave and a disk region. The MTF was measured on the dotted line

across the rectangular wave, and the SNR was measured within the

white square ROI

Fig. 3 Trade-off between spatial resolution and SNR ratio was

investigated by the bias–noise curve in the computer simulations. The

vertical axis and the horizontal axis represent the noise and bias,

respectively. The circles, triangles, and squares show the number of

iterations equal to 10, 30, and 90, respectively. The light-gray, gray,

and black lines show the regularization parameter b corresponding to

0.01, 0.1, and 1 % to the maximum signal intensity of the updated

image at the m ? 1th subiteration within the kth iteration
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rectangles were blurred (Fig. 7a). As the number of it-

erations increased, the rectangles became sharper (Fig. 7b,

c). Figure 8 compares the images obtained after 90 it-

erations, but with different values of b. As b increased, the

rectangles were depicted less distinctly. Even if the dis-

tance between the rectangles was large enough, neighbor-

ing rectangles were almost not distinguishable for b = 1 %

Fig. 4 Shepp–Logan phantom images reconstructed by ART_TV in each iteration with b = 0.01 %. The window level and window width are

equalized on each image (this display condition also held for the other images shown in Figs. 5, 7, 8, 10, 11, 12, and 13)

Fig. 5 Shepp–Logan phantom images reconstructed by ART_TV with use of different values of b. The number of iterations was 90

Fig. 6 Effect of b on MTF for the quality-control phantom. The

black, gray, and light-gray lines represent the number of iterations

corresponding to 90, 30, and 10, respectively Fig. 7 Comb images reconstructed by ART_TV in each iteration

with b = 0.01 %. These images are shown enlarging the part of the

rectangular-wave chart at the phantom image
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(Fig. 8c). Table 1 shows the results for the SNR. The SNR

improved with an increase in b, whereas it deceased with

an increase in the number of iterations, irrespective of the

magnitude of b.

3.3 Comparison of image reconstruction method

on the basis of MTF and SNR

Figure 9 shows the MTF for ART_TV compared to that for

the FT. The MTF of ART_TV was worse than that for the

FT, especially for high frequencies. The upper row of

Fig. 10 shows the reconstructed images of ART_TV with

the iteration number 90 and b = 0.01 %, and the bottom

row shows the images for the FT. Although the rectangles

with small spacing were depicted more clearly with FT

than with ART_TV, there was no large difference between

the algorithms with regard to the delineation of the rect-

angles with large spacing. The SNRs of the ART_TV and

FT were 56.5 ± 2.3 and 14.5 ± 0.2, respectively. Thus,

the SNR of ART_TV was higher than that of the FT.

3.4 Experimental images of a kiwi fruit

Figure 11 shows the reconstructed image of the kiwi fruit

with b = 0.01 %. In the case of use of a flex coil

(Fig. 11a–c), the structure of the kiwi became clearer as the

iteration number increased. However, when a body coil

was used, a large number of iterations reduced the image

quality due to increased noise (Fig. 11d–f). Figure 12

shows the reconstructed images with the iteration number

90. The details of the kiwi fruit were obscured to some

extent for b = 1 % with the flex coil (Fig. 12a–c). In the

Fig. 8 Comb images reconstructed by ART_TV at each b. The

number of iterations is 90. These images are shown enlarging the part

of the rectangular-wave chart at the phantom image

Table 1 SNRs for the images

of the experimental phantom as

a function of the number of

iterations and of b

Iteration number = 10 Iteration number = 30 Iteration number = 90

b = 0.01 % 193.7 ± 15.9 94.5 ± 5.5 56.51 ± 2.3

b = 0.1 % 391.3 ± 89.5 349.3 ± 91.1 341.12 ± 96.1

b = 1 % 1012.3 ± 375.8 902.2 ± 334.3 890.85 ± 308.2

The values are represented as mean ± standard deviation

Fig. 10 Comb images reconstructed by ART_TV and FT. In

ART_TV, the number of iterations and the b are 90 and 0.01 %,

respectively. These images are shown enlarging the part of the

rectangular-wave chart at the phantom image

Fig. 9 Results of MTF by ART_TV and FT with the quality-control

phantom. The black and light-gray lines show ART_TV and FT,

respectively. In ART_TV, the number of iterations and b are 90 and

0.01 %, respectively

300 S. Kojima et al.



Fig. 11 Kiwi fruit images reconstructed by ART_TV at each iteration with b = 0.01 %. The upper row shows the images by use of a flex coil,

and the bottom row shows those with use of a body coil

Fig. 12 Kiwi fruit images reconstructed by ART_TV at each b. The number of iterations was 90. The upper row shows the images by use of a

flex coil, and the bottom row shows those with use of a body coil

Iterative image reconstruction that includes a total variation regularization for radial MRI 301



case of use of a body coil (Fig. 12d–f), the noise was

suppressed effectively as b was increased. Figure 13

compares the reconstructed images with ART_TV to those

with the FT. For ART_TV, the number of iterations was 90

and b = 0.01 % with a flex coil (Fig. 13a), and the number

was 30 and b = 0.1 % with a body coil (Fig. 13c). When

the flex coil was used (Fig. 13a, b), no significant differ-

ence in image quality was observed between ART_TV and

FT. However, in the case of the body coil (Fig. 13c, d), the

image quality of ART_TV was better than that of the FT.

4 Discussion

ART was initially employed for SPECT and CT [25–27].

Recently, ART has been used in MRI [28, 29]. ART up-

dates the pixel value for each projection in angular-view

sampling. When all projection data are used for updating of

the image, one iteration has been accomplished. If noise is

absent and a global minimum for the objective function

exists, the updated image gradually becomes approximated

to the object image as the iteration number increases.

However, if noise is present, there is an inconsistency be-

tween object and projection data, and noise amplification

occurs with an increase in the iteration number, so that the

reconstructed image degrades even if a regularization term

has been included in the objective function that is being

optimized. Thus, choosing the best regularization pa-

rameter and then stopping the iterations at the optimum

time are critical in ART_TV.

TV regularization works satisfactorily for reconstruction

of the image with piecewise constant and its ability to re-

duce noise without loss of edge sharpness is good, provided

the object consists of areas with constant values as does the

Shepp–Logan phantom. If the object has a more compli-

cated texture such as in the case of a kiwi fruit, the trade-

off between noise reduction and the preservation of internal

structure presents a difficult choice, in contrast to the case

for the Shepp–Logan phantom.

In the present work, the kiwi fruit was reconstructed

satisfactorily, as judged by visual impression with

ART_TV by use of 90 iterations and b = 0.01 % for a flex

coil that has a high SNR, but for the body coil a smaller

number of iterations and a larger b are required. Because b
was determined by the maximum value of the iterative

reconstructed image, the optimal b depends on the scan

condition affecting the SNR of the reconstructed image. In

the present work, the upper limit of the number of it-

erations was set at 90. This choice was made on the basis of

the trade-off between the bias and noise in the simulation

study with the Shepp–Logan phantom. Furthermore, b was

tentatively assigned to be in the range of 0.01–1 %. We

consider that the b used in the present work is not neces-

sarily the optimal value for other objects; therefore, further

studies are necessary for determination of the optimal

number of iterations and of the regularization parameter b.

We anticipate carrying out such studies in the future.

When the MTF is measured in MRI, there are problems

such as loss of linearity due to the modulus operation [30,

31]. For overcoming these problems, various measurement

techniques have been proposed [30, 31]. In the case of a

performance evaluation of an MRI device, these techniques

should be employed. However, in the present work, the

MTF was measured by use of a rectangular-wave chart,

because we focused on the comparison of the MTF for

different image reconstruction methods.

Computationally, ART_TV reconstruction is much more

demanding than FT reconstruction. The reconstruction time

for the FT was 4 s; on the other hand, that of ART_TV

after 90 iterations was about 1000 s. Reduction of the

calculation cost is a goal for ART_TV. For achieving this

goal, an acceleration method using GPU (graphics pro-

cessing unit) hardware can be expected [32]. The evolution

toward high-speed computing might achieve that in the

future.

In this study, the result of the image reconstruction by

the ART_TV has converged without diverging. However,

clinical data were not used in this study. Thus, it is

Fig. 13 Kiwi fruit images reconstructed by ART_TV and FT. The

upper row shows the images by use of a flex coil, and the bottom row

shows those with use of a body coil. The number of iterations and the

b of ART_TV with a flex coil were 90 and 0.01 %, and those with a

body coil were 30 and 0.1 %, respectively
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necessary to estimate the repeatability of ART_TV by us-

ing clinical data. In addition, quantitative analysis such as

the contrast-to-noise ratio by use of the ART_TV is im-

portant, because only the SNR and visual assessment were

used in this study. We consider that these investigations are

one of the meaningful future tasks.

5 Conclusion

We studied the performance of the algebraic reconstruction

method combined with TV regularization (ART_TV) for

conventional radial MRI sampling. Both the iteration

number and the regularization parameter b in ART_TV

affect the image quality. For low-SNR data, visually im-

proved image quality was achieved with ART_TV in

comparison with that of the FT, if a small number of it-

erations and a large b were employed.
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