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Abstract We have been developing a computer-aided

detection (CAD) scheme for pneumoconiosis based on a

rule-based plus artificial neural network (ANN) analysis of

power spectra. In this study, we have developed three

enhancement methods for the abnormal patterns to reduce

false-positive and false-negative values. The image data-

base consisted of 2 normal and 15 abnormal chest radio-

graphs. The International Labour Organization standard

chest radiographs with pneumoconiosis were categorized

as subcategory, size, and shape of pneumoconiosis.

Regions of interest (ROIs) with a matrix size of 32 9 32

were selected from normal and abnormal lungs. Three new

enhanced methods were obtained by window function, top-

hat transformation, and gray-level co-occurrence matrix

analysis. We calculated the power spectrum (PS) of all

ROIs by Fourier transform. For the classification between

normal and abnormal ROIs, we applied a combined ana-

lysis using the ruled-based plus the ANN method. To

evaluate the overall performance of this CAD scheme, we

employed ROC analysis for distinguishing between normal

and abnormal ROIs. On the chest radiographs of the

highest categories (severe pneumoconiosis) and the lowest

categories (early pneumoconiosis), this CAD scheme

achieved area under the curve (AUC) values of

0.93 ± 0.02 and 0.72 ± 0.03. The combined rule-based

plus ANN method with the three new enhanced methods

obtained the highest classification performance for distin-

guishing between abnormal and normal ROIs. Our CAD

system based on the three new enhanced methods would be

useful in assisting radiologists in the classification of

pneumoconiosis.

Keywords Computer-aided diagnosis (CAD) �
Pneumoconiosis � Chest radiography � Power spectra �
Artificial neural network

1 Introduction

Pneumoconiosis has relatively specific radiographic fea-

tures, such as diffuse lung parenchyma lesions. Pneumo-

coniosis includes asbestosis, silicosis, and other

occupational diseases caused by exposure to dust [1].

Pneumoconiosis may be classified as either fibrotic or

nonfibrotic, according to the presence or absence of fibrosis

[2]. Siderosis, stannosis, and baritosis are the nonfibrotic

forms of pneumoconiosis that result from inhalation of iron

oxide, tin oxide, and barium sulfate particles, respectively

[2]. The International Labour Organization (ILO) has

established a standardized system for classifying radio-

graphic abnormalities in pneumoconiosis based on the

presence of the following lung parenchymal and pleural

abnormalities: small rounded opacities, small irregular

opacities, and profusion of opacities [2–4].

The radiographic changes in some cases of the initial

reticular forms of pneumoconiosis are difficult to diagnose

[2, 5]. Pleural plaque on plain chest radiographs,
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mimicking shadows, such as rib-companion shadows, may

lead to misclassification of conditions consistent with

pneumoconiosis [1]. Therefore, computer-aided diagnosis

(CAD) systems for chest radiographs are potentially useful

tools that can lead to a more accurate diagnosis of various

lung diseases [6–17]. For the computerized detection of

interstitial lung disease on chest radiographs, a number of

researchers have developed CAD schemes based on the

Fourier transform [6–8], geometric-pattern feature analysis

[9], and artificial neural network (ANN) analysis [10] of

image data. In addition, CAD systems for diffuse lung

disease on thoracic computed tomography (CT) have been

developed. These CAD schemes were based on histogram

features [12], the run length matrix (RLM) [12], the gray-

level co-occurrence matrix (GLCOM) [12], the Gaussian

filter bank-based method [13], morphologic filter-based

feature analysis [14], subjective clinical features provided

by radiologists [15], a hybrid of three single networks with

expert rules [16], and adaptive multiple-feature methods

[17]. On the other hand, CAD systems for detection of

pneumoconiosis on chest radiographs have been developed

for improved detection performance by radiologists [18–

28]. Use of a combination of a multi-scale difference filter

bank with histogram and GLCOM for extracting discrim-

inatory features from each zone, the utility of a support

vector machine (SVM) as a region-level classifier and the

employment of a chest-level classifier to incorporate six

regions’ prediction results in the final classification [22].

Thus, many researchers [6–27] obtained a specific index

with textural features and used discrimination analysis such

as ANN and SVM for distinction between normal and

abnormal lungs. Therefore, because we obtained more

information on abnormal and normal lungs, we developed a

CAD system for the distinction between normal and

abnormal patterns in pneumoconiosis using the ANN

trained with the power spectrum (PS) values [28].

However, according to the subcategory, size, and shape

with standard radiographs and the guideline defined by the

ILO and Ministry of Labor, radiologists subjectively clas-

sify category. The profusion level of small opacities can

reflect the degree of pneumoconiosis. It is difficult for

radiologists to classify pneumoconiosis with small and

irregular opacities on chest radiographs. In addition, for

recognizing handicap, it was necessary for radiologists to

correctly classify category.

Therefore, we have been engaged in the development of

a CAD scheme for pneumoconiosis with each subcategory,

size, and shape using rule-based plus ANN analysis of the

PS with three new enhancement methods for the abnormal

patterns to reduce false positives and false negatives. In

addition, we investigated the effects of various parameters

on the overall classification performance.

2 Materials and methods

2.1 Materials

Figure 1 shows the ILO classification scheme for small

opacities in pneumoconiosis. The small opacities was divi-

ded into four categories, ranging from a completely normal

lung (category 0) to severe pneumoconiosis (category 3).

Our image database consisted of two normal and 15 abnor-

mal posteroanterior (PA) chest radiographs. The two normal

cases define subcategory 0/0, and 15 abnormal cases,

respectively, define subcategories 1/1, 2/2, and 3/3 with

some of the shapes and sizes of these opacities (p, q, r, s, and

t in Fig. 1; Table 1). These images were digitized with a

pixel size of 0.175 mm, a matrix size of 2468 9 2034, and

12-bit depth. The profusion of small opacities refers to the

concentration of small opacities in the affected zones of the

lung [4]. Classification of a radiograph using the 12-sub-

category scale (between subcategories 0/- and 3/? in

Fig. 1) was performed [4]. The appropriate category was

chosen by comparison of a subject radiograph with standard

radiographs that define the levels of profusion characteristic

of the subcategories (0/0, 1/1, 2/2, 3/3) within these cate-

gories (0, 1, 2, and 3) [4]. The category was recorded by

writing the corresponding symbol followed by an oblique

stroke, i.e. 0/, 1/, 2/, 3/ [4]. If no alternative category was

seriously considered, the radiograph was classified in the

subcategory, i.e. 0/0, 1/1, 2/2, 3/3 [4].

Fig. 1 ILO classification

scheme for small opacities in

pneumoconiosis
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The opacities were also classified by size and shape, as

either rounded or irregular opacities. In each case, three

sizes were differentiated. For small rounded opacities, the

three size ranges were denoted by the letters p, q, and r, and

were defined by the appearances of the small opacities on

the corresponding standard radiographs (Fig. 1) [4]. When

small opacities of different shapes and/or sizes were seen,

the letter for the predominant shape and size (primary) was

recorded before the oblique stroke, whereas the letter for

the less frequently occurring shape and size (secondary)

was recorded after the oblique stroke [4].

2.2 Overall classification schemes with combined

rule-based plus ANN method

Figure 2 shows the overall classification scheme with the

combined rule-based plus ANN method with the use of

three new enhancement methods. First, the regions of

interest (ROIs) with a matrix size of 32 9 32 pixels were

manually selected from normal and abnormal cases in

intercostal spaces and over rib spaces by an experienced

radiological technologist [7]. We eliminated overlap with

ROIs. Table 1 shows the number of ROIs on each case. We

obtained a trend correction in selected ROIs using a two-

dimensional surface-fitting technique based on the least-

square method because pixel values were different between

the gross anatomy of the lung and chest wall regions on

chest radiographs [7].

We performed a trend correction with second-order

polynomial surfaces. Three new enhancement methods, a

window function image, top-hat transform image, and

GLCOM feature image, were applied to trend-correction

images. The effects of the window function image, top-hat

transform image, and GLCOM feature image will be dis-

cussed later. In these three enhancement methods, we

calculated a PS of all ROIs by Fourier transform [28]. We

used only PS values on the main and second axes, which

have the maximum and the second maximum PS values on

the radial line from the center of the PS image, respectively

[28]. We used the PS values on the positive main and

second axes that represented spatial frequency because

they were symmetric to the center of the PS image [28].

For classification between normal and abnormal ROIs, we

applied a combination of the ruled-based plus ANN

method of the PS value with these three enhancement

methods.

2.3 Reduction of high-frequency distortion

with window function

With regard to the effect of a noncontiguous pixel value on

the edge of the ROI, higher PS values appeared on the

u and v axes that represented spatial frequency. Therefore,

it is necessary for the edge of the ROI to be smoother than

the central point of the ROI and to extract the original

frequency of the ROI. Therefore, we obtained a Hanning,

Hamming, and Blackman window function as the window

function. These window function images were applied to

the trend-correction images. The Hanning (H(n)), Ham-

ming (h(n)), and Blackman (B(n)) window function images

were defined as follows:

HðnÞ ¼ 0:5þ 0:5 cos
2pn

N � 1
;

hðnÞ ¼ 0:54þ 0:46 cos
2pn

N � 1
;

BðnÞ ¼ 0:42þ 0:5 cos
2pn

N � 1
þ 0:08 cos

4pn

N � 1
;

where N is the number of data and n ( � N�1
2
� n� N�1

2
) is

the position of the data. We calculated n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

on

two-dimensional spatial frequency domains. We calculated

Table 1 ILO classification scheme for rounded and irregular opaci-

ties on subcategories and the number of ROIs on (a) subcategory 0/0

and (b) subcategories 1/1, 2/2, and 3/3

No. of cases

a

Subcategory 0/0 Case 1 Case 2

Number of ROIs 101 96

Shape and size

Rounded opacities Irregular opacities

b

Subcategory 1/1 p/p q/q r/r s/t t/t

Number of ROIs 154 124 100 117 101

Subcategory 2/2 p/p q/q r/r s/s t/t

Number of ROIs 144 92 152 159 105

Subcategory 3/3 p/p q/q r/r s/s t/t

Number of ROIs 226 122 176 101 169

Fig. 2 The overall classification scheme with combined rule-based

plus ANN method
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the PS of all ROIs by Fourier transform. The spatial fre-

quency was increased in the order of the Hamming, Han-

ning, and Blackman window function image. In contrast,

the dynamic range was decreased in the order of the

Blackman, Hanning, and Hamming window function

images. As shown in Fig. 3, on the PS image of the trend-

correction image, high PS values were seen on the u and

v axes. However, on the PS image of each window function

image, the high PS values resulting from the edge of the

ROI were removed. The effect of each window function

image on the classification performance will be discussed

later.

2.4 Enhancement method with the top-hat transform

As the opening processing of trend-correction images

with a flat structuring element removed peaks and ridges

from the topographic surface, a rough background ele-

ment alone on the trend-correction image remained. A

morphologic top-hat transform produced the hollows and

ravines of the topographic surface of the trend-correction

image. The morphologic top-hat transform is defined by

subtraction of the opening processing of a trend-correc-

tion image from the trend-correction image [14]. The

top-hat transform images with structure elements from

13 9 13 to 25 9 25 pixels were applied to the trend-

correction images, so that nodular and irregular opacities

could be extracted and large vessels were removed

(Fig. 4a–e). We calculated the PS of all ROIs by Fourier

transform (Fig. 4f–j). The effect of structure element

pixels on the classification performance with the top-hat

transform will be discussed later.

2.5 Enhancement method with gray-level

co-occurrence matrix (GLCOM) feature image

The GLCOM feature image is a well-established tool for

characterizing the spatial distribution of gray levels in an

image [26]. An element of the GLCOM feature image was

defined by the number of pairs of pixel values separated by

a given distance in a direction. If two pixel values are

different, an element of a GLCOM measures the ‘‘chan-

ges’’ in gray levels [26]. An element at location (i, j) of the

co-occurrence matrix signifies the joint probability density

of the occurrence of gray levels i and j in a specified

direction h (h = 45�, 225�) and at a specified distance

d from each other [26]. GLCOM feature images were

applied to the trend-correction images on a 6-bit depth

(Fig. 5a–d). The horizontal and vertical directions of the

GLCOM feature images denoted the number of gray levels.

We calculated the PS of all ROIs by Fourier transform

(Fig. 5e–h). The effect of the distance level on the classi-

fication performance with the GLCOM feature image alone

will be discussed later. In addition, the classification per-

formance with the GLCOM feature image was affected by

bit depth. Therefore, to investigate the effects of the bit

depth with the rule-based plus ANN method, we varied the

gray-level scales from 12- to 4-bit depth.

2.6 Effects of various parameters

In this study, we investigated the effects of many param-

eters used in the rule-based plus ANN method [28]. We

randomly divided the data into abnormal ROIs and normal

ROIs for each case, and we obtained training data and non-

Fig. 3 Window function images. a Trend-correction image, b the Hamming window function image, c the Hanning window function image, and

d the Blackman window function image. e–h The PS images of images a–d
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training data. First, we examined the effects of the Ham-

ming, Hanning, and Blackman window function. A rule-

based method using PS values at 0.179 and 0.357 cycles

per millimeter, corresponding to the spatial frequencies of

nodular patterns, was used for identification of obviously

normal or obviously abnormal ROIs [28]. Then, the ANN

method was applied for classification of the remaining

ROIs, which were not classified as obvious ROIs by the

rule-based method. In the rule-based method, if the values

for the abnormal ROIs were higher than that of the

Fig. 4 Top-hat transform images. a Trend-correction image, b top-hat transform image (13 9 13 pixels), c top-hat transform image (17 9 17

pixels), d top-hat transform image (21 9 21 pixels), and e top-hat transform image (25 9 25 pixels). f–j The PS images of images a–e

Fig. 5 GLCOM feature images. a Trend correction, b GLCOM feature image (distance of 1 pixel), c GLCOM feature image (distance of 2

pixels), and d GLCOM feature image (distance of 3 pixels). e–h The PS images of images a–d
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maximum normal ROI, these abnormal ROIs were classi-

fied as ‘‘obviously’’ abnormal. If the values for the normal

ROIs were lower than that of the minimum abnormal ROI,

they were classified as ‘‘obviously’’ normal.

The ANN method was composed of three units con-

sisting of input, hidden, and output layers. The ANN

method with the window function and top-hat transform

was composed of 32 input units, 17 hidden units, and one

output unit. The ANN method with the GLCOM feature

image was composed of 64 input units, 33 hidden units,

and one output unit. It is important to note that training

with ‘‘0.1’’ for normal patterns and ‘‘0.9’’ for abnormal

patterns was intended to distinguish between the abnormal

and normal ROIs using the ANN method. Finally, the

average classification performance for the ANN method

alone was determined using ten different training data and

non-training data sets.

To investigate the effects of structure elements on the

top-hat transform, we varied the structure element from

13 9 13 pixels to 25 9 25 pixels. As discussed above, we

studied the classification performance between normal and

abnormal ROIs using the rule-based plus ANN method

with the top-hat transform alone. In addition, to investigate

the effects of the distance level on the GLCOM feature

image, we varied the distance level from 1 to 3 pixels. As

discussed above, we studied the classification performance

between normal and abnormal ROIs using the rule-based

plus ANN method with the GLCOM feature image alone.

2.7 Evaluation of classification performance on overall

classification schemes with combined rule-based

plus ANN method

After we decided various parameters on window function,

top-hat transform, and GLCOM feature image for each

case used in the rule-based plus ANN method, to improve

the classification performance with each of the three

enhancement methods, we applied a combined scheme

based on the window function, top-hat transform, and

GLCOM feature image for distinction between normal and

abnormal ROIs using a combined rule-based plus ANN

method. In the combined rule-based method in which the

combined analysis of the window function, top-hat trans-

form, and GLCOM feature image was used, abnormal

ROIs were classified by the logical OR operation, (if the

ROI could be classified as abnormal by window function,

top-hat transform, or GLCOM feature image, the ROI was

finally classified as an obviously abnormal ROI. Obviously

normal ROI was classified in a similar way). In the com-

bined ANN method, as shown in Fig. 6, the ANN was

composed of 128 input units, 65 hidden units, and one

output unit. The input data of the window function and top-

hat transform each consisted of a total of 32 pieces (16

normalized PS values for each of the main and second

axes). The GLCOM input data consisted of 64 pieces (32

normalized PS values for each of the main and second

axes). Thus, input data with the combined ANN method

consisted of 128 pieces. It is important to note that training

with ‘‘0.1’’ for normal patterns and ‘‘0.9’’ for abnormal

patterns was intended to distinguish between the abnormal

and normal ROIs using the combined ANN method.

To evaluate the overall performance of the combined

rule-based plus ANN method, we employed receiver

operating characteristic (ROC) analysis to distinguish

between normal and abnormal ROIs. As is the case in the

rule-based plus ANN method, we randomly divided the

data into abnormal ROIs (Table 2) and normal ROIs (197

ROIs) for each case, and we created ten different pairs of

data sets for training and testing. The ROC curve was

obtained by averaging of the ROC curves derived from the

ten different pairs of data sets. The statistical significance

of differences between ROC curves was determined by

applying the two-tailed paired t test to the AUC (area under

the ROC curve) of each test data set.

3 Results and discussion

3.1 Effects of the window function alone with the

rule-based plus ANN method

The effects of the window function on each subcategory

of small irregular opacity with a size of s/s are shown in

Fig. 7a. The AUC value for subcategory 3/3 was

0.84 ± 0.03 with the Blackman window function image,

which was larger than the value of 0.79 ± 0.04 with the

trend-correction image (P \ 0.05). The effects of the

window function on each subcategory of small irregular

opacity with a size of t/t are shown in Fig. 7b. The AUC

value for subcategory 2/2 was 0.74 ± 0.05 with the

Blackman window function image, which was larger

than the value of 0.69 ± 0.05 with the trend-correction

image (P \ 0.05). There was no statistical significance

with other cases. As in the previous study of Katsurag-

awa et al. [27] regarding the relationship between the

first moment of the PS and the root-mean-square (RMS)

variation, the first moment of the PS of subcategory 2/2

with a size of t/t was similar to that of subcategory 3/3

with a size of s/s. As the frequency on this first moment

of PS was similar to that of the Blackman window

function, the classification performance between normal

and abnormal ROIs with the Blackman window function

was increased to a greater extent compared to that with

the trend-correction image alone. Therefore, the Black-

man window function showed a better classification

performance on subcategory 2/2 with a size of t/t and
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subcategory 3/3 with a size of s/s compared to the trend-

correction image alone.

3.2 Effects of the top-hat transform alone with the

rule-based plus ANN method

The effects of structure elements on the top-hat transform

are shown in Fig. 8. The AUC value for subcategory 2/2

was 0.78 ± 0.05 with the top-hat transform (21 9 21

pixels), which was larger than the value of 0.74 ± 0.06

with the trend-correction image (P \ 0.05). The AUC

value for subcategory 1/1 was 0.71 ± 0.05 with the top-hat

transform (17 9 17 pixels), which was larger than the

value of 0.66 ± 0.06 with the trend-correction image

(P \ 0.05). There was no statistical significance with three

cases in subcategory 3/3. The distance between small

opacities on subcategory 3/3 was shorter than that for

subcategory 1/1. In addition, the profusion of small opac-

ities in subcategory 3/3 was more concentrated than that in

subcategory 1/1. A small structure element of opening

processing corresponded to a large distance between small

opacities as subcategory 1/1. This result suggested that the

structure element of 17 9 17 pixels in subcategory 1/1, that

of 21 9 21 pixels in subcategory 2/2, and no top-hat

transform (trend-correction image) in subcategory 3/3 may

correspond to the distance between small opacities.

Fig. 6 Combined ANN method with window function, top-hat transform, and GLOCM feature image

Table 2 The number of ROIs on training data and non-training data

Shape and size

Rounded opacities Irregular opacities

Subcategory 1/1 p/p q/q r/r s/t t/t

Training data 77 62 50 59 51

Non-training data 77 62 50 58 50

Subcategory 2/2 p/p q/q r/r s/s t/t

Training data 72 46 76 80 53

Non-training data 72 46 76 79 52

Subcategory 2/2 p/p q/q r/r s/s t/t

Training data 113 61 88 51 85

Non-training data 113 61 88 50 84
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3.3 Effects of the GLCOM feature image alone

with the rule-based plus ANN method

The effects of the gray-level scale on all small opacities

are shown in Fig. 9. The AUC was 0.754 ± 0.083 for

6-bit depth, which was slightly larger than the value of

0.746 ± 0.097 for 12-bit depth (P = 0.055). There was

no significant change in the classification performance.

When the number of gray-level scales was reduced from

12-bit to 6-bit depth, there was no significant change in

the classification performance. However, when the

number of gray levels was reduced further to a 5-bit

grayscale, the classification performance was degraded

markedly. These results were similar to those of the

previous study by Katsuragawa et al. [27]. They indi-

cated that it was possible to represent lung texture pat-

terns by a very small number of gray levels for

computer analysis [27]. This somewhat unexpected result

may be related to the fact that the basic pattern of the

lung texture contains high PS values on low spatial

frequency [27]. In addition, when a GLCOM feature

image was obtained with high bit depth, because of the

wide range of bit depths, the element of the GLCOM

feature image was decreased and spread to various pixel

Fig. 7 Effect of the window function on each subcategory of small irregular opacities with sizes of s/s (a) and t/t (b)

Fig. 8 Effects of structure element of the top-hat transform on all

small rounded and irregular opacities
Fig. 9 Effect of the gray-level scale
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values. On the other hand, when a GLCOM feature

image was obtained with low bit depth, because the

range of the bit grayscale was reduced, the element of

the GLCOM feature image was increased and focused

on some pixel value. Therefore, we selected a 6-bit

depth in this study.

The effects of the GLCOM feature images on all

small rounded opacities are shown in Fig. 10a. The AUC

values in subcategories 3/3, 2/2, and 1/1 were

0.86 ± 0.04 with the GLCOM feature image (distance of

3 pixels), 0.80 ± 0.08 with the GLCOM feature image

(distance of 2 pixels), and 0.75 ± 0.04 with the GLCOM

feature image (distance of 1 pixel), respectively. The

effects of the GLCOM feature images on all small

irregular opacities are shown in Fig. 10b. The AUC

values for subcategories 3/3, 2/2, and 1/1 were

0.95 ± 0.02 with the GLCOM feature image (distance of

2 pixels), 0.74 ± 0.05 with the GLCOM feature image

(distance of 1 pixel), and 0.76 ± 0.05 with the GLCOM

feature image (distance of 1 pixel), respectively. Relating

the top-hat transform to the above, for subcategory 1/1

with a large distance between small opacities, we found

that the distance of the GLCOM feature image was

small. Therefore, for subcategory 1/1, when the values

for two pixels between short distances were different, the

element of the GLCOM feature image had a high value.

This result suggested that the distances of 1 pixel on

subcategory 1/1, 2 pixels on subcategory 2/2, and 3

pixels on subcategory 3/3 may correspond to the distance

between small opacities.

3.4 Classification performance by combined rule-based

plus ANN method

Tables 3 and 4 show the AUC obtained with the classifi-

cation method for small rounded opacities and irregular

opacities, respectively. As shown in Tables 3 and 4, com-

pared with the trend-correction image alone, the classifi-

cation performance with the combined rule-based plus

ANN method was improved in 12/15 (80.0 %) cases

(P \ 0.05). However, there was no statistical significance

Fig. 10 Effect of the GLCOM feature images on all small a rounded opacities and b irregular opacities

Table 3 Small rounded opacities with a size of p/p (a), q/q (b), and r/

r (c) with the combined rule-based plus ANN method

Trend correction

alone

Combination

analysis

P value

a

Subcategory 1/1 0.61 ± 0.02 0.79 ± 0.02 \0.005

Subcategory 2/2 0.77 ± 0.03 0.85 ± 0.03 \0.005

Subcategory 3/3 0.8 ± 0.02 0.83 ± 0.02 \0.005

b

Subcategory 1/1 0.64 ± 0.06 0.72 ± 0.05 \0.005

Subcategory 2/2 0.70 ± 0.04 0.76 ± 0.04 \0.005

Subcategory 3/3 0.84 ± 0.02 0.85 ± 0.03 0.18

c

Subcategory- 1/1 0.70 ± 0.04 0.76 ± 0.01 \0.005

Subcategory 2/2 0.83 ± 0.03 0.93 ± 0.03 \0.005

Subcategory 3/3 0.89 ± 0.02 0.90 – 0.01 0.056

P value: Student t test for paired data
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with other cases (3/15). Compared with the previous study,

the classification performance was improved in all cases.

The combined rule-based plus ANN method with three

enhancement methods showed the best classification per-

formance for distinguishing between abnormal and normal

ROIs. The three new enhancement methods decreased

false-positive and false-negative ROIs. In addition, our

results suggest that the rule-based plus ANN method with

each of the three enhancement methods can complement

each other. It should be noted that classification with the

combined rule-based plus ANN method using the window

function, top-hat transform, and GLCOM feature image

provided the best performance.

On the cases with decreasing concentration of small

opacities such as subcategory 1/1, the classification per-

formance in the present study was slightly lower than in the

previous studies [22, 28]. This is because the classification

performance with the previous method was affected zone

of the lung [22], or abnormal ROIs [28] included various

subcategories, shapes, and sizes that it was easy for radi-

ologists to classify as pneumoconiosis on chest radio-

graphs. Therefore, for improved classification

performance, typical texture patterns (each subcategory,

shape, and size) were enhanced by texture features of the

GLCOM, RLM. A gray-level ‘run’ was defined as set of

consecutive pixels of the same gray level in a given

direction. An element of the RLM measures the number of

occurrence of a run with a specific length and specific gray

level in a given direction [26]. Each ANN is trained

independently for typical texture patterns (each subcate-

gory, shape, and size). A multi-ANN [29] or first–third

ANN [10] may show the highest classification perfor-

mance. Our results were obtained for a relatively small

number of cases (17 cases). Therefore, for evaluation of the

clinical efficacy of this technique, a prospective study

(ROC-type analysis) with large numbers of patients is

required.

4 Conclusions

We have developed a CAD system using three new

enhancement methods for classification of pneumoconiosis

on chest radiographs. The combined rule-based plus ANN

method with window function, top-hat transform, and

GLCOM feature image improved the classification per-

formance in comparison with the rule-based plus ANN

method. On the user interface for classification of pneu-

moconiosis on chest radiographs, in the future, square and

circular markers will indicate normal and abnormal ROIs,

respectively. The larger the circle, the greater the ANN

output, which correspond to a greater abnormality.

Thereby, our CAD system based on the new enhanced

methods will be useful for assisting radiologists in the

classification of the lowest subcategory (early pneumoco-

niosis) on chest radiographs.
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