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Abstract
Understanding human facial expressions is one of the key steps towards achieving human–computer interaction. Owing to
the anatomic mechanism that governs facial muscular interactions, there exist powerful dependencies between expressions
and action units (AUs) that are useful for exploiting such rules of knowledge to guide the model learning process. However,
they have not yet been represented directly and integrated into a network. In this study, we propose a novel method for facial
expressions and AUs recognition based on their dependencies on graph convolutional network. First, we train the conditional
generative adversarial network to filter out identity information and extract expression information through a de-expression
learning procedure. Thereafter, we apply graph convolutional network to represent dependency laying among AU nodes and
embed the nodes by dividing the expression component into multi patches, corresponding to the AU-related regions. Finally,
we use prior knowledgematrices to represent the dependencies between expressions and AUs and subsequently integrate them
into a loss function to constrain the model. The results of our experiments indicate that such representation is effective for
improving the recognition rate. They also reveal that our work achieves better performance than several popular approaches.

Keywords Facial expression · Action units (AUs) · Dependency · Conditional generative adversarial network · Graph
convolutional network (GCN) · Prior knowledge

1 Introduction

Facial expression analysis refers to the differentiation of
facial changes corresponding to a neutral face and is one of
the most important parts in daily communication of human
beings. Almost all anatomically visible facial expressions
can be described by another modality known as facial action
units (AUs), which refer to the local facial muscle actions,
as described by the facial action coding system (FACS)
[7,8]. Nowadays, owing to their applications such as in
human–robot interaction, several studies [19] have focused
on improving the multi-modality recognition, namely, facial
expression and AU classification. These studies mainly face
the following two challenges: environmental conditions,
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such as illumination, occlusion, low resolution, and human
attribute variables, such as age, gender, and appearance. For
the former, significant progress has been made [12,23,30].
However, for the latter, their changes will make human facial
expressions exhibit different emotional intensities or even
styles; thus, deconstructed different AU combinations. As
shown in Fig. 1, a disgusted expression can be decomposed
into “AU9+AU17” or “AU9+AU10+AU25”. In some situa-
tions, AU17 represents the degree of expressions. Therefore,
researchers propose the use of the generative adversarial net-
work (GAN) [10] for generating the query neutral face [42]
or the average face based on a database [3] to filter out iden-
tity information, then use the middle layer of the generator
to classify expressions or AUs. However, based on anatom-
ical considerations, these models ignore the symbiosis and
mutual exclusion of facial AUs.

Meanwhile, because of the mapping relationship between
facial expressions and AUs, some researchers started explor-
ing the utilization of AUs for recognizing facial expressions,
and vice versa. As illustrated in Fig. 1, an angry expression
activates AU4, AU17, and AU23, as we generally “lower
brow”, “raise chin”, and “tighten lid and lip” when we feel
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Fig. 1 Illustration of the relationship between the six basic expres-
sions and multiple AUs from Cohn–Kanade (CK+) and Radboud Faces
Database (RaFD) databases

slightly angry [6]. For the traditional methods, because the
Bayesian network (BN) can imitate the process of human
thinking and reasoning [2], BN is often used to model such
dependencies [11]; however, its performance is limited to the
input of manual features. Owing to the development of deep
learning, some studies utilize the big data to obtain high-level
semantic information. Through visualizing the middle layer
of a convolution neural network (CNN), [13] demonstrates
that the process of learning expressions is essentially learn-
ing AUs. Therefore, some models propose the construction
of amulti-task [34] ormulti-branch network [22] for learning
each other’s features. However, these methods mostly ignore
the direct representation of prior knowledge as constraints
for alleviating the boundary fuzzy problem of multi classi-
fication and integrate it into deep learning to simplify the
network and guide the learning process.
In this paper, we introduce a novelmethod for the recognition
of facial expressions and AUs by using the dependen-
cies with graph convolutional network (FE-AURDGCN).
In particular, we use cGAN to generate the correspond-
ing neutral image to solve the identity-related variation
problem and extract AU regions from the middle layers
of the generative model. The selected AUs are regarded
as nodes of the graph and we construct an AU cor-
relation graph to represent their symbiosis relationship

for learning non-geometry semantic information. There-
after, graph convolutional network (GCN) [14] is used
to guide the information propagation among nodes. Sub-
sequently, we integrate the expressions and AUs prior
distribution into the loss function to regulate network out-
puts and guide the training direction of the network. We
conduct extensive experiments on the widely used CK+
and RaFD datasets. The results demonstrate the supe-
riority of the proposed FE-AURDGCN framework over
the state-of-the-art facial expression and AU recognition
methods.
In summary, this paper has the following contributions:

(1) In this study, we formulate a novel expression and
AU recognition model, known as the FE-AURDGCN
model, which incorporates the cGAN and AU dependent
relationship graph. This model alleviates the identity dif-
ference issue and solves the problem of encoding the
appearance and geometry information of facial expres-
sions and the relations of co-occurring of facial muscle
movements.

(2) To solve the boundary fuzzy problem for some emo-
tions and AUs classification, we propose to use their
inter-dependent conditional relation matrices as prior
knowledge to describe the dependencies between expres-
sions and AUs and use them into the loss function for
reducing the final error identification probability.

The remainder of this paper is organized as follows: Sect. 2
reviews related work; Sect. 3 presents the details of the
FE-AURDGCN model; Sect. 4 outlines the experiments
conducted in which the recognition results for AUs and
expressions on the CK+ and RaFD datasets are available;
finally, Sect. 5 presents the concluding remarks.

2 Related work

2.1 Expression and AU recognition

Automatic facial expression and AU recognition have gar-
nered widespread research interest and achieved significant
progress in recent years. The existing methods can be essen-
tially divided into traditional models based on hand-crafted
features and deep learning models based on neural net-
works. For the traditional models, apart from relying on
discriminative learning methods, such as the nearest neigh-
bor [43] and support vector machine methods [38] et al.,
researchers focus more on the application of prior knowl-
edge into reasoning models. Tong et al. [41] proposed the
construction of a BN to describe the dependency relationship
between AUs and expressions. Li et al. [20] further devel-
oped a dynamic BN (DBN) to represent the probabilistic
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relationships among facial expressions, AUs, facial compo-
nents, and feature points. Wang et al. [39] used a restricted
Boltzman machine to capture complex AUs relations and the
correlations with expressions. Nevertheless, generalization
performance of these methods is restricted because the con-
ditional probabilities used in these topology graph models
are all from target labels.
For the deep learning model, researchers have developed
some effective networks by utilizing the correlation between
AUs and expressions. Liu et al. [22] constructed anAU-aware
depth network to enable expressions and AUs branches learn
important information from each other. Zhao et al. [46] con-
sidered the anatomical attribute of facial regions and divided
the face into multiple patches for AUs multi-label learning.
Pons et al. [34] developed amulti-task network and the exper-
iment revealed that simultaneous emotions classification and
AUs detection can improve the expression recognition per-
formance. Meanwhile, because of the development of the
variants of CNNs known as GCN [14], Li et al. [18] used
the semantic relationship between AUs as extra guidance for
enhancement of facial region representation and significantly
improved AU recognition performance. Liu et al. [24] used
the geometric and local features of facial muscles to con-
struct graph structure for expression classification. However,
the explicit expression of the rule of knowledge based on
FACS between expressions and AUs for guiding the learning
direction of the network is yet to be studied.

2.2 Generative adversarial networks

Recently, theGANhasgarnered increasing attention. Inspired
by the adversarial idea [15], GAN [10] plays a minimax
game, comprising the following two models: a generator (G)
and a discriminator (D). G attempts to capture the distribu-
tion of ground truth, whereas D attempts to distinguish the
generated examples from the true examples asmuch as possi-
ble. Owing to the development of GAN, there are increasing
fields applying it or its variant, such as computer vision [36]
and natural language [25]. Among them, the generation of
different attributes faces is a popular topic. Liu et.al. [27]
introduced a coupled GAN (CoGAN) to learn and regen-
erate faces with different attributes such as hair, smiling,
and eyeglasses. NVIDIA [31] introduced an alternative gen-
erator architecture for generating more real faces with all
types of attributes, such as freckles, pose, and even identity.
Zhou et al. [37] applied conditional GAN (cGAN) to gen-
erate the neutral face from expressions and [32] used this
model to recognize expressions by learning the intermedi-
ate layer of cGAN. Furthermore, Lai et al. [16] explored
multi-view facial expression recognition by reconstructing
the corresponding frontal face using GAN.

Fig. 2 Framework of our proposed FE-AURDGCN. It comprises a gen-
erativemodel for reconstructing a neutral face andGCNfor representing
the dependencies between expressions and AUs. “⊕” represents matrix
concatenation along the feature dimension

3 Methodology

In this section, we introduce our FE-AURDGCN learning
framework in detail. First, we briefly introduce the extraction
of expression information froman identity image. Thereafter,
the graph representation network of expression is presented.
The overall construction of our framework is illustrated in
Fig. 2.

3.1 Expression information extraction

Facial expression comprises a human face and expression
information. Inspired by [42], the conditional generative
adversarial network (cGAN) is used to filter out the identity
information by generating the corresponding neural image
of the query image. cGAN consists of G and D. In particu-
lar, the generative model generates the corresponding neutral
face Ioutput through encoders and decoders and reserves the
expression information in the middle layers of the network.
To narrow the gap between the pseudo reconstructed face
Ioutput and the ground truth Itarget to confuse the discrimina-
tor asmuch as possible,we add image-difference information
between them to restrain G and use L1 loss for the image
similarity. The objective loss for the generator is described
as follows:

LcGAN (G) = 1

N

N∑

i=1

{
− log D

(
I iinput , I

i
output

)

+ θ

∥∥∥I itarget − I ioutput

∥∥∥
1

}
(1)
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In other ways, the discriminator is a CNN for two classifica-
tions. Its goal is to differentiate pseudo labels [Iinput , Ioutput ]
from truth labels [Iinput , Itarget ]. The objective loss for the
discriminator is described as follows:

LcGAN (D) = 1

N

N∑

i=1

{
log D

(
I iinput , I

i
target

)

+ log
(
1 − D

(
I iinput , I

i
output

))}
(2)

The final loss is described in Eq. (3). The optimization ter-
minates at a saddle point, which is a minimum for G and a
maximum for D. When the model reaches equilibrium, the
expression information can be extracted from themiddle lay-
ers of the generative model.

G∗ = argmin
G

max
D

LcGAN (D) + LcGAN (G) . (3)

3.2 AU-related graph construction

Considering expressions of different individualsmay contain
different combinations of different AUs because of variation
in culture and race, from the disgusted expression illustrated
in Fig. 1, it is difficult to directly construct an AU relation
graph to represent a specific expression. However, according
to FACS, there exists a co-existent and mutually exclusive
relationship between AUs caused by the mechanism of mus-
cles. Inspired by [18], we constructed an AU-related graph to
learnmore semantic features throughGCN [14]. GCNworks
by propagating information between nodes V based on the
correlation matrix A. In particular, each node in the graph
represents the specific AU and each value in A represents the
correlation dependency of AUs. We detail the construction
of A and the embedding of V as follows:

3.2.1 Correlation matrix of AUs

In this study, we define A by mining AUs co-occurrence
patterns within the dataset in the form of conditional proba-
bility, i.e., P

(
yi = 1|y j = 1

)
, which denotes the probability

of occurrence of AUi when AUj appears. Although there
exist positive and negative relationships between the pair-
wise AUs, we only consider the influence of the positive
dependencies that are interpreted in two ways as expressed
in Eqs. (4) and (5). The first formula indicates that when
one AU appears, the other AU is more likely to appear than
not. The second formula indicates that the probability of one
AU appearing when the other AU appears is higher than not.
Thus, if these two conditions are satisfied, we can set Ai, j

as 1; otherwise, as 0 as expressed in Eq. (6). The final AUs
dependent relationship is illustrated in Fig. 3.

P
(
yi = 1|y j = 1

)
> P

(
yi = 0|y j = 1

)
(4)

Fig. 3 AUs dependent relationship graph

P
(
yi = 1|y j = 1

)
> P

(
yi = 1|y j = 0

)
(5)

Ai, j =
{
1, i f (Eq. (4) = 1) and (Eq. (5) = 1)
0, else.

(6)

3.2.2 Feature embedding of nodes

According to the mapping relation between facial areas and
AUs illustrated in Fig. 4, we can crop the obtained expression
information into patches and set them as the corresponding
node features. However, for a deep convolution network, the
first one or two layers basically learn low-level features such
as color, whereas the deeper layers could learn complex fea-
tures such as texture [44]. Therefore, we only crop from the
second layer of the generator to reduce computation cost. In
other ways, we set 16*16 as the size of every AU region for
the input image. Thus, based on the definition of a recep-
tive field, the regions shrink two times after one encoder, and
vice versa. Thereafter, the feature of each node is obtained
by cascading each AU cropped region.

3.2.3 Convolutions on graph

To train the constructed affective graph, we perform theGCN
proposed in [14]. Unlike traditional convolutions that operate
on local Euclidean structures in an image, GCN uses feature
descriptions X and the adjacency matrix A as inputs. The
feature updating is computed as follows:

Z = ∼
D

− 1
2 ∼
A

∼
D

− 1
2
XW (7)

∼
A = A + IN (8)
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Fig. 4 Central location of facial AUs

∼
Dii =

∑

j

∼
Ai j (9)

where Z denotes the outputwith N ∗D1 dimensions, whereas
∼
A and

∼
D denote the normalized version of the correlation

matrix A and D, which are computed as Eqs. (8) and (9),
respectively. W denotes the learnable weight matrix with
D0 ∗ D1 dimensions. Every graph convolution layer is fol-
lowed by ReLU in our experiments. Thus, we can learn and
model the semantic relationships ofAUs by stackingmultiple
GCN layers.

3.3 Loss function with prior probability

According to FACS, nearly any facial expressions can be
deconstructed into the specific AUs, and vice versa. For
example,whenpeople feel angry, their facemayhave ahigher
frequency to behave as AU4, AU17, AU23, and AU24, while
hardly behaving as AU1, AU25, and AU27 [5]. Thus, we can
refer to such a rule as prior knowledge and use it to improve
the network. It is feasible to use expression-dependent AU
margin probability P(AU |E) and AU-dependent expression
margin probability P(E |AU ) to describe the constrained
relation between expressions and AUs. Therefore, during the
training process, we can regard the expression label and AU
labels of a query image as prior knowledge and multiply
them by the prior probabilities P(AU |E) and P(E |AU ),
respectively, to adjust the model outputs and then alleviate
the boundary fuzzy problem.

LE= − 1

N

N∑

j=1

[
Y

(
x j

)
log

(
p

(
x j

) (
P1Q

(
x j

)) + 0.05

1.05

)]
(10)

LM= − 1

NC

N∑

j=1

C∑

i=1

[
Qi

(
x j

)
log

(
pi

(
x j

) (
Y

(
x j

)
P2

)
i + 0.05

1.05

)

+ (
1 − Qi

(
x j

))
log

(
1.05 − pi

(
x j

) (
Y

(
x j

)
P2

)
i

1.05

)] (11)

L total = λ1LE + λ2LM (12)

Meanwhile, the categorical and binary cross-entropy losses
are often used in deep learning for the discretemulti-category
and multi-label classification, respectively. To improve the
training efficiency, we add prior probability into loss as
demonstrated in Eqs. (10) and (11). LE represents the expres-
sion training loss and LM the AU training loss. Y and Q
denote the ground-truth expression and AU label separately,
whereas P denotes the predicted probability. Let N denote
the batch size, and C denote the number of AUs. P1 and
P2 denote the conditional probability computed according to
P(AU |E) and P(E |AU ). The total loss of the method is the
combination of the losses for the emotion and AU category
classification, which can be represented as Eq. (12), where
the parameters λ1 and λ2 represent the weight coefficients
for LE and LM , respectively.

4 Experiments

To illustrate the effectiveness of the proposed FE-AUR-
DGCN, extensive experiments have been conducted on the
Extended Cohn–Kanade Dataset (CK+) [26] and the Rad-
boud Faces Database (RaFD) [17].

4.1 Experimental datasets

The CK+ dataset includes 593 sequences collected from 123
subjects. Among them, we use 309 sequences of 106 sub-
jects that are labeled with one of six basic expressions and
AUs. Each video starts with a neutral face and reaches the
peak in the last frame. Hence, the apex images are selected
to construct datasets and the following 13 AUs, whose fre-
quency of occurrence are higher than 10, are used in the
experiment: AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU12,
AU17, AU23, AU24, AU25, and AU27. Tables 1 and 2 sum-
marize the statistical results of the conditional probabilities
P(AU |E) and P(E |AU ),which are used in the loss function.
The RaFD dataset includes 8,040 images from 67 subjects.
This dataset contains eight emotion expressions with three
gaze directions taken from five view angles. Similar to CK+
datasets, we select images annotated with six basic expres-
sions. Although the dataset does not provide AU labels, each
model was trained by a FACS coder to exhibit each emotion.
Therefore, we can set AU labels of each image as illustrated
in reference [17]. In addition to the 13 AUs selected in CK+,
AU10 and AU15 are both selected. Fig. 1 summarizes the

123



434 Journal on Multimodal User Interfaces (2021) 15:429–440

Table 1 Expression-dependent AU margin probability P(AU |E)

AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU12 AU17 AU25 AU24 AU25 AU27

Anger 0 0 0.89 0.13 0.18 0.71 0.07 0.02 0.87 0.8 0.73 0 0

Disgust 0 0 0.61 0 0.35 0.56 0.98 0.03 0.68 0.04 0.12 0.15 0

Fear 0.88 0.4 0.84 0.64 0.12 0.24 0 0.08 0.12 0 0 0.92 0

Happy 0 0 0 0 0.96 0.1 0 0.97 0 0 0 0.97 0

Sad 0.93 0.25 0.82 0 0 0.04 0 0 0.96 0.11 0.04 0 0

Surprise 0.98 0.98 0.01 0.84 0 0 0 0.04 0 0.01 0 0.99 0.87

The bold data indicates which AUs are important for expression recognition

Table 2 AU-dependent expression margin probability P(E |AU )

Anger Disgust Fear Happy Sad Surprise

AU1 0 0 0.17 0 0.2 0.63

AU2 0 0 0.1 0 0.07 0.83

AU4 0.33 0.3 0.17 0 0.19 0.01

AU5 0.07 0 0.17 0 0 0.76

AU6 0.08 0.19 0.03 0.7 0 0

AU7 0.41 0.41 0.08 0.09 0.01 0

AU9 0.05 0.95 0 0 0 0

AU12 0.01 0.03 0.03 0.89 0 0.04

AU17 0.36 0.36 0.03 0 0.25 0

AU23 0.86 0.05 0 0 0.07 0.02

AU24 0.81 0.17 0 0 0.02 0

AU25 0 0.05 0.13 0.37 0 0.45

AU27 0 0 0 0 0 1

The bold data indicates which expression is important for AUs recog-
nition

specific prior distributions between facial expressions and
AUs, which are used in the loss function.

4.2 Implementation details

First, for the preprocessing of the input image, MTCNN [45]
and OpencCV toolbox are employed to detect a human face
and extract face landmarks separately. Thereafter, we use
MMI database [28] to pre-train the cGAN and fine-tune the
generative model with CK+ and RaFD datasets. During the
training of GCN, we set θ = 0.05 and λ1 = λ2 = 1. We use an
Adam optimizer with a learning rate of 0.0002 and the mini-
batch size is set as 16. All models are trained using NVIDIA
GeForce GTX 1080 GPU based on the tensorflow [29].

4.3 Evaluation criteria

We evaluate our method in recognition of expressions and
AUs with the accuracy and F1-score, respectively. F1-score
is extensively used in binary classification. It considers both
the precision P and recall R, and its specific computation is
described asEqs. (13)–(15).

F1 − score = 2PR

P + R
(13)

P = T P

T P + FP
(14)

R = T P

T P + FN
(15)

Where TP denotes the number of true positives and FP the
number of false positives. FN denotes the number of false
negatives.

Finally, we set the average value of accuracy and F1-score
as the overall evaluation criteria for the model performance,
as expressed in Eq. (16).

Avg = Accuracy + F1 − score

2
(16)

4.4 Ablation study

Effectiveness of cGANTo verify the effectiveness of cGAN,
we compare the performance of our proposed model to those
that do not employ cGAN. In particular, we extract AU infor-
mation from images directly and apply GCN to recognize
AUs and expressions. As summarized in Tables 3 and 4, the
effectiveness of cGAN is clear. In theCK+dataset, ourmodel
achieves a performance of nearly 20%, 0.12 with respect to
(w.r.t.) expression recognition accuracy and AU recognition
F1-score, respectively, compared with the model constructed
with onlyGCN. In theRaFDdataset, the performance ismore
significant, which is approximately 40%, 0.30 in terms of
accuracy and F1-score. Thus, we can observe that the iden-
tity variable has a significant impact on expression and AU
recognition and the employment of cGAN is effective for
the tasks. Meanwhile, Fig. 5 illustrates some samples of the
reconstructed neutral face using cGAN on CK+ and RaFD
databases, respectively. The first column represents the input
image, second column the generated face, and third column
the ground truth face. The filtered expressions from the top
to bottom images are as follows: angry, disgusted, fearful,
happy, sad, and surprised expression images. As shown, the
expression information is removed successfully by the gen-
erator while the identity information is reserved.
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Table 3 Ablation study on the
CK+ database

Conditions Accuracy (%) F1-score Avg

Img_GCN w P1* & P2* 70.50 0.770 0.7375

cGAN_MLP w/o P1 or P2 90.30 0.890 0.8965

cGAN_MLP w P1 & P2 94.50 0.891 0.9180

FE-AURDGCN w/o P1 or P2 91.90 0.887 0.9030

FE-AURDGCN w P1 93.50 0.891 0.9130

FE-AURDGCN w P2 93.20 0.884 0.9080

FE-AURDGCN w P1 & P2 95.10 0.894 0.9225

The bold data indicates the best performance under different conditions
*P1 represents P(AU |E) and P2 represents P(E |AU )

Table 4 Ablation study on the
RaFD database

Conditions Accuracy (%) F1-score Avg

Img_GCN w P1 & P2 50.17 0.662 0.5818

cGAN_MLP w/o P1 or P2 94.61 0.889 0.9175

cGAN_MLP w P1 & P2 92.37 0.954 0.9388

FE-AURDGCN w/o P1 or P2 92.12 0.922 0.9216

FE-AURDGCN w P1 93.03 0.958 0.9442

FE-AURDGCN w P2 92.70 0.927 0.9270

FE-AURDGCN w P1 & P2 94.28 0.963 0.9529

The bold data indicates the best performance under different conditions

Fig. 5 Illustration of the generated face by the generator from CK+ and
RaFD databses

Effectiveness of Graph Convolutional NetworkTo verify the
effectiveness of the GCN for emotion recognition, we com-
pare our model to those only using multi-layer perceptron
(MLP) after cGAN (cGAN_MLP). In the CK+ dataset,
as summarized in Table 3, regardless of whether the pro-

posed loss function is used, our model performs better in
expressions recognition. In detail, ourmethod achieves a per-
formance of 1.6% compared with the cGAN_MLP model,
whereas with the help of the loss function with prior knowl-
edge, the performance of our model is higher than 0.6%. In
the RaFD dataset, as summarized in Table 4, from the model
without the help of P1 and P2, although our model perfor-
mance in expression recognition is worse than that of the
model with MLP, our model’s performance in AU recogni-
tion is better, which is higher than 0.033. Compared with
the model with P1 and P2, our model achieves 1.91%, 0.009
boost in both expression and AU recognition. Generally, the
proposed model FE-AURDGCN performs better than the
model cGAN_MLP. We can conclude that the construction
of AUs-related knowledge graph is useful for expression or
AU recognition.
Effectiveness of Loss Function with Prior KnowledgeTo ver-
ify the effectiveness of rule-based prior knowledge expres-
sions, we have compared the performance of our proposed
FE-AURDGCN to those without relation expressions. In
the CK+ dataset, as summarized in Table 3, we can clearly
observe that the model with two conditional probability con-
straints achieves 3.2% and 0.007 performance boost w.r.t.
expression recognition accuracy and AU recognition F1-
score when compared with the model without prior knowl-
edge. In the RaFD dataset, the proposed method achieves
2.16% and 0.041 performance boost. Meanwhile, during the
training process, when the prediction of some AU occur-
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Table 5 Comparison of
quantitative AU recognition
results on CK+ database

AUs F1-score AUC

SFL-SRM [47] LRBN [9] Ours WLS-RF [4] DAUGN [24] Ours

AU1 0.687 0.933 0.965 0.984 0.983 0.987

AU2 0.788 0.932 0.907 0.982 0.975 0.992

AU4 0.632 0.817 0.874 0.954 0.956 0.935

AU5 0.721 0.843 0.865 0.957 0.962 0.957

AU6 0.711 0.84 0.814 0.955 0.967 0.946

AU7 0.555 0.627 0.793 0.902 0.918 0.917

AU9 0.873 0.932 0.95 0.903 0.995 0.993

AU12 0.848 0.895 0.939 0.96 0.972 0.963

AU17 0.848 0.861 0.879 0.951 0.955 0.941

AU23 0.429 0.750 0.824 – – 0.953

AU24 0.325 0.526 0.800 – – 0.969

AU25 0.916 0.97 0.952 0.991 0.987 0.979

AU27 0.900 0.903 0.921 – 0.906 0.976

Avg 0.710 0.833 0.894 0.951 0.961 0.962

Avg. of Com. 0.894 0.894 0.894 0.961 0.962 0.962

The bold data indicates the best recognition performance forAUs comparedwith other state-of-the-artmethods

rence is low while there is actually a high probability from
P(AU |E), the output probability would be increased by
multiplying this probability; otherwise, the reverse would
occur. Similarly, the final output of expressions would also
be redressed. Thus, the importance of the prior knowledge
expression can be observed.

4.5 Evaluation of AU recognition

For the recognition of AUs, we compare our method to
alternative methods, including shared feature learning and
semantic relation model (SFL-SRM) [47], latent regres-
sionBayesian network (LRBN) [9], the confidence-weighted
local subspace Random Forest (WLS-RF) [4], and deep AUs
graph network (DAUGN) [24]. As summarized in Table 5,
we can clearly observe that our model outperforms all of
these state-of-the-art methods. SFLSRM adopts a multi-task
feature learning method for learning the shared features and
thereafter uses a BN to model the co-existent and mutual-
exclusive semantic relations among AUs from the target
labels. [9] proposes the construction of a three-layer hybrid
BN, whose top two layers consist of a latent regression BN
for representing relations among multiple AUs, and the bot-
tom two layers are BNs that use expressions to facilitate
the estimation of label dependencies among AUs. WLS-RF
algorithm extracts a local expression subspace to describe
facial expressions as well as AUs. DAUGN proposes a novel
method to local AUs region and uses a graph-based CNN to
combine the local-appearance and global-geometry informa-
tion to recognize expressions or AUs. Compared to the first
two methods, our method achieved 0.184 and 0.061 higher
F1-scores, alongwith 0.010 and 0.001 higherAUCcompared

Table 6 Comparison of quantitative expression recognition results on
CK+ database

Model Accuracy (%)

Single task AUDN [22] 92.05

WLS-RF [4] 94.30

DeRL [42] 97.00

DTAGN [12] 97.41

Multi task DBN [20] 87.40

BN [11] 91.40

3DCNN+DAP [30] 92.40

FE-AURDGCN (ours) 95.10

The bold data indicates the best performance of expression recognition
or the final result of our method

to the last two models, respectively. Although the results of
our work are very close to the baseline in terms of AUC,
our model can provide more information, such as more AU
labels and expression labels, implying that we can obtain the
same information with fewer computations and reduced time
cost. On the other hand, for the specific AUs, the F1 scores
of our method are higher than those of others in 10 out of
13 AUs, and the AUC are 5 out of 13 AUs. Therefore, the
overall effects of our algorithms are better and demonstrate
the superiority of our method over other methods.

4.6 Evaluation of emotion recognition

For the CK+ dataset, we compare our method to other state-
of-the-art methods, including AU-aware deep networks [22],
WLS-RF [4], de-expression residual learning (DeRL) [42],
deep temporal geometry network (DTAGN) [12], dynamic
BN (DBN) [20], BN [41], and 3D CNNs with deformable
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Fig. 6 Confusion matrix on CK+ database

action parts (3DCNN+DAP) [30]. As summarized in Table 6,
in terms of multi-task recognition results, the average accu-
racies of our model FE-AURDGCN showed improvements
of 7.70%, 3.70%, and 2.70%. DBN constructs a three-layer
model with facial expressions, AUs, facial features, and land-
mark points, whereas BN adds two prior layers known as
brain cognition and facial muscles layers on this basis. How-
ever, the inputs of BN are manual characteristics, which
cannot be learned from end-to-end. 3DCNN+DAP uses 3D
filters from local action parts to predict the expression inten-
sity for a video segment. To evaluate the practicability,
we also compare our model with single-task methods. The
results indicate that our multi-task model shows improve-
ments of 3.05% and 0.80% over AUDN and WLS-RF,
respectively, while its performance is 1.9% and 2.3% lower
thanDTAGandDeRL, respectively. AUDNgenerates a com-
plete representation of facial images to expressly describe
the appearance in a specific area; however, it only consid-
ers partial patches rather than the entire face. DTAGN uses
the temporal information extracted from videos and utilizes
other models to fine-tune network parameters, while our
model only employs static images to recognize expressions.
Our model is more suitable for several applications where
sequences are not available. DeRL requires a significant
amount of data to train because its training result has a sig-
nificant and direct influence on the results, while our model
pre-trains cGAN based on only a small dataset without data
augmentation, which requires fewer computations. More-
over, our model is a multi-task network, which means that
we can provide more detailed expression information, such
as AUs using fewer newwork parameters and at a reduced
time cost. On the other hand, the application of the prior
knowledge, which includes the AU dependency relationship
and the mapping relationship between expressions and AUs,

Table 7 Comparison of quantitative expression recognition results on
RaFD database

Model Accuracy (%)

Single task NNE [1] 93.75

SURFB [35] 92.00

SVM [21] 94.51

MCCNN [33] 98.17

TLCNN [40] 97.75

Multi task FE-AURDGCN (ours) 94.28

The bold data indicates the best performance of expression recognition
or the final result of our method

Fig. 7 Confusion matrix on RaFD database

accords with the human psychological mechanism. In this
sense, our model has considerable value in further exploring
research. Meanwhile, the confusion matrix in Fig. 6 demon-
strates that with the help of a graph structure, the highest
accuracy reaches up to 100% at angry and happy expres-
sions. However, because of excessively small sample sizes,
there exist significant errors in fearful and sad expressions.

For the RaFD dataset, as summarized in Table 7, we com-
pare our method to other state-of-the-art methods, including
the neural network ensemble (NNE) [1], SURF boosting
(SURFB) [35], SVM [21], multi-channel CNN (MCCNN))
[33], and transfer learning convolution network (TLCNN)
[40]. Because of the lack of AU labels, there only exist a
single-taskmodel to recognize emotions. AlthoughMCCNN
and TLCNN perform better than our model, our model
is more practical. MCCNN learns and fuses the spatial-
temporal features known as optical flow, but the query
neutral faces are not always available. TLCNN requires
a large dataset to pre-train the deep network and subse-
quently fine-tune it to achieve expression recognition; in
contrast, our network has fewer layers. Moreover, our model
provides additional AUs information, which offers some
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Table 8 Recognition results of the proposed method in cross-database
experiments

Database Model Accuracy (%) F1-score

From RaFD to CK+ P1 42.07 0.434

P2 45.31 0.346

P1 & P2 54.05 0.624

From CK+ to RaFD P1 46.35 0.544

P2 48.18 0.386

P1 & P2 51.24 0.570

The bold data indicates the best cross-database recognition performance

reference value for the understanding of facial expression
behavior. Compared to other methods, the accuracy scores
of the proposed method are 0.53%, 2.28% improvement.
[1] employs HOG features for training binary CNNs and
thereafter ensemble them to detect expressions. [35] uti-
lizes surf features and applies a boosting algorithm to train
classifiers. These two methods both build N networks for
N expressions respectively, and have high and complex
computations. Finally, the confusion matrix of the pro-
posed method is presented in Fig. 7. We can observe that
the recognition accuracies of the six basic expressions all
exceed 90%.

4.7 Evaluation of cross-datasets performance

Facial expression and AU recognition methods still have
problems achieving high accuracies and scores when eval-
uated using the cross-database validation protocol. Because
of culture and race, different persons have different com-
binations of different AUs. Even though the environment
is controlled within the database, the facial behaviors are
not controlled within the database. Therefore, it is important
to know the performance obtained by the model when it is
trained by one database and tested over another database.
As summarized in Table 8, with the help of prior knowledge
named P1 and P2, the accuracies and F1-scores of expression
and AU recognition are increased, indicating that the map-
ping relationship between expressions andAUs has a positive
impact on the generalization performance. However, over-
all, the cross-dataset performance is much worse than the
within-dataset performance. This may be attributed to the
dependency of prior knowledge on the limited two databases.
Specifically, the RaFD database labels the six basic emotion
images strictly according to the specific AU combination.
However, the CK+ database includes prototypes and major
variants of each emotion, which means that the sequences
are collected from a looser condition. Because of different
data sources, the prior knowledge has a different distribu-
tion; more databases are required to improve generalization.
Additionally, the recognition results of the model trained by
RaFD database are both higher than the model trained by

CK+ database. The sample sizes of RaFD are nearly four
times those of CK+ database, indicating that the general-
ization of the model is limited by the size of the training
sets.

5 Conclusion

In this paper, we present a novel approach for recognizing
expressions and AUs, which is based on FE-AURDGCN.
First, a generative model is trained by cGAN to filter identity
information and extract expression information. Thereafter,
we consider the dependency among AUs to construct an
expression graph and embed the nodes with multiple AU-
related patches extracted from the generative model. Finally,
we use prior knowledge matrices to represent the strong
dependencies between expressions and AUs and subse-
quently integrate them into the loss function to constrain the
model. Experimental results on the extensively used CK+
and RaFD datasets have demonstrated the superiority of the
introduced framework over the state-of-the-art methods. In
the future, we plan to explore how to combine the temporal
information of the sequences into network to improve per-
formance.
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