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Abstract
Data analytics-driven solutions are widely used in various intelligent systems, where humans and machines make decisions
collaboratively based on predictions. Human factors such as personality and trust have significant effects on such human—
machine collaborations. This paper investigates effects of personality traits on user trust in human–machine collaborations
under uncertainty and cognitive load conditions. A user study of 42 subjects in a repeated factorial design experiment found
that uncertainty presentation led to increased trust but only under low cognitive load conditions when users had sufficient
cognitive resources to process the information. Presentation of uncertainty under high load conditions led to a decrease in trust.
When further drilling down into personality trait groups of users, overall, users with low Openness showed the highest trust.
Furthermore, under the low cognitive load condition, it was found that the trust was enhanced under ambiguity uncertainty
with low Agreeableness, low Neuroticism, high Extraversion, high Conscientiousness, and high Openness. Under the high
cognitive load condition, high Neuroticism and low Extraversion benefitted the trust without the uncertainty presentation. The
results demonstrated that different personality traits affected trust differently under uncertainty and cognitive load conditions.
A framework of user trust feedback loop was set up to incorporate the study results into human–machine collaborations for
the meaningful participatory design.

Keywords Personality traits ·Trust ·Uncertainty ·Cognitive load ·Predictive decisionmaking ·Human-machine collaboration

1 Introduction

With the data science boom, data analytics-driven solutions
are increasingly demanded. From government service deliv-
ery to commercial transactions and all the way to specialized
decision support systems, domain users are looking to inte-
grate “big data” and advanced analytics into their business
operations in order to become more analytics-driven in their
decision making (which is also known as predictive deci-
sion making) [1]. Machine Learning (ML) research has been
expanding rapidly to meet these expectations. Furthermore,
studies found that human–machine collaborations can have
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better performance than solo human or machine [2], which
encourages human–machine collaborations. However, ML
technologies are currently facing prolonged challenges with
user acceptance of delivered solutions as well as seeing sys-
tem misuse, disuse, or even failure [3–5].

On the other hand, state-of-the-art human–machine sys-
tems aim to incorporate the contributions of all stakeholders
including end users from the early design and content devel-
opment process to the entire deployment process to help
ensure that the result meets needs [6, 7], which is also known
as participatory design [8].However, the currentML research
focuses more on the ML algorithm development and does
not take much attention to end users for more impact of ML
on real world applications [9]. For example, for many of
users who do not have much knowledge onML technologies
(referred to non-ML users), anML-based predictive decision
making system is like a “black box”, to which they simply
provide their source data and (after selecting some menu
options on screen) colorful viewgraphs and/or recommenda-
tions are displayed as output [5, 10]. It is neither clear nor
well understood that how trustworthy is this output, or how
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uncertainties are handled by underlying algorithmic proce-
dures. As the ultimate frontline users ofML-based intelligent
systems, humans are the key stakeholders and human factors
are essential in extracting and delivering more sensible and
effective insights from ML technologies [11]. Human–ma-
chine trust [12] is considered as the core among all these
human-relevant aspects.

One of the most widely cited definition of trust from Lee
and See [13] defines trust as “the attitude that an agent will
help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability”. This definition shows that
uncertainty is tightly coupled to trust. In machine learning,
inputs toMLmodels are often historical records or samples of
some events. They are usually not the precise description of
events. ML models are also imperfect abstractions of reality.
Therefore, the imprecision and uncertainty are unavoidably
associated with ML outputs and therefore in the decisions
based on them. In human–machine interactions, uncertainty
often plays an important role in hindering the sense-making
process and conducting tasks: on the machine side, uncer-
tainty builds up from the system itself; on the human side,
these uncertainties often result in “lack of knowledge for
trust” or “over-trust”. A user might be risking too much
by completely ignoring uncertainties and having complete
faith in ML-based systems. On the other hand, trivializing
or having high uncertainty perception on ML-based systems
could possibly dismiss the incredible potential of ML-based
systems. Adobor [14] showed that a certain amount of uncer-
tainty is necessary for trust to emerge. Beyond that threshold,
increase in uncertainty can lead to a reduction in trust. This
suggests that there may be correlations between uncertainty
and trust.

Moreover, Parasuraman et al. [15] showed that human
cognition constructs such as Cognitive Load (CL) are often
invoked in considerations of function allocation and the
design of automated systems. The construct of cognitive load
is based on models of human working memory which state
that humans have limited capacity to process information.
Cognitive load is a variable that attempts to quantify extent
of the demands imposed by a task on the working memory
to process information [16]. For example, in task situations
of modern complex high-risk domains, users often need to
make decisions in a limited time. Therefore, they often make
decisions under high cognitive load besides trust issues in
such situations. It has found that a higher cognitive load
worsens the situation in relation to trust building [17]. Biros
et al. [18] showed that humans are too dependent on the auto-
mated system when they experience a high cognitive load.
The effectiveness of human–machine collaboration includ-
ing remote collaboration is also affected by cognitive load
[19]. However, it is still not clear how trust varies under both
high cognitive load and various uncertainty conditions.

Recent studies also showed that individual differences in
personality traits contribute to differences in trust. For exam-
ple, a probability model is proposed to examine the effect
of personality traits on trust in automation [20]. While pre-
dictive decision making involves much human’s cognitive
effort, understanding the effects of different personality traits
on user trust will help to design more effective personalized
intelligent user interface for human–machine collaborations.
However, little work is done on the effects of personality
traits on trust in predictive decision making especially under
uncertainty and cognitive load conditions.

Since the development of trust is affected by an inter-
play of characteristics of human, machine, and operational
environment [21], Hancock et al. [22] and Schaefer et al.
[23] proposed a conceptual organization of trust influences
highlighting crucial influence factors in trust development.
This paper adapts this conceptual organization into the pre-
dictive decision making scenario and examines the effects
of human, machine, and environment factors on trust in
human–machine collaborations. We specifically focus on
the investigation of personality traits and uncertainty of ML
models as key human and machine factors respectively in
predictive decision making. Furthermore, cognitive load is
introduced from a second cognitive task in our predictive
decision making scenario and it is used as an environment
factor to examine how these three factors affect trust in pre-
dictive decision making. The Big Five personality model is
used to identify personality traits of users. Two uncertainty
types of risk and ambiguity are presented with predictive
model results in a decision making scenario. This follows
the user method and approach to design a cognitive system
(as reviewed by [24]) which uses a simulation of water pipe
failure prediction as a case study. It shows that different per-
sonality traits affect user trust in predictive decision making
differently under both uncertainty presentation and cogni-
tive load levels. A framework of user trust feedback loop is
proposed to incorporate study results into human–machine
collaborations. The investigation results can be used to help
the participatory design of human–machine collaborations
for personalized user interfaces.

2 Related work

2.1 Human factors andmachine learning

Human factors are indispensable components of data science
solutions. Scantamburlo [25] suggested that by considering
theoutline of somepotential risks underlying theMLprocess,
the ML method requires an in-depth analysis of the human
factors involved throughout the whole implementation of the
system. Watanabe [26] presented that the judgement of ML
results as “right” or “wrong” is an activity that comes after
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apprehension, and which needs a very human intervention
[25]. On the other hand, Wagstaff [9] solved the problem of
making ML acceptable by presenting an ML research pro-
gram with a three-stage model. She argued that the current
ML research mostly focuses on the second stage of develop-
ing newML algorithms, but misses persuading users to adopt
ML techniques to ultimately improve the impact of these
techniques. Fiebrink et al. [27] investigated the design of
end-user interfaces for ML in real-time application domains
such as music composition and performance. They built a
software (named Wekinator) that allows end users to apply
supervised learning to create custom, interactive, real-time
systems. This type of approach to machine learning in which
a human user steers model behaviours through iterative and
strategic changes to the training data is called “interactive
machine learning” [28].

However, such interactiveML does not consider user cog-
nitive responses such as trust. This paper aims to set up a
feedback loop by incorporating the user trust into the user
interface. Such feedback loop allows to consider contribution
of users throughout the pipeline from ML model develop-
ment to the deployment of ML results.

2.2 Uncertainty and trust

The research in human–machine trust and similar cognitive
engineering constructs has a rich history [15]. Winkler [29]
demonstrated the importance of communicating uncertain-
ties in predictions. He believed that the consideration of
uncertainty is greatly necessary inmaking rational decisions.
It was also found that the presentation of automation uncer-
tainty information helped the automation system receive
higher trust ratings and increase acceptance of the system
[30]. This display might improve the acceptance of fallible
systems and further enhances human–automation coopera-
tion. However, it remains unclear whether different types of
uncertainty (e.g. risk and ambiguity) affect trust building, and
if yes how they affect trust building. Here risk refers to sit-
uations with a known distribution of possible outcomes, and
ambiguity is the situation where outcomes have unknown
probabilities. The two forms of uncertainty are supported by
distinct neural mechanisms [31].

LeClerc and Joslyn [32] successfully demonstrated that
adding a probabilistic uncertainty estimate in public weather
forecasts improved both decision quality and compliance.
Kantowitz et al. [33] investigated the effect of uncertainty
with different levels on user trust in a driving environ-
ment. It was shown that information without or with low
uncertainty yielded better driver performance and subjec-
tive opinion than informationwith high uncertainty. Uggirala
et al. [34] showed that trust relates to competence and has
an inverse relation to uncertainty, meaning that an increase
in uncertainty decreases trust in systems. Helldin et al. [35]

found that the presentation of uncertainty of car’s ability to
autonomously drive resulted in the decreased trust in the
autonomous system compared to the situation without uncer-
tainty presentation, indicating a more proper trust calibration
in automation. Kunze et al. [36] found that uncertainty com-
munication in autonomous systems helps operators calibrate
their trust and gain situation awareness prior to critical sit-
uations, resulting in safer takeovers. Trust calibration refers
to the agreement between the user’s trust in automation and
the capabilities of the automation.

However, little work has been done on the effects of uncer-
tainty, especially different types of uncertainty on user trust
in predictive decision making.

2.3 Personality traits and trust

Big Five personality model is one of the widely used
taxonomies for personality traits [37]. It is considered as
a comprehensive way of measuring a person’s personal-
ity traits [37, 38]. The five factors identified as primary
factors of personality are: Extroversion,Agreeableness, Con-
scientiousness, Neuroticism, and Openness to experience.
They are defined regardless of differences in cultures and
languages, suggesting capturing a human universal [39].
Therefore, these Big Five personality traits are also expected
to be capable of shaping the propensity to trust. Freitag and
Bauer [40] investigated the impact of personality traits on
trust in strangers and friends. It showed that Conscientious-
ness and Openness are important traits for the development
of both trust in friends and strangers, Agreeableness is related
to trust in strangers. Fahr and Irlenbusch [41] found that
personality traits based on the Cattell’s 16-PF-R question-
naire [42] were linked to observed behavior in a trust game,
showing that individuals with low scores in anxiety (close
to Neuroticism in Big Five model) were particularly qual-
ified for enhancing trust between organizations. Cho et al.
[20] proposed a probability model to examine the effect of
personality traits on trust, and found that Agreeableness and
Neuroticism have significant effect on trust. It was also found
that an individual with high trait of Agreeableness or Consci-
entiousness had higher trust in automation [43]. Levine et al.
[44] explored the personality traits and demonstrated that
people high in guilt-proneness are more likely trustworthy.
However, little work is done on how personality traits affect
user trust in predictive decision making under uncertainty
and cognitive load variations.

With the use of a case study of predictive decision making
for the water pipe failure budget planning, this paper investi-
gates user trust changes under variations of both uncertainty
types and cognitive load levels, andwith a focus on the effects
of personality traits on trust changes.
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3 Hypotheses

Risk uncertainty has known probabilities. People, with the
help of these known probabilities, can be expected to
make better and well-informed decisions quickly. Ambigu-
ity uncertainty does not have clear probabilities or unknown
(more details on risk and ambiguity uncertainty are discussed
in Sect. 5). Therefore, we pose the following hypothe-
ses:

• H1Ambiguity uncertainty will lead to the increase of trust
only under low cognitive load conditions where people
have sufficient cognitive space to process information;

• H2 Presentation of ambiguity uncertainty under high load
conditions will lead to a decrease in trust.

Predictive decision making needs careful reasoning work
especially under uncertainty conditions. Keeping this in
mind, we pose the following hypotheses from the perspective
of uncertainty when further drilling down into personality
trait groups of users:

• H3Agreeable individuals are cooperative, helpful, nurtur-
ing [45], and are more likely to trust in uncertain situations
[46]. We expect a positive effect of high Agreeableness on
trust in predictive decision making when uncertainty is
difficult to distinguish (ambiguity);

• H4Neurotic people are highly anxious, insecure, and sen-
sitive. We expect that people with high Neuroticism will
have high trust when uncertainty probabilities are known
(risk uncertainty). People with low Neuroticism will tend
to have high trust under ambiguity uncertainty;

• H5 Extravert individuals show tendency to be outgoing,
amicable, assertive, energetic, and friendly [45]. Extro-
version is positively related to better managing phishing
emails and highly extroverted people are less likely to be
phished (less trust in phishing) [47]. Similarly, we assume
people with high Extroversion will tend to have high trust
under ambiguity uncertainty, while people with lowExtro-
version (i.e. Introversion) will tend to have high trust under
risk uncertainty;

• H6 Conscientious individuals are rational, responsible,
informed, organized, and persevering [45, 48]. Peoplewith
high Conscientiousness will tend to have high trust in pre-
dictive decision making regardless of uncertainty types;

• H7 People with high Openness are curious and seeking
new experience [48], while people with low Openness
are often much more cautious and conservative and may
struggle with abstract thinking [49]. Therefore, we expect
a positive effect of high Openness on trust when uncer-
tainty is hard to distinguish (ambiguous). However, when
uncertainty has knownprobabilities (risk), peoplewith low

Openness are cautious to risk and will have high trust in
predictive decision making.

From the perspective of cognitive load, we have the fol-
lowing hypotheses

• H8 Different personality traits will affect trust over cog-
nitive load levels differently. When people have enough
cognitive resource to process information (low cognitive
load), people with low Agreeableness, low Neuroticism,
highExtraversion, highConscientiousness and highOpen-
ness will show higher trust over ambiguity uncertainty;

• H9 When people do not have enough cognitive resource
to process information (high cognitive load), people with
high Neuroticism and low Extraversion will show higher
trust without uncertainty information.

4 Method

This section presents a framework of user trust feedback loop
in predictive decision making in order to demonstrate rela-
tions amonguncertainty, cognitive load, personality traits and
trust in predictive decision making. A case study of water
pipe failure prediction is introduced for the setup of a user
experiment.

4.1 Framework of User Trust Feedback Loop
in Predictive DecisionMaking

Wepresent a framework of user trust feedback loop in predic-
tive decision making (see Fig. 1). In this framework, when
an ML-based predictive decision making task with certain
decision factors such as uncertainty is exposed to users, user
responses (e.g. physiological, behavioral responses and sub-
jective ratings) during decision making are recorded. The
recorded user responses during task time are then used to
build user trust models in order to predict/classify user trust.
Such user trust information is incorporated into the user trust
adaptation model, where the parameters and their presen-
tations of ML models for predictive decision making are
modulated based on the current user trust level. A new task
session based on the modulated models and presentations
is conducted to enhance the user trust in predictive deci-
sionmaking tasks. Human characteristics such as personality
traits aswell as other factors of uncertainty and cognitive load
play significant roles on trust in this framework. This paper
specifically focuses on the investigation of effects of person-
ality traits on user trust under uncertainty and cognitive load
(see Fig. 1).
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Fig. 1 Framework of user trust feedback loop in predictive decision
making in human–machine collaborations

4.2 Case study

This research used the water pipe failure prediction as a
case study for predictive decision making (replicated in lab
environment). Water supply networks constitute one of the
most crucial and valuable urban assets. The combination of
growing populations and aging pipe networks requires water
utilities to develop advanced risk management strategies in
order to maintain their distribution systems in a financially
viableway [5]. Pipes are characterized by different attributes,
referred to features, such as laid year, material, diameter size,
etc. If pipe failure historical data is provided, future water
pipe failure rate is predictable with respect to the inspected
length of the water pipe network [5]. Such models are used
by utility companies for budget planning and pipe mainte-
nance. However, different models with various uncertainty
conditions may be achievable resulting in different possible
budget plans especially by users with different personality
traits. The experiment is then set up to determine how per-
sonality traits and what uncertainty conditions and cognitive
load levels may influence the user trust during the decision
process.

5 Experiment

5.1 Experimental data

In this study, predictivemodels are simulated based on differ-
ent pipe features (e.g. size or laid year) with the reference of
Hierarchical Beta Process (HBP) and Weibull used in water
pipe failure prediction [5]. The model performance curve
was presented to let the participants evaluate different mod-
els. The model performance is the functional relationship
between the inspected length of the network and the percent-
age of failures detected by the model. Figure 2 shows the
performance of two sample models, where the “blue mod-
el” outperforms the “red model”, because the former detects
more failures than the latter for a givenpipe length (horizontal
axis). This study assumes that anMLmodel is a “black-box”
and users directly get the model performance based on their

Fig. 2 Performance curves of ML models without uncertainty (control
task)

Fig. 3 Predictive models with uncertainty: a non-overlapping models
(risk uncertainty), and b overlapping models (ambiguity uncertainty)

input data. This is consistent with the real-world ML appli-
cations where users do not learn howML algorithms process
the data to get predictions.

ML models are usually imperfect abstractions of real-
ity. As a result, imprecision can occur in the prediction
through model uncertainty. Model uncertainty here refers to
an interval within which the true value of a measured quan-
tity would lie. For example, in Fig. 3a, in order to inspect
20% of the pipes in length, the uncertainty interval of the
failure rate is [46%, 60%] for the blue model, and about
[15%, 25%] for the red model: the red model is said to
have less uncertainty than the blue model because the red
model has smaller uncertainty interval than the blue model.

Model uncertainty usually spans as a band in the model
performance diagram as shown in Fig. 3. By considering
model uncertainty, the relationship between twomodels may
have two cases as shown in Fig. 3: non-overlapping mod-
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els (see Fig. 3a) where uncertainty associated with models
is referred to risk uncertainty, and overlapping models (see
Fig. 3b) where uncertainty associated withmodels is referred
to ambiguity uncertainty. In Fig. 3b, the interval of the model
with lower uncertainty is subsumed in the interval of the
model with higher uncertainty, whereas in Fig. 3a, the two
bands are disjoint. Control task had only point prediction
lines (see Fig. 2) and no uncertainty was presented. Risk
uncertainty was presented by models with non-overlapping
uncertainty (see Fig. 3a) andambiguity byoverlapping uncer-
tainty models (see Fig. 3b).

5.2 Task design

According to the water pipe failure prediction framework,
we investigated the decisions made by users under various
conditions. Each user was asked to make a budget plan, i.e.
a budget in terms of pipe length to be inspected, using the
failure prediction models learned from the historical pipe
failure records. Two ML models were provided for each
estimation task. Participants were required to make deci-
sions by selecting one of two presented ML models and then
making a budget estimate based on the selected ML model.
The budget estimate needs to meet the following require-
ments:

• To inspect as short length of pipes as possible (low cost);
• To be as precise in budget estimate as possible (higher
accuracy would reflect greater confidence in estimation).

In this study, amodule namedAutomatic PredictiveAssis-
tant (APA) is introduced to the participant as a new module
‘under testing’ phase. The APA is a simulated module which
reads in the information provided by the ML models, and
then recommends a typical decision for the participant. Par-
ticipants can choose to trust, modify, or totally ignore the
recommendations of APA. The participant needs to evaluate
whether he/she trusts the estimation recommended by the
APA. If he/she does not trust (modify or ignore) the APA,
he/she is asked to provide own estimation. Figure 4 shows
the screenshot of a task performed in the study.

In summary, each task is divided into following steps:

(1) The participant is firstly asked to study the ML per-
formance diagram (in the middle of the screenshot in
Fig. 4) and answer questions on model performance
and uncertainty to validate his/her understanding of the
information presented.

(2) Next, the APA recommendations (at the right side of
the screenshot in Fig. 4) are displayed and again the
user understanding is validated with questions.

(3) Finally, the participant is required to estimate the bud-
get. If he/she does not trust the recommendations from

Fig. 4 Screenshot of a task performed in the study

the APA, he/she is required to provide his/her own esti-
mations (at the left side of the screenshot in Fig. 4)
based on the ML performance. Subjective trust ratings
are obtained immediately after this step.

Participants were encouraged to reach the best budget
estimates they could as quickly as possible. Cognitive load
was introduced by asking participants to remember a random
number digit sequence for the duration of task time and recit-
ing it after the task. This dual-task load inducing technique
is widely used in decision making scenarios [50]. The cogni-
tive load level was determined based on the number of digits
being remembered. Four cognitive load levels were applied
in this study—represented with CL1, CL2, CL3, CL4 from
low to high, corresponding to the number of random digits to
be remembered being three, five, seven and nine respectively.
Three-digit number for lowest load condition and nine-digit
for the highest load. The number of random digits for dif-
ferent levels of cognitive load is based on a series of pilot
experiment in the study.

There were three different uncertainty visualizations (no
uncertainty (control), non-overlappinguncertainty (risk), and
overlapping uncertainty (ambiguity)). Each condition was
performed under four different cognitive load levels. Each
task was performed for three rounds. All together 36 estima-
tion tasks (3 uncertainty conditions×4 cognitive load levels
x 3 rounds) were conducted by each subject. Three additional
training tasks were also conducted by each subject before the
formal tasks. The order of tasks was randomized during the
experiment to avoid any bias.

5.3 Participants and apparatus

Forty-two (42) participants (10 were females) were recruited
with the mean age of 30.4±8.5 years. All were requested to
make predictive decisions (using historical data visualized on
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screen) about the optimal length of pipe (thus budget estima-
tion) to be checked in order to minimize water pipe failures.
Participants got paid with AUD10, AUD5, or a chocolate
bar based on their decision performance. Information was
presented on a 21-inch Dell widescreen monitor.

5.4 Data collection

After each decision making task, participants were asked to
rate their trust in recommendations (using a 9-point Likert
scale where 1 � least trust, and 9 � most trust). Cognitive
load rankings for each task from subjects were also collected
using a 9-point Likert scale (1 � least mental effort, and 9
� most mental effort) for load validation purposes. Besides,
personality traits of each participant were collected before
tasks using the Ten-Item Personality Inventory (TIPI) [37].
The physiological signals such as galvanic skin responses
(GSR) and behavior information such as mouse movement
of participants during the task time were also collected.

6 Analysis of subjective ratings

In this study, a two-way ANOVA was conducted to exam-
ine effects of uncertainty and cognitive load on trust. There
was no statistically significant interaction between uncer-
tainty and cognitive load found. Therefore, we conducted
the analysis of main effects of uncertainty and cognitive load
on trust respectively in this section.

We aim to understand: 1) the effects of uncertainty on user
trust under a given cognitive load level, and 2) the effects of
cognitive load on user trust under a given uncertainty condi-
tion respectively. Therefore, for the evaluation of each aims,
we first performed Friedman test and then followed it upwith
post hoc analysis using Wilcoxon signed-rank tests (with a
Bonferroni correction) to analyze differences in participant
responses of trust under a fixed condition (e.g. trust changes
with different uncertainty types under the fixed CL1). In this
analysis, we are only interested in the extreme load levels
administered, namely CL1 (the lowest) and CL4 (the high-
est), as they are the most relevant for automated cognitive
load management [16]. Trust values were normalized with
respect to each subject to minimize individual differences in
rating behavior (see Eq. 1):

T N
i � Ti − Tmin

i

Tmax
i − Tmin

i

(1)

where Ti and T N
i are the original trust rating and the nor-

malized trusting rating respectively from the user i, Tmin
i and

Tmax
i are the minimum and maximum of trust ratings respec-

tively from the user i in all of his/her tasks.

Fig. 5 Trust over uncertainty presented: Control (NoUncertainty), Risk
(Non-Overlapping Uncertainty) and Ambiguity (Overlapping Uncer-
tainty)

6.1 Trust and uncertainty

Figure 5 shows normalized trust values over the uncer-
tainty treatments under each fixed CL levels. For each given
uncertainty condition, we analyzed trust differences among
different CL levels. Statistically significant differences of
trust among CL levels have not been found under control
and risk uncertainty except ambiguity uncertainty.

When participants experienced ambiguity uncertainty (the
rightmost group of columns in Fig. 5), Friedman test for CL
level conditions showed a statistically significant difference
in trust among four CL levels, χ2(3) � 14.455, p� .002.
Then post hoc Wilcoxon tests (with a Bonferroni correction
under a significance level set at α< .013) were applied to find
pair-wise differences between levels in trust. The adjusted
significance alpha level of .013 was calculated by dividing
the original alpha of .05 by 4, based on the fact that we had
four load level conditions. The post hoc tests found that for
uncertainty condition of ambiguity, participants had signifi-
cantly lower trust under high cognitive load (CL4), with Z�
822.0, p< .000, compared to that of low load (CL1), which
confirms our hypothesis (H2).

6.2 Trust and cognitive load

Figure 6 shows normalized trust values over cognitive load
levels. For each given CL level, we analyzed trust differences
among different uncertainty conditions. Friedman’s test of
CL conditions of the lowest (CL1) and highest (CL4) both
gave statistically significant differences in trust among three
uncertainty conditions, χ2(2) � 10.492, p� .005 and χ2

(2) � 5.972, p� .05 respectively. Then post hoc Wilcoxon
tests (with a Bonferroni correction under a significance level
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Fig. 6 Trust over cognitive load levels

set at p< .017) were applied to find pair-wise differences
between uncertainty conditions. The adjusted significance
alpha level of .017 was calculated by dividing the original
alpha of .05 by 3, based on the fact that we had three uncer-
tainty conditions to test.

The post hoc tests found that for the low CL condition
(CL1), participants had significantly higher trust in decisions
with ambiguity (Z� 736.5, p� .002) than that with risk con-
dition (Fig. 6, leftmost group of three columns).Whereas, for
the high cognitive load (CL4) condition, participants showed
significantly lower trust in decisions with risk uncertainty
(Z� 1177.5, p� .003) than that without uncertainty informa-
tion (control condition). These findings support the idea that
ambiguity uncertainty can be readily processed by users only
under low cognitive load conditions and leads to the increase
of trust in predictive decision making as we expected (H1).

7 Personality traits and trust

7.1 Personality traits

Five personality traits of each participants were got based on
the collectedTIPI values [37]. Figure 7 shows the distribution
of participants in five personality traits in the study

In this study, a two-way ANOVAwas conducted to exam-
ine effects of uncertainty and cognitive load on trust under
each personality trait conditions respectively. There were no
statistically significant interactions between uncertainty and
cognitive load found under each personality trait conditions
except the low Agreeableness (p� .039). We then conducted
the analysis of main effects of uncertainty and cognitive load
on trust under each personality trait conditions respectively
in this section.

Fig. 7 Distribution of participants with different personality traits

Similar to the analysis in Sect. 6, this section also analyzes:
(1) the effects of uncertainty on user trust under a given cog-
nitive load level, and (2) the effects of cognitive load on user
trust under a given uncertainty condition respectively, but
by different personality traits of participants. Friedman tests
followed by post hoc analysis using Wilcoxon signed-rank
tests (with a Bonferroni correction as previously) are used
to understand how personality traits affect trust perception
under uncertainty and cognitive load conditions.

7.2 Trust and uncertainty

Table 1 shows the summary of statistical analysis of trust
variations over uncertainty under different personality traits
(“NO” means there are no significant differences found).
For each personality trait, we analyze trust over uncertainty
under both “High” and “Low” trait levels with Friedman test
followedbypost hocWilcoxon signed-rank tests (with aBon-
ferroni correction under a significance level set at α< .013 as
mentioned in the previous section). From Table 1 we found
that different personality traits affected trust over uncertainty
differently. For example, under ambiguity uncertainty, partic-
ipants with low Neuroticism, high Conscientiousness, high
Openness, and low Agreeableness showed higher trust over
low cognitive load than high cognitive load (see Fig. 8 as an
example), which confirms our hypotheses of H4, H6, and H7
respectively except H3. The result showed that low Agree-
ableness but not high Agreeableness resulted in the high trust
under ambiguity uncertainty. This is maybe because that pre-
dictive decisionmaking neededmore careful reasoning work
and low Agreeableness helped to boost trust. However, the
post hoc tests did not find any significant differences in trust
over cognitive load levels (p> .013) (maybe because of the
relatively small number of subjects) despite the significant
differences in trust for participants with low Extraversion.
Furthermore, under risk uncertainty, participants with low
Extraversion showed significantly higher trust over low cog-
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Table 1 Trust over uncertainty with different personality traits

Personality
traits

Level of traits Friedman test Post-hoc test

Agreeableness High NO

Low Ambiguity:
χ2

(2) � 11.01,
p� .012

CL1–CL4: Z�
320.0,

p � .000

Neuroticism High Risk:
χ2

(2) � 12.82,
p� .005

NO

Low Ambiguity:
χ2(2) � 9.22,
p� .026

CL1–CL4: Z�
138.5,

p � .001

Extraversion High NO

Low Risk:
χ2

(2) � 12.22,
p� .007

CL1–CL4: Z�
197.0,

p � .000

Ambiguity:
χ2

(2) � 12.35,
p� .006

NO

Conscientious-
ness

High Control:
χ2

(2) � 10.07,
p� .018

NO

Risk:
χ2

(2) � 10.11,
p� .018

NO

Ambiguity:
χ2

(2) � 13.48,
p� .004

CL1–CL4: Z�
254.5,

p � .000

Low NO

Openness High Ambiguity:
χ2(2) � 8.64,
p� .035

CL1–CL4: Z�
312.0,

p � .003

Low Risk:
χ2(2) � 7.94,
p� .047

NO

nitive load than high cognitive load as we expected (H5).
However, despite significant differences in trust for partic-
ipants with high Neuroticism, high Conscientiousness, and
low Openness under risk uncertainty, the post hoc tests did
not find any significant differences in trust over cognitive
load levels (maybe because of the relatively small number of
subjects in this study). The further checking found that the
mean ratings of trust over risk uncertainty were still higher
under low load than that under high load for high Neuroti-
cism, high Conscientiousness, and lowOpenness, which still
confirms our hypothesis of H4, H6, and H7 respectively.

Fig. 8 Trust over uncertainty presented (low Agreeableness)

The results suggest that low Agreeableness, low Neuroti-
cism, high Conscientiousness, and high Openness affected
trust significantly under ambiguity uncertainty; high Neu-
roticism, high Conscientiousness, low Extraversion, and low
Openness affected trust significantly under risk uncertainty.

7.3 Trust and cognitive load

Table 2 shows the summary of statistical analysis of trust vari-
ations over cognitive load with different personality traits.
For each personality trait, we analyze trust over cognitive
load under both “High” and “Low” trait levels with Fried-
man test followed by post hoc Wilcoxon signed-rank tests
(with a Bonferroni correction under a significance level set
at α< .017). From Table 2 we found that different personal-
ity traits affected trust over cognitive load levels differently.
For example, under low cognitive load (CL1), participants
with low Agreeableness and low Neuroticism showed sig-
nificantly higher trust over ambiguity uncertainty than both
control and risk uncertainty respectively (see Fig. 9 for an
example), while participants with high Extraversion, high
Conscientiousness, and high Openness showed significantly
higher trust over ambiguity uncertainty than that over risk
uncertainty under low cognitive load (CL1). Furthermore,
under high cognitive load (CL4), participants with high Neu-
roticism and low Extraversion showed significantly higher
trust over control condition than that over ambiguity.

The results suggest that under low cognitive load (CL1),
low Agreeableness, low Neuroticism, high Extraversion,
high Conscientious, and high Openness enhance trust under
ambiguity uncertainty as we expected (H8). Under high cog-
nitive load, high Neuroticism and low Extraversion benefit
the increase of trust without uncertainty presentation as we
expected (H9).
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Table 2 Trust over cognitive
load with personality traits Personality Traits Level of traits Friedman test Post-hoc test

Agreeableness High No

Low CL1:
χ2(2) � 13.19, p� .001

Control–Ambiguity:
Z� 306.5, p � .006
Risk–Ambiguity:
Z� 219.0, p � .001

Neuroticism High CL4:
χ2(2) � 8.47, p� .014

Risk–Control:
Z� 267.0, p � .008
Ambiguity–Control:
Z� 253.5, p � .013

Low CL1:
χ2(2) � 11.73, p� .003

Control–Ambiguity:
Z� 117.0, p � .006
Risk–Ambiguity:
Z� 139.5, p � .007

Extraversion High CL1:
χ2(2) � 8.01, p� .018

Risk–Ambiguity:
Z� 145.0, p � .015

Low CL4:
χ2(2) � 6.03, p� .049

Ambiguity–Control:
Z� 240.0, p � .013

Conscientious-ness High CL1:
χ2(2) � 7.56, p� .023

Risk–Ambiguity:
Z� 230.0, p � .009

Low No

Openness High CL1:
χ2(2) � 8.50, p� .014

Risk–Ambiguity:
Z� 278.0, p � .001

Low No

Fig. 9 Trust over cognitive load levels with low Neuroticism

8 Discussions

The intelligent support aids based on predictive decision
making have been becoming widely available. However,
because of inherent uncertainties in machine learning, user
trust plays significant roles in the effectiveness of machine
learning in real world applications. This study focused on the
investigation of effects of personality traits on user trust in
predictive decision making especially under uncertainty and
cognitive load variations. Such investigation helps the effec-
tive monitoring of user trust in predictive decision making

and therefore improves the communication between human
and machine learning. The results have significant implica-
tions in participatory design in predictive decision making.

Looking at the overall trust ratings across personality traits
(see Fig. 10), we can see that participants with low Open-
ness showed the highest trust in predictive decision making
followed by low Conscientiousness, low Extraversion and
highNeuroticism.While people with lowOpenness are often
much more traditional and may struggle with abstract think-
ing [49], this helps people to do more abstract reasoning and
results in the increase of trust in predictive decision making.
However, it is argued that people who have high Openness
can be expected to have a high level of trust due to their toler-
ant and open-minded nature [51]. Maybe this is because that
the trust between people is mainly on a faith in people and
open-minded nature helps boost trust, while the trust in pre-
dictive decision making needs much careful reasoning work
and low Openness could benefit such reasoning process. The
following sections further drill down to show the effects of
personality traits on trust over uncertainty and cognitive load
respectively.

8.1 Uncertainty on trust

Generally, in a predictive decision making scenario, humans
are required to make future oriented decisions based on the
information or recommendation presented on the screen by
an ML model that mostly works on data behind the scenes
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Fig. 10 Overall trust ratings across different personality traits

(appearing like a black box to user). Since these decisions are
about the future, there can be no absolutely correct answer-
s—but only better and more appropriate ones based on a
more precise understanding of the underlying data presented
during the decisionmaking process. Therefore, better presen-
tation and adequate communication of uncertainty inherent
in the underlying ML process can improve the trust of the
user in the system and lead to better and effective decisions.
In our case, we experimented with visualizing and communi-
cating two forms of uncertainty, namely, risk and ambiguity.
Risk is a form of uncertainty where all probabilities related
to outcomes are known. The user, with the help of these
knownprobabilities, can be expected tomake better andwell-
informed decisions quickly. Such risk type uncertainty was
represented by non-overlapping models (see Fig. 3a). The
other type of uncertainty we experimented with was ambi-
guity, which was represented by overlapping models (see
Fig. 3b) and where probabilities of outcomes were either
unknown or not clearly stated. Visuals presented in control
condition are straightforward with no complication—how-
ever, they are simple, but only at the cost of hiding away
the uncertainty inherent in the ML models. Once attempts
are made to communicate the uncertainty—the trust seems
to increase from control to ambiguity uncertainty only under
conditions of low cognitive load and decrease under condi-
tions of high cognitive load (see Fig. 5).

When personality traits are considered, it was found that
low Agreeableness, low Neuroticism, high Conscientious-
ness, and high Openness affect trust significantly under
ambiguity uncertainty; high Neuroticism, low Extraversion,
high Conscientiousness and low Openness affected trust sig-
nificantly under risk uncertainty (see Fig. 11 for an example
of low Extraversion resulting in high trust under risk uncer-
tainty). This phenomenon seems to be opposite to claims
on trust between people that high Extraversion results in
higher trust for people’s desire for social interaction and com-
munication with this trait [40]. This is maybe because that

Fig. 11 Trust ratings across different personality traits under risk uncer-
tainty

predictive decision making needs more careful and abstract
reasoning but not social interactions.

Important lessons learned here for improved trust can be
to assign users decision making tasks according to both per-
sonality traits and uncertainty conditions. The results of this
study provide guidelines for such task assignment.

8.2 Cognitive load on trust

It is well known that human performance can be significantly
affected by high cognitive load [16]. Cognitive load is the
load imposed on working memory that the user experiences
when engaged in a cognitive problem. In our case, the trust in
predictive decisionmaking is influenced by a cognitive phase
where the user tried to make sense of the model informa-
tion presented. Since the decision making task was soft time
bound, the usermustmake efficient use of available cognitive
resources in order to complete the task. In this study, we look
at the extreme conditions where most cognitive resources
were expected to be available (CL1) and where least cogni-
tive resources were expected to be available (CL4). It was
found that ambiguity uncertainty can be readily processed
by users only under the low cognitive load (see Sect. 6.2). It
can be said that under low cognitive load (implying greater
availability of cognitive resources), users felt more confident
in analyzing and interpreting the ambiguity uncertainty and
therefore appeared to trust the judgement/recommendation
of the predictive assistant as it made more sense to them.
However, under high cognitive load, users might find them-
selves almost at the edge of their working memory capacity.
Limited cognitive resources would result in less understand-
ing of the ambiguity uncertainty. This in turn is indicated by
reduced trust in the system. This phenomenon seems to be in
line with findings that the better the person understands the
system and its working, the greater the person is willing to
trust it [52].
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Whenwe further drilled down into personality trait groups
of users, it was found that low Neuroticism, high Extraver-
sion, and high Openness benefit the increase of trust, which
is in line with arguments in [40], but only under low cog-
nitive load (CL1) with ambiguity uncertainty condition in
predictive decision making (see Sect. 7.2). Contrary to the
arguments in [40], low Agreeableness and high Conscien-
tiousness also benefit the increase of trust under lowcognitive
load with ambiguity uncertainty. This is maybe because that
trust in predictive decision making requires more accurate
reasoning than trust between people. Furthermore, our study
also found that under high cognitive load (CL4), high Neu-
roticism and low Extraversion benefit the increase of trust
without uncertainty presentation.

These findings suggest that personality traits affect trust in
predictive decision making differently under different cogni-
tive load levels. Therefore, the approaches for the improved
trust need to consider both cognitive requirements by tasks
and users’ personality traits at the same time, e.g. users with
high Neuroticism and low Extraversion may be assigned to
conduct predictive decision making tasks under highly criti-
cal situations without uncertainty presentation.

8.3 Implications in participatory design
in human–machine collaborations

Overall, we can say that uncertainty presentation can lead to
the increased trust but only under low cognitive load con-
ditions when users have sufficient cognitive resources to
process the information. Presentation of uncertainty under
high cognitive load conditions, when cognitive resources are
short in supply, can lead to lowering trust in the system
and its recommendations. Furthermore, different personality
traits affect trust differently under both uncertainty and cog-
nitive load conditions. For predictive decision making tasks
with different cognitive load requirements and uncertainty
conditions, users should be appointed according to their per-
sonality traits. The results of this work provide guidelines
for such appointment. For example, under low cognitive load
with ambiguity uncertainty, people with low Agreeableness,
lowNeuroticism, highExtraversion, highConscientiousness,
and highOpenness should be appointed to conduct predictive
decision making tasks, while under low cognitive load with
risk uncertainty, peoplewith highNeuroticism, lowExtraver-
sion, high Conscientiousness and low Openness should be
appointed to conduct predictive decision making tasks. Fur-
thermore, under high cognitive load situations, people with
high Neuroticism and low Extraversion should be recruited
to conduct predictive decision making without uncertainty
presentations.

These findings can be integrated into the framework of
trust feedback loop (see Fig. 1) for the participatory design in
human–machine collaborations for predictive decision mak-

ing. According to the findings, personality traits of users need
to be firstly identified in the framework. The effects of per-
sonality traits on trust under both uncertainty and cognitive
load conditions are then considered in the trust modelling
and trust adaptation model in the framework. Such user trust
adaptation loop not only helps improve the user acceptance
of ML solutions, but also demonstrates a novel participatory
design for ML-based solutions for the monitoring of user
participation in the overall pipeline.

In order to incorporate these findings intoML-based appli-
cations, the user interface for anML-based intelligent system
needs to include the following components:

• User personality traits identification modules;
• Components which visualize uncertainty of ML models;
• Feedback on user trust and cognitive load levels that allows
users be aware of their cognition status in order to adapt
decision factors accordingly.

These components are incorporated into the framework of
user trust feedback loop, thereby introducing trust into a pre-
dictive decision making process and allowing for efficient
and informed decisions in human–machine collaborations.
From this perspective, the revealing and adapting user trust
toMLmodels help tomake “black box”MLmodels transpar-
ent, but not directly explain howML algorithms process data
with visualizations or feature contributions as other work
do [53], where domain users still have difficulty to under-
stand those complex visualizations and abstract concepts.
The revealing and adaptation of user trust in a predictive
decision making scenario are more meaningful for both ML
researchers and domain users, and therefore help to improve
the acceptance of ML solutions.

Although this study was based on a collaboration set-
ting where human interacted with information displayed to
him/her locally, the findings in this study could be extended to
human–machine remote collaborations, where human inter-
acts with information displayed to him/her from a remote
site. The results of the study can help design user interfaces
by providing appropriate information to a user with specific
personality traits for effective human–machine remote col-
laborations [54, 55].

However, this study only used one type of visual represen-
tation of the uncertainty.We are not clear how the participants
will respond to uncertainty with other visualization methods
or numerical methods. Furthermore, only two ML models
were compared in the uncertainty presentation, it is also not
clear the responses of participants if the uncertainty visual-
ization of more than two ML models is presented. These can
be possible directions for future research.

In summary, this study showed that personality traits have
significant effects on trust, and participatory design for ML-
based solutions need to consider personality traits of users
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besides uncertainty and cognitive load conditions. These
findings have at least three benefits to applications:

• To provide guidelines on participatory design for human—
machine collaborations by considering personality traits,
uncertainty and cognitive load;

• To design personalized intelligent user interface of ML-
based applications. The user interface, which shows user
trust in predictive decisionmaking in real-time,would help
users make informed decisions effectively;

• To make ML transparent in ML research by measuring
what is the user trust level based on ML output.

9 Conclusions and future work

This paper investigated the effects of personality traits on
trust in human–machine collaborations under uncertainty and
cognitive load conditions. A user study found that both per-
sonality trait types and levels (high or low) affected user
trust in predictive decision making. Furthermore, personality
traits under different uncertainty types and cognitive load lev-
els showed different user trust perceptions. A framework of
trust feedback loop was proposed to integrate these findings
into participatory design in human–machine collaborations.
Our findings fill a significant gap in trust in predictive deci-
sion making with the introduction of personality traits into
ML-based solutions.

Our future directionswill focus on investigating user phys-
iological and behavioral variations over personality traits
under both uncertainty and cognitive load conditions in
human–machine collaborations. Such investigation will help
the setup of a personalized user interface to dynamically
adjust trust levels in human–machine collaborations.

Funding The funding was partly provided by AOARD (Grant no.
216624).
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