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Abstract
Vast majority of current research in the area of audiovisual speech recognition via lipreading from frontal face videos focuses
on simple cases such as isolated phrase recognition or structured speech, where the vocabulary is limited to several tens of
units. In this paper, we diverge from these traditional applications and investigate the effect of incorporating the visual and
also depth information in the task of continuous speech recognition with vocabulary size ranging from several hundred to half
a million words. To this end, we evaluate various visual speech parametrizations, both existing and novel, that are designed
to capture different kind of information in the video and depth signals. The experiments are conducted on a moderate sized
dataset of 54 speakers, each uttering 100 sentences in Czech language. Both the video and depth data was captured by the
Microsoft Kinect device. We show that even for large vocabularies the visual signal contains enough information to improve
the word accuracy up to 22% relatively to the acoustic-only recognition. Somewhat surprisingly, a relative improvement of
up to 16% has also been reached using the interpolated depth data.

Keywords Audiovisual speech recognition · Lipreading · LVCSR

1 Introduction

It has been repeatedly shown that in humans, understanding
speech is a multi-modal process. Probably the most famous
example of this fact is the well known McGurk effect [13].
It illustrates how the apparent movement of speakers lips
might influence the actual acoustic perception. It was later
explained bySummerfield [28],who suggested that the visual
component carries information about the place of articu-
lation, e.g. whether the sound is labial, dental, alveolar,
etc., while the auditory one mainly determines the manner,
e.g. voice, voiceless, nasal, fricative, etc. This hypothesis is
known as VPAM (visual: place, auditory: manner).

Due to the complementary rather than redundant charac-
ter of the audio and video modalities, automatic lipreading
purely from the visual channel presents a challenging task.

This paper is an extended version of [20] that was presented at the
SPECOM 2017 conference.
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Without the acoustic signal, the video alone carries lim-
ited information content, displays speech ambiguities and
its intelligibility highly depends on the speaker. However,
even despite these difficulties, it has been well established
that visual cues extracted from lip movement can help the
automatic speech recognition process, especially in noisy
acoustic conditions. Such supplementary role of lipreading
then leads to a closely related area of audio-visual automatic
speech recognition (AVASR).

With sufficiently small vocabulary, frontal face videos
provide enough information for reliable lipreading evenwith-
out the acoustic data. Large variety of methods for visual
parametrization, feature post-processing and modality inte-
gration have been proposed to date. For a comprehensive
overview of recent advances in lipreading and audiovisual
speech recognition see e.g. [27,31].

During the last decade, algorithms based on boosting,
graph embedding and manifold learning have proven quite
successful for tackling the lipreading problem, see e.g.
[17,21,32]. Such systems exploit sophisticated feature selec-
tion andmodeling techniques to project the high dimensional
input to amore discriminative subspace better suited for clas-
sification. However, their main disadvantage lies in the inap-
plicability to recognition based on sub-word units. Usually,
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the projection algorithms behave essentially as static classi-
fiers, i.e. thewhole utterancemust first benormalized to a spe-
cific length before it can be classified as a single feature vec-
tor. This makes the systems closely tied to the target applica-
tion, for example isolated phrase or digit recognition, and not
easily generalizable to e.g. continuous speech recognition.

With its rapid advancement, the ubiquitous deep learning
has gradually found its way into visual speech recognition,
and seems like the next major trend in the area. One approach
is to utilize the bottleneck features, which can be learned
either in a supervised [15] or a unsupervised manner [14].
An end-to-end trained system with long short term mem-
ory (LSTM) recurrent network (RNN) was used e.g. in [29].
A bidirectional LSTM together with convolutional features
(CNN) was proposed for lipreading in [22]. Most recently,
two advanced end-to-end trained lipreading networks were
developed independently by Assael et al. [1] and Chung et
al. [3]. The former used a connectionist temporal classifica-
tion (CTC) and the latter was based on the watch, listen, and
spell approach used often seen in machine translation. While
especially the end-to-end trained systems achieve impressive
results, a drawback is that their utilization in existing sys-
tems that are often based on hidden Markov model (HMM)
is not straightforward, because these systems are essentially
monolithic and serve as both feature extractors and as speech
decoders, i.e. also handling vocabulary, language modeling
etc.

Research in the audio-visual speech recognition focuses
mainly on different approaches to audio-video combination.
One may broadly classify the methods into three groups:
early, late, and hybrid (middle) integration. Early integra-
tion combines the modalities on the lowest level, typically by
concatenation of their feature vectors, see e.g. [7].More com-
plex ways of early integration are also possible; for example
Ngiam et al. [14] combined them by creating a joint audio-
visual bottleneck features within an autoencoder. Late fusion
combines the modalities on the classifier level, after classify-
ing each stream separately. There are various rules of output
combinations, see e.g. [12] for an overview. The typical and
probably the most popular example of hybrid integration,
or sometimes also referred to as middle fusion, is multi-
stream synchronous hidden Markov model (MSHMM) [12],
in which every state has multiple emissions, one for each
modality. See e.g. [6] for its application in lipreading with
dynamically adapted weights. More complex variants of
dynamic graphs can also be used to partially correct asyn-
chrony between the streams, see e.g. [25].

2 Related work

Utilization of automatic lipreading techniques for large
vocabulary continuous speech recognition (LVCSR) is rarely

explored in the current literature. One of themain obstacles is
the lack of freely available datasets, withAVICAR [11] being
one of the few options. Recently, TCD-TIMIT corpus [9] has
also been released for research.

Research therefore often use their own proprietary
datasets, not available to others, and that makes the results
difficualt to compare. For example, in [10] Lan et al. used
proprietary corpus of 12 speakers and 1000 word vocabu-
lary in order to classify individual visemes, but they did not
report the word-level accuracy. Much of the important work
on audiovisual LVCSR via frontal face lipreading was con-
ducted in IBM laboratories during the early 2000s [8,23].
The experiments were performed on IBM’s proprietary large
audiovisual dataset ViaVoice containing 290 speakers and
vocabulary size of 10403 words and found the integration
of visual features beneficial only for noisy acoustic condi-
tions.

Recently, two papers [1,3] using end-to-end trained deep
learning systems improved state of the art in lipreading of
sentences. Assael et al. [1] trained the system to recognize
structured sentences of the GRID corpus [5] by optimizing
connectionist temporal classification (CTC) criterion and sig-
nificantly improved state of the art word error rate (WER)
from 13.6 to 4.8% in a multi-speaker split, albeit with still
only 51 word vocabulary. Chung et al. [3] designed a first
end-to-end trained truly large vocabulary deep learning sys-
tem for lipreading sentences in the wild. To this end, they
utilized watch, listen, attend, and spell framework instead of
CTC, and were able to push the results on GRID even further
down to 3.3%. Their system was, however, pre-trained on a
large proprietary dataset of BBC television broadcast with
over 100 thousands audiovisual utterances, not available to
other researchers.

In this work, which is an extended version of our pre-
vious conference paper [20], we tackle the problem from
the traditional feature extraction and classification paradigm,
which allows for easier integration and straightforward com-
parison with existing acoustic-only systems based on hidden
Markov Model (HMM) decoding. We evaluate both exist-
ing state of the art visual speech parametrizations as well
as novel ones in the task of audiovisual LVCSR and experi-
mentally investigate their impact on the word error rate. To
this end, we utilize moderate sized dataset with 54 speak-
ers and simulate various vocabularies of up to 500k words.
Moreover somewhat non-traditionally, since our dataset is
recorded usingKinect,we also evaluate the lipreading perfor-
mancewhendepth data is incorporated. Interestingly enough,
recognition from the depth stream sometimes yields better
results than from RGB, with the advantage of partial com-
plementarity, which makes it suitable for integration with
RGB.
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Fig. 1 Sample frame of RGB image and corresponding depth map

3 Data

TULAVD is our own dataset recorded at the Technical Uni-
versity of Liberec containing data from 54 speakers, of which
23 are female and 31 male with age ranging from 20 to 70
years. Each speaker uttered 50 isolated words and 100 sen-
tences in Czech language, whichwere automatically selected
according to phonetic balance. The sentences were divided
into twogroupswith thefirst 50 being common to all speakers
and the other 50 speaker-specific. The dataset also contains
583 manually annotated images of all speakers in various
poses, expressions and face occlusions, which constitute a
training dataset for the ESR detector. The audiovisual utter-
ances were recorded in an office environment using Genius
lavalier microphone, two Logitech C920 FullHD webcams,
and Microsoft Kinect, which also offers depth stream that
is fully synchronized with the video. Only the microphone
and Kinect RGBD data with resolution of 640 × 480 pixels
is used in this work. See Fig. 1 for a sample frame from a
frontal face video of a talking speaker. In our work, we use
linearly interpolated depthmaps instead of raw data to ensure
there are no zero “holes” that correspond to the black spots
in the Fig. 1.

In order to build the language models, we also collected
more than 60GBof textsmostly consisting of online journals
and manual transcriptions of television and radio broadcast.

4 Visual speech parametrization

4.1 Discrete cosine transform

In audio visual speech literature, discrete cosine trans-
form (DCT) represents a widely used method for visual
speech parametrization, and often the first choice. The visual
speech features are usually selected as a subset of the full 2D
DCT transform computed over the ROI. Number of feature
selection methods have been proposed to date, e.g. zig-zag
ordering or selection by mutual information. In this work,
we treat the coefficient selection as a hyperparameter opti-

mization problem. We sort the DCT coefficients based on an
average energy obtained on a training set and then select their
optimal number according to validation score.

4.2 Active appearancemodel

The Active Appearance Model (AAM) is a well-known
method for describing appearance of a deformable object by
a hierarchical application of Principal Component Analysis
(PCA). The appearance is represented by shape and texture
that are both modeled linearly using PCA. The shape is a
concatenation of (x, y) coordinates of facial landmarks into
a vector. Similarly, the texture is formed by concatenating
pixels from the hull defined by the landmarks. In hte second
stage, thesemodality-specific representations are normalized
and combined into a single vector, and then decorrelated by
another PCA.

When utilizing AAM as a visual parametrization, one can
consider various subsets of the facial landmarks, such as
depicted in Fig. 2. Moreover, one can also choose to uti-
lize only subset of the AAM features, i.e. shape, texture,
or both. We empirically evaluated these different configu-
rations in the task of purely visual isolated word lipreading
on several datasets and have found out that the AAM-r vari-
ant consistently achieves the highest performance. We can
also observe that for all landmark subset variants, the com-
bined feature vector performs best, as it benefits from both
the shape and texture information and their partially com-
plementary nature. See the Table 1 for the results on the
TULAVD dataset.

In addition to the standard AAM, we also evaluate a vari-
ant with both video and depth texture included as a form of
early feature integration. In other words, the only difference
from the standard AAM is that three (shape, video, depth)
instead two (only shape and video) modalities are concate-
nated to form the input to the second stage PCA. We denote
this case asDAAM. The number ofAAMcoefficients consti-
tutes a hyperparameter that is optimizedw.r.t. the recognition
accuracy.

AAM-f (93) AAM-r (46) AAM-s (38) AAM-m (30)

Fig. 2 Possible landmark configurations.We empirically found out that
the second configuration (AAM-r) performs best in most experiments.
Values in parentheses denote the total number of facial landmarks of
each respective configuration
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Table 1 Isolated word recognition accuracy (%) achieved using differ-
ent AAM configurations on the TULAVD dataset

AAM type P Video Depth

L C L C

AAM-f 48.4 48.6 54.9 42.6 54.4

AAM-r 54.6 52.7 58.1 48.9 59.4

AAM-s 50.1 49.9 56.4 27.4 46.0

AAM-m 47.1 51.5 54.2 28.8 42.3

P, L and C denote the shape, texture and combined parameters, respec-
tively
The highest values are emphasized in bold

4.3 Spatiotemporal local binary patterns

For our experiments we also utilize the popular Spatiotem-
poralLocalBinaryPatterns (LBPTOP) introduced in [30].
Local Binary Pattern (LBP) describes the texture in terms of
a histogram of binary numbers that are formed by comparing
each pixel of the image to its close neighborhood. Zhao et al.
extended the static LBP by considering the neighborhood not
only in the spatial domain, but also in the time axis, in order
to capture the speech dynamics. Thus, LBPs are effectively
extracted from three orthogonal planes (TOP): xy, xt , and
yt . These are then concatenated into a single vector forming
the visual speech parametrization. Contrary to the original
work [30], we extract the LBPTOP densely for every frame.
We cross validate the parameters of the LBP, i.e. the num-
ber of histogram bins and the aggregation method (standard,
rotation invariant, uniform, non-rotation invariant uniform).

4.4 Spatiotemporal histogram of oriented gradients

Another parametrization considered in the experiments is the
SpatiotemporalHistogramofOrientedGradients (HOG-
TOP). Inspired by the LBPTOP, it has been proposed in
[18] as a dynamization technique of the standard Histogram
of Oriented Gradients (HOG). Normally, the histograms are
formed by counting and weighting the gradient orientations
in the xy plane. HOGTOP also adds orientations from the xt
and yt planes, processes them independently, concatenates,
and reduces the resulting HOG hypervector by PCA into the
final parametrization. Extraction of the HOGTOP features is
illustrated in Fig. 3. The only hyperparameter to be cross-
validated is the final PCA dimension.

4.5 Spatiotemporal convolutional network

For the experimentswe also utilize a spatiotemporal convolu-
tional network that is learned to classify short video chunks x
into oneof 48Czechphonemeclasses including silences [19].
The chunks consist of 7 frames of 64 × 64 RGB region of

HOGTOP
features

grad xy

grad xt

grad yt
y

x

t

 n

norm.
blocks

PCA

Fig. 3 Extraction of spatiotemporal histogram of oriented gradients

interest (ROI) that cover the speaker’s mouth and its closest
surroundings. Four blocks of spatiotemporal convolutions,
batch normalization, spatiotemporal max-pooling and recti-
fied linear unit are stacked, with each new layer having twice
more convolution kernels than the previous one. In order to
produce probability for each class, a linear layer with output
dimension equal to the number of phonemes is added after the
last convolution. See Fig. 4 for the details. After the network
is trained, we use its output vector f , whose j-th element f j
represents an unnormalized logarithmic probability of the j-
th phoneme, as a robust visual parametrization for the i-th
frame. In order to deal with borderline cases, the input video
is padded with the first and last frames on its respective ends.
Wo do not cross-validate any hyperparameters of the network
in the experiments.

We compare two versions of the spatiotemporal convolu-
tional DNN features. In the first version, the network is only
pre-trained for three epochs on an external dataset consisting
of about 6.5 h of frame-labeled videos, see [19] for details.
As for the second version, we also fine-tune the net on the
TULAVD dataset for another three epochs using a ten times
smaller learning rate. Note that the depth-based spatiotempo-
ral network has only a single version – trained from scratch
on the TULAVD dataset.

5 System overview

5.1 Visual front-end

We pre-process the image in several stages with progressing
level of precision. First, an approximate position of the face
is estimated using the well knownViola-Jones algorithm.We
use the pre-trainedmodel that shipswith theOpenCV library.
Second, to estimate the facial shape precise positions of 93
facial landmarks are obtained by utilizing the Explicit Shape
Regression method (ESR) [2]. The ESR is a discriminative
method that iteratively refines the joint landmark configura-
tion (i.e. the face shape) based on the value of only few pixel
differences and thus is very efficient (i.e. hundreds of frames
per second on regular PC). However, since there is no objec-
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3x3x3 spatio-
temporal convolution

batch
normalization

2x2x2 max
pooling

linear
(768x48)

unnormalized
log probabilites

(dim. 48)

sequence of
2k+1 frames

(64x64)
4 repetitions: 32, 64, 128, 256 filters

ReLU

ground truth
phoneme label

softmax cross
entropy loss

2k
+

1

Fig. 4 Architecture of the spatiotemporal convolutional network

ROI - Video ROI - Depth

Fig. 5 Example of an interpolated depth map

tive to be optimized, the final landmark positions are slightly
different in each frame,which introduces an inter-frame jitter.
We reduce it by running the detector from different start-
ing positions 10 times and then taking the median of the fit
shapes.

Once the facial landmarks are localized, we define the
region of interest (ROI) as a square area barely covering
the mouth and its closest surrounding. In order to achieve
scale invariance we set its size relative to the normalized
mean shape. The geometric transformation for the extrac-
tion is estimated by aligning the normalized mean and the
detected shapes. To further reduce the inter-frame landmark
jitter and stabilize the ROI extraction, we average the fitting
results over three neighboring frames in time. Figure 5 shows
an example ROI extracted from the video and depth streams.

5.2 Feature extraction and post-processing

The acoustic channel is parametrized by 39 Mel Frequency
Cepstral Coefficients (MFCC) with a 25 ms window at a
100 Hz rate. The visual parametrizations described in Sect.
4 are extracted densely for each frame of the input utter-
ance. Sequences xt−k, . . . , xt+k of 2k + 1 feature vectors xt ′
are concatenated into hypervectors, where k represents the
number of left and right adjacent frames, and then reduced
by the linear discriminant analysis (LDA) with phonemes as
class labels. The k is treated as a hyperparameter for each
parametrization separately and therefore is subject to opti-

Table 2 Mapping between phonemes and visemes for the Czech lan-
guage as proposed in [4]

Viseme Phoneme (PAC-CZ)

A a,

B b, m, M, p

C c, C, s, z

CH č, Č, ř, Ř,

D d, n, N, t

DJ ď, j, ň, ť

E e,

F f, v

G g, h, X, k

I i,

L l, r

O o,

U u,

mization of the validation score. Since visual features tend to
be highly speaker dependent, we also perform feature mean
subtraction (FMS)with the average computed over thewhole
utterance. Addition of delta (�) features is similarly to k also
considered to be a hyperparameter and thus tuned for each
parametrization separately. Finally, the video features are lin-
early interpolated from 30 Hz to 100 Hz frequency to match
the acoustic parametrization.

5.3 Acoustic and visual models

Due to the limited amount of audiovisual data, we utilize
only basic monophone models without context. There are 40
distinct phonemes of the PAC-CZ phonetic alphabet [16] and
13 corresponding visemes [4]. In order to obtain frame-level
class labels, we forced-aligned the audio recordings using a
separate robust acoustic model that was trained on approx-
imately 300 h of spoken data. The viseme labels were then
obtained by a simple phoneme-viseme mapping proposed
in [4] as shown in Table 2.
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Phonemes and visemes are modeled using a 3-state hid-
den Markov model (HMM) with Gaussian mixture (GMM)
emission probability p(x (s)|q), where x (s) represent features
of the stream s (i.e. audio, video, or depth) and q is the model
state. Due to limited data and efficiency considerations, for
the whole-word models we only consider single-component
GMM, i.e. simple Gaussian distribution. In other cases, C is
fixed to 8 or 16; see e.g. the Table 4. The main advantage
of HMM in our context is that it allows for straightforward
weighted combination of acoustic and visual channels via
multi-stream synchronous variant of the model (MSHMM),
in which each state q has an emission probability equal to the
weighted product of the individual streams s = (1, . . . , S):

p
(
x (1), . . . , x (S)|q

)
=

S∏
s=1

p
(
x (s)|q

)λ(s)

. (1)

We treat the stream weights λ(s) as hyperparameters and
therefore cross-validate them w. r. t. the recognition accu-
racy.

We utilized theHTK3.4.1 toolkit to train the phoneme and
viseme models. We followed a simplified procedure by first
initializing the models with Viterbi training (HInit) and
then reestimating with Baum-Welch in an isolated-unit man-
ner (HRest). We have empirically found out that the most
commonly used approach of embedded re-estimation using
HERest only degrades the results in our case. This is due to
the limited discriminative power of the visual parametriza-
tion that makes it unsuitable for alignment on the phonetic
level, even when constrained by the acoustic features in the
multi-stream model, and as a result, the re-estimation proce-
dure fails to converge.

5.4 Languagemodels

We evaluate our audiovisual recognition system for four dif-
ferent bigram language models with vocabulary size ranging
from 366 up to 500k words, see Table 3 for the exact num-
bers. The smallest vocabulary contains only words from the
corpus of our audiovisual dataset, whereas the other ones
also include the most frequent words in Czech language. The
word frequencies and language models are assessed using
the 60 GB text corpus described in Sect. 3. Note that for the
purpose of calculating the statistics, none of the TULAVD
sentences are used. Inclusion of thewords from theTULAVD

Table 3 Vocabularies considered in the experiments

LM tulavd 5k 50k 500k

# words 366 5182 50,056 499,993

# bigrams 48,338 9865k 73,905k 141,670k

corpus only ensures that the test data will not contain any pre-
viously unseen words. We employed the SRILM toolkit [26]
with Knesser-Nay smoothing for the language model train-
ing.

6 Experiments

6.1 Isolated word recognition

In order to tune thehyperparameters of the visual parametriza-
tions described in Sect. 4, we first perform experiments with
isolated word lipreading. For reasons of efficiency, these
hyperparameters were optimized using 14-state whole-word
models with a single component GMM (i.e. Gaussian distri-
bution) that were trained only using isolated word data, i.e.
without the continuous speech part of the dataset. The 54
speakers were split into 6 groups of 9 and we followed the
k-fold cross-validation protocol, where 4 + 1 groups con-
stitute a training and validation sets and 1 is reserved for
testing. To minimize data leakage, the validation rather than
the test scores were maximized by the hyperparameter selec-
tion process in each respective fold of the cross validation.
All the reported results are the averageword accuracy (Wacc)
achieved over the 6 different test sets.

The optimized parametrizations were then used for uni-
modal (single-stream) recognition of the 50 isolated words
using phoneme and viseme models. These models were

Table 4 Word accuracy (%) of unimodal isolated word recognition
and lipreading. Note that even in the case of DAAM, the model is still
unimodal, since the combination is performed in the feature extraction
stage

Param.: Src. Word Phoneme Viseme

Mixtures 1 8 16 8 16

MFCC a 99.8 99.5 99.8 97.4 98.0

DCT v 67.4 42.6 42.8 42.4 43.9

d 71.8 39.3 42.5 38.6 43.1

AAM v 71.4 57.5 58.5 59.0 59.3

d 73.0 54.1 55.0 55.3 56.6

DAAM v ◦ d 73.9 62.0 64.6 63.0 64.7

LBPTOP v 72.3 54.6 56.4 54.6 56.3

d 64.6 48.7 47.4 45.3 48.2

DCT3 v 67.9 42.6 43.1 43.4 45.6

d 65.9 45.1 47.0 45.4 47.6

HOGTOP v 84.8 59.5 61.0 59.8 60.1

d 84.9 56.6 58.3 56.6 57.7

DNN v 89.1 54.1 53.5 54.3 55.4

DNN-tuned v 92.3 65.3 66.3 63.7 65.8

d 88.1 62.5 63.4 61.7 62.0

The highest values are emphasized in bold
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Fig. 6 Comparison of isolated word recognition using whole word models for video-only, depth-only, early integration, and middle fusion
(MSHMM) models

learned on all the available training data from each respective
fold of the cross validation, i.e. including continuous speech
data, which amounts to approximately 5 h of spoken data on
average. Table 4 summarizes the results of both whole-word
and phonetic models. In these experiments we employed the
HTK HVite decoder.

The experiment is conducted for both video (a) and depth
(d) streams, with v ◦ d denoting their early integration, i.e.
concatenation of the feature vectors. Note that in the special
case ofDAAM, the concatenation of video and depth textures
is also followed by coupling via PCA. One can observe that
in the simpler scenario with whole-based models, video and
depth-based parametrizations perform roughly on par, with
their combination in the form of DAAM achieving one of
the best results overall. Contrary to our observation, Galatas
et al.[7] achieved much worse results using the depth stream
as compared to RGB. This discrepancy might be explained
by the fact that we linearly interpolate the depth maps, as
otherwise the random missing spots manifesting as regions
of zeros adds too much of unpredictable variability.

The beneficial effect of adding the depth streamcan also be
demonstrated by comparing single-stream (video or depth)
and two-stream (video and depth) results. Performance of
isolated word recognition as displayed in Fig. 6 shows that
for all considered features, combination of video and depth
achieves higher accuracy then single-stream variant. In cases
where the streams differ by their reliability, middle fusion
takes advantage of setting the optimal stream weights and
achieves higher scores than simple concatenation, i.e. early
integration. This is also important for audio-visual recogni-
tion, where the disparity between relative importance of each
channel much higher.

One of the crucial aspects determining the final accu-
racy seems to be whether or not the parametrization exploits
speech dynamics. We can see that the highest rates were
achieved by HOGTOP and DNN features that extract robust
features from both spatial and temporal axes.

While the phoneme and visememodels reach similarword
accuracies, they performmuchworse compared to thewhole-
word approach. This illustrates one of the issues with the
current state of the art in lipreading, where the parametriza-
tion and classification algorithms often target only isolated
unit recognition, and the results do not necessarily apply to
systemswith larger vocabularies and/or recognition based on
sub-word units.

6.2 Continuous speech

The results on isolated word lipreading show that on aver-
age viseme-basedmodels do not outperform the phone-based
ones. For the lower number of mixtures, the phoneme mod-
els even achieve a slightly higher average. This observation
may be attributed to the viseme context dependency on
the surrounding vowels [24]. For instance, the u-shaped
lip protrusion when pronouncing “s” in the word “super”
significantly differs from the horizontal extension when pro-
nouncing “s” in “see”. As a result, it seems that phonemes
cannot be unambiguously mapped to visemes in a surjective
many-to-one manner. Considering this issue and potential
problems with the score combination, we employed only
monophone models in the following experiments.

In order to minimize the number of sources of variability
across different folds and to better control the vocabulary,
the test data for the continuous speech recognition comprise
only of the first 50 sentences that are common to all speakers
instead of the full set of 100 sentences. Also, due to per-
formance reasons we switched from HVite to the Julius1

decoder, which is compatible with HTK model definitions.
Table 5 presents the achieved results. Note that a + v

denotes a middle fusion of audio and video channels via
MSHMM with optimally set weights λ(s) that are cross-

1 https://github.com/julius-speech/julius.
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Table 5 Word accuracy (%) of audiovisual speech recognition with
monophones by middle fusion of acoustic and visual parametrizations
for different vocabularies

Par. Source Vocabulary

tulavd 5k 50k 500k

MFCC a 74.0 55.9 43.9 36.3

DCT a + v 76.8 59.8 47.1 38.9

a + d 74.3 55.5 43.4 38.3

a + v + d 77.3 59.6 46.8 38.2

AAM a + v 76.7 60.5 48.7 40.2

a + d 76.8 60.0 48.0 39.5

a + v + d 76.9 60.2 48.3 39.9

DAAM a + v ◦ d 75.2 58.6 48.0 40.7

LBPTOP a + v 79.2 62.7 50.1 41.7

a + d 77.8 60.8 48.5 39.8

a + v + d 79.3 62.6 50.0 41.4

HOGTOP a + v 78.1 60.2 47.8 42.0

a + d 77.2 58.3 46.2 40.7

a + v + d 79.4 62.9 50.1 41.6

DNN a + v 78.3 61.5 48.7 39.8

DNN-tuned a + v 79.7 64.8 52.4 44.3

a + d 78.7 62.5 50.1 42.0

a + v + d 80.0 64.8 52.0 43.4

The highest values are emphasized in bold

Table 6 Word accuracy (Wacc) versus word correctness (Wcor) of
purely visual continuous speech lipreading with monophones as a basic
speech unit for the smallest (tulavd) vocabulary of 366 words

Par. Video Depth

Wacc (%) Wcor (%) Wacc (%) Wcor (%)

DCT − 17.3 9.3 − 2.6 6.3

AAM 12.3 16.2 9.3 12.4

LBPTOP 6.31 17.8 − 0.1 10.8

DCT3 − 17.3 10.0 − 8.3 7.9

HOGTOP 3.8 21.3 4.1 15.8

DNN-tuned 9.5 30.1 0.4 20.0

validated on a dense grid of all possible combinations with
the step of 0.1 and constraint

∑
s λ(s) = 1.

As expected, with the increasing size of vocabulary, the
performance in terms of accuracy degrades rather quickly,
which is mostly due to the relatively small amount of train-
ing data. On the other hand, in all experiments the combined
audiovisual representations achieved some improvement
over acoustic-only recognition, showing that the visual cues
provide useful information even for very large vocabularies
with 500k words. This especially holds for the LBPTOP,
HOGTOP, and DNN features, as they manage to exploit
some of the speech dynamics, which is essential for phoneme

discrimination. The best results overall were obtained by
combination of MFCC and our proposed spatiotemporal
DNN features extracted from video. Although the overall
margins between different parametrizations are rather slight,
they are consistent throughout all of the experiments, which
suggests they are relevant and not just random flukes.

Contrary to recognition of isolated words, integration of
the depth channel does not seem to improve the word accu-
racy. The only exception to this rule was the HOGTOP
parametrization, which in most cases achieved slightly bet-
ter results in the three modality setting. The reason for this
behavior will be subject to investigation in further research.

For all four vocabularies the highest improvement achieved
over audio-only recognition ranged between 5–8% abso-
lutely, i.e. 7–22% relatively. Inmost cases the optimal weight
ratio of audio and video (or depth) channels, which indi-
cates the relative importance of each modality, was 0.7:0.3
or 0.8:0.2, with the former being more common for the 500k
vocabulary.Note that the results hold for relatively clean data,
i.e. without acoustic noise, and one might expect even higher
relative improvement in worse conditions.

We have also performed the above experiments utilizing
only lipreadingwithout any acoustic information, see Table 6
for results using the smallest vocabulary of 366 words. Not
surprisingly, the results in form of the word accuracy were
basically random even for such a small vocabulary, however
by looking at the word correctness, which ignores insertion
errors, the visual channel still seemed helpful as a word spot-
ter. For example,Wacc for continuous speech lipreadingwith
the smallest vocabulary using the DNN features was 9.5%,
whereas theword correctness reached as high as 30.1%. Sim-
ilar differencewas observed forHOGTOP: 3.8 versus 21.3%.
It therefore seems that one of the main sources of lipreading
errors stems from word insertions, which might be corrected
for by incorporating confidence into predictions and accord-
ingly dynamically adapt the corresponding stream weights.

6.3 Noisy environments

We also performed experiments in simulated noisy environ-
ments. We additively mix white and babble noises from the
NOISEX-92 dataset at various levels of signal-to-noise ratio
(SNR). For each recording, the energies of speech and noise
are calculated as average over the whole length, that is not
adaptively. We fixed the weights of the acoustic and video
(depth) to a 0.7:0.3 (or 0.7:0.2:0.1) ratio.

Figure 7 compares the results of continuous speech
recognition on the TULAVDdataset with the smallest vocab-
ulary of 366 words (tulavd) for audio, audio-video, and
audio-video-depth middle fusions for the fined-tuned DNN
features. As expected, the biggest improvements of up to
25% absolutely have been reached for lower SNRs. Simi-
larly to recognition on the clean data, the depth stream did
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Fig. 7 Continuous speech recognition in noisy environments using the middle fusion of the MFCC and spatiotemporal convolutional features for
the smallest vocabulary of 366 words. Left: babble noise, right: white noise

not improve the result over audio-video combination. One of
the problems here is too coarse grid for various weight con-
figurations, as the step was 0.1. It is possible that with finer
weight search, one may find configuration that will slightly
improve the results in the three modality settings.

7 Conclusion

We have shown that given quality parametrization, the visual
cues provided by the lip movement can improve the recogni-
tion accuracy even for very large vocabularies with hundreds
of thousand words. The best results were achieved using the
spatiotemporal convolutional DNN, HOGTOP and LBPTOP
features that are designed to exploit the speech dynamics
as opposed to static features such as AAM. The relative
improvement of audiovisual over audio-only recognition
ranged between 7 and 22% when the channels were inte-
grated viamulti-streamhiddenMarkovmodelwith optimally
set weights. We have also shown that with careful prepro-
cessing of the data, the depth maps can serve as an additional
modality to RGB with only slightly lower overall perfor-
mance with the deficiency seemingly manifesting only in
continuous speech recognition.

There might be an issue that the observed improvement
when adding visual component to the process could be
influenced by the limited amount of acoustic data and it
is uncertain if the same results would hold for more robust
acoustic models trained on hundreds of hours of speech. In
order to verify this, transfer learning techniques could poten-
tially be employed to circumvent the lack of large audiovisual
dataset availability.
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