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Abstract Multimodal emotion recognition is an emerg-
ing field within affective computing that, by simultaneously
using different physiological signals, looks for evaluating
an emotional state. Physiological signals such as electroen-
cephalogram (EEG), temperature and electrocardiogram
(ECG), to name a few, have been used to assess emotions
like happiness, sadness or anger, or to assess levels of arousal
or valence. Research efforts in this field so far have mainly
focused on building pattern recognition systems with an
emphasis on feature extraction and classifier design. A differ-
ent set of features is extracted over each type of physiological
signal, and then all these sets of features are combined, and
used to feed a particular classifier. An important stage of a
pattern recognition system that has received less attention
within this literature is the feature selection stage. Feature
selection is particularly useful for uncovering the discrimi-
nant abilities of particular physiological signals. The main
objective of this paper is to study the discriminant power of
different features associated to several physiological signals
used for multimodal emotion recognition. To this end, we
apply recursive feature elimination and margin-maximizing
feature elimination over two well known multimodal data-
bases, namely,DEAPandMAHNOB-HCI.Results show that
EEG-related features show the highest discrimination abil-
ity. For the arousal index, EEG features are accompanied
by Galvanic skin response features in achieving the highest
discrimination power, whereas for the valence index, EEG
features are accompanied by the heart rate features in achiev-
ing the highest discrimination power.
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1 Introduction

Emotion recognition plays an important role in the differ-
ent affective sciences that are related to characterizing and
determining the responses of an individual to some stimulus
from the environment. In recent years the improvement in
the knowledge of the changes of different biological systems
in the human body, as a response to an emotional stimulus,
has potentiated the development of several applications for
automatic emotion recognition in fields like psychological
treatment, posttraumatic rehab, human-machine interfaces,
and some emerging fields like marketing analysis based on
emotional responses [24,29,35].

Multimodal emotion recognition (MER) uses the infor-
mation of different signals such as electroencephalogram,
electromyogram, electrooculogram, galvanic skin response,
heart rate, skin temperature, video and audio signal to assess
the affective state of an individual. Emotional states can
either be quantified using a discrete space, or a continuous
space. For a discrete space, the usual categories include emo-
tions like happiness, sadness, anger, surprise, fear [7,35]. For
a continuous space, emotions are assessed in terms of an
arousal index and a valence index [12,20,35].

Recent efforts in multimodal emotion recognition have
been based on developing pattern recognition systems with
emphasis in feature extraction and classifier design. A com-
mon setup for such systems is to extract statistical features
from a range of physiological signals [21,24,25,28], and
then to combine those features in a large feature vector
used to feed a particular classifier. Examples of classifiers
includeRadial basis function-support vectormachine (SVM-
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RBF) [24,28], KNN classifier [22] and neural networks
[21].

Framing the multimodal emotion recognition within the
realm of the statistical pattern recognition methodology, it is
noticeable how the problem of feature selection has received
less attention. Feature selection is a common step in differ-
ent supervised learning problems that aims at reducing the
dimensionality of the input space for easing the process of
developing the predictive model. It also helps to avoid the
well known problem of the “curse of the dimensionality”,
where no amount of data seems enough to properly train
a predictive model in spaces of high dimensionality. The
stage of feature selection also looks for those features that
are relevant for discrimination purposes. Feature selection is
meaningful in the context of multimodal emotion recogni-
tion for uncovering the discrimination ability that different
physiological signals may exhibit.

Different methods for feature selection have been pro-
posed in the literature. They can be categorized as wrapper
methods, filter methods, projection methods and embedded
methods [8]. For the wrapper methods, a predictive model
is used to score subsets of features. Each subset selected is
used to train a predictivemodel, and compute its performance
[2,8]. Filter methods asses the relevance of the features
directly from the data, ignoring the effects of each subset
into the learning algorithmperformance.The selection of fea-
tures from filter methods could be developed for example by
computing the correlation of the features with the output [2].
Projection methods perform the feature selection by project-
ing the original features to a lower space where each feature
is a combination of two or more of them. In embedded meth-
ods, the feature selection and the learning algorithm interacts
in order to determine the optimal subset that leads to obtain
the largest generalization for an specific classifier. Recursive
feature elimination (RFE) and margin-maximizing feature
elimination (MFE) are embedded methods based on dis-
criminant methods such as support vector machines (SVM)
[1,11]. For example in support vector machine-recursive fea-
ture elimination (SVM-RFE) proposed by Guyon in [11], the
features are selected based on a ranking criterion related to
the weights of the trained SVM [11]. Embedded methods
reduce the computational cost of the wrapper methods, and
bring higher accuracy rates for the subset of features selected,
than the filter methods [8].

Most of the attempts to include a feature selection stage
for MER have focussed on how the selected set of features
reflect over the accuracy of the classifier. For example, in
[22], Gu et al. proposed the use of Genetic algorithms (GA’s)
for selecting features and classifying emotions from some
physiological signals such as ECG, GSR, respiratory pat-
tern and EMG. Statistical moments were used to extract
features from the signals in order to differentiate between
high and low levels of arousal and valence. A similar work

is also developed in [10], where the emotion recognition
is carried out from a set of acquired physiological signals
[galvanic skin response (GSR), ECG and skin temperature
(SKG)] for a discrete classification space for seven emotions.
A work presented in [32] develop the emotion assessment
from physiological signals such as electromyograph (EMG),
ECG, GSR and respiratory signal with a stage of feature
selection from a bunch of statistical features using the Tabu
Search (TS) algorithm. In [3], Cheng et. al. develop the emo-
tion recognition task with the assessment of the relevance
of 19 physiological parameters, from EMG, ECG, GSR and
temperature signals using a commercially statistical package
(SPSS) for applying the paired t-test [3]. In [21], the authors
present a study of the relevance of the features extracted from
audio and video signals, using neural networks in a discrete
space of emotions. The results shows that different combi-
nations of the features extracted leads to different accuracy
from the classifier. In [31], a similar feature space reduction
is performed based on PCA over a set of nonlinear features
from the RQA analysis. To the best of our knowledge, the
study and analysis of which physiological signals seemmore
relevant for the classification problem have not received the
desired attention. Works in the state-of-the-art have focused
on performing a feature space reduction searching for the
higher possible accuracy rate without a deep insight of the
features that are more relevant and from which signals they
were extracted. An exhaustive analysis of the relevance of the
features and the signals involved in MER would contribute
to the development of systems that extract features from the
more significant signals.

The aim of this work is to perform feature selection using
discriminant-based algorithms for further automatic emotion
recognition within a multimodal approach using different
biosignals such as EEG and peripheral signals. The feature
extraction is performed from linear and non-linear analysis.
For the emotion classification, a discrete space based in the
arousal and valence indexes is chosen. Themain contribution
of the methodology is the feature selection stage where two
embedded methods such as RFE andMFE based in discrimi-
nantmethods such asSVM’s are applied in order to determine
the most relevant features for emotion recognition. Several
biclass experiments using two databases are performed to
assess the efficiency of the feature selection methods and the
emotion recognition methodology.

2 Materials and methods

In this section, the different databases and implementation
details are depicted and also the theoretical background of
the methods for feature extraction and selection is included.
A brief description of feature extraction following some state
of art methodologies for linear [14] and non-linear analysis

123



J Multimodal User Interfaces (2017) 11:9–23 11

Table 1 Features from EEG, peripheral and video signals [14]

Signal Extracted features

GSR Average skin resistance, average of derivative, average of derivative for negative values only, proportion of
negative samples in the derivative vs. all samples, number of local minima in the GSR signal, average
rising time of the GSR signal, 10 spectral power in the [0–2.4] Hz bands, zero crossing rate of skin
conductance slow response (SCSR) [0–0.2] Hz, zero crossing rate of skin conductance very slow
response (SCVSR) [0–0.08] Hz, SCSR and SCVSR mean of peaks magnitude

Skin temperature Average, average of its derivative, spectral power in the bands ([0–0.1] Hz, [0.1–0.2] Hz)

Respiration pattern Average respiration signal, mean of derivative (variation of the respiration signal), standard deviation, 10
spectral power in the bands from 0 to 2.4 Hz

Blood volume pressure Average and standard deviation of HR, HRV, and inter beat intervals, energy ratio between the frequency
bands [0.04–0.15] Hz and [0.15–0.5] Hz, spectral power in the bands ([0.1–0.2] Hz, [0.2–0.3] Hz,
[0.3–0.4] Hz), low frequency [0.01–0.08] Hz, medium frequency [0.08–0.15] Hz and high frequency
[0.15–0.5] Hz components of HRV power spectrum

EEG Theta, slow alpha, alpha, beta, and gamma spectral power for each electrode. The spectral power
asymmetry between 14 pairs of electrodes in the four bands of alpha, beta, theta and gamma

EMG and EOG Eye blinking rate, energy of the signal, mean and variance of the signal

Video Mean shape (shape of the face in all the frames from each video)

of signals documented in [31] based on recurrence plots (RP)
is presented.

2.1 Databases

Different databases have been published in recent years
for performing multimodal emotion analysis. In this work
two databases are used, the database for emotion analysis
using physiological signals (DEAP) [14], and the multi-
modal database for affect recognition and implicit tagging
(MAHNOB-HCI) [26]. The two databases were obtained via
emotion elicitation with a set of different videos presented to
every subject for self-assessment of different indexes such as
arousal, valence, dominance and liking. These indexes could
form a dimensional space of emotion representation, where
the arousal dimension represents the intensity of the emotion
and goes from aphatic to excited. Valence is the dimension
that is related to the positiveness or negativeness of the emo-
tional state. Dominance is related to the level of social status
relative to other individuals and range from a weak feel-
ing to an empowered feeling [14]. For the DEAP database
the EEG, EMG, EOG, GSR, Respiration pattern, plethysmo-
graph, skin temperature and video signal were recorded for
32 participants watching 40 videos [14]. For the MAHNOB-
HCI database the EEG, ECG, respiration amplitude, skin
temperature, audio and video signal were recorded while 30
participants were elicited by the stimulus video [26].

2.2 Feature extraction

From the signals included in each database, a linear analysis
for feature extraction is developed following certain sta-
tistical measures and frequency analysis. This analysis is

commonly used to extract information about the physiolog-
ical signals [14] as a result from various studies in which it
has been concluded that some of these features have a direct
relationship with certain emotional states [27]. The features
extracted from the EEG and peripheral signals are presented
in Table 1. The spectral power in some band frequencies and
statistical moments from some signals, such as the average
and the standard deviation, are computed [14].

Based on the work presented by Valenza [31], a set of
non-linear features are also included in the scheme of multi-
modal emotion classification. From the results obtained with
the use of the non-linear features, an improvement in the
performance is reported in terms of percentages of accuracy.
These nonlinear features are based on a methodology called
Recurrence Plots and are extracted from the GSR, respira-
tory pattern and the heart rate signals. In recent years, this
nonlinear analysis has been applied in several works related
with the affective computing, including bipolar patients for
emotional response analysis in [9,30]. In these works, the
nonlinear analysis shows higher performance in the recog-
nition of affective states than the classical time-frequency
analysis of the signals [31].

Recurrence plots are based on a technique for the analysis
of complex dynamic systems called embedding procedure
[31], where a set of vectors Xi is constructed from the time
series representing the behavior of the system. The evolu-
tion of the system can be represented by the projection of
the vectors on a path between a multidimensional space that
is commonly known as a phase space or phase state [31].
Eckmann in [6] introduced a tool that can be used to display
states recurrence Xi in phase space. This tool called recur-
rence plots (RP) allows to investigate the m-dimensional
phase space trajectory from a two-dimensional representa-
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tion of their recurrences [19]. Following RP calculation, a
recurrence quantification analysis (RQA) proposed in [34],
is computed to quantify the number and length of recurrences
from a dynamic system, represented by its state space trajec-
tory. Then, from the RQA some features are extracted [31].
For further details of the RP technique and the RQA analysis
(see [6,31]).

2.3 Feature selection and classification

The embedded methods for feature selection and classifica-
tion stage using SVM’s RFE and MFE are discussed in this
section. A brief introduction of the basis of SVM’s is pre-
sented first, followed by the explanation of how the RFE
and MFE methods involve the SVM training into the feature
selection task.

2.3.1 Support vector machines

Support vectormachines are the state-of-artmachine-learning
algorithm. The SVM methodology propose that the inputs
from the observations x, could be mapped into a higher
dimensional space, where a class separation hyperplane
could be computed [4]. The computed function then is used
to assign a label on the output y [4]. To find an optimum
hyperplane that effectively separates the different classes of
the data inputs, a small amount of the observations that lies
on the edge of separation called support vectors (SV) is used
[4].

Let

w0 · z + b0 = 0, (1)

be an optimal hyperplane in feature space. Theweightsw0 for
the optimal hyperplane can bewritten as a linear combination
of support vectors [4]

w0 =
∑

SV

αizi .

The optimal hyperplane

w0 · x + b0 = 0,

is the unique one capable of separate correctly the train-
ing data with a maximal margin. It determines the direction
w/ |w|, where the distance between the projections of the
training vectors of different classes ismaximal. If the training
data are separable an SVM is amaximummargin classifier. A
peculiarity of the SVM ’s is that the weightswi are functions
of the support vectors.

The optimal hyperplane (w0, b0) are the arguments that
maximize the distance in (1) and it is constructed from the

support vectors [4]. Vectors xi for which yi (w · xi + b) = 1
will be tagged as support vectors. The vector w0 that deter-
mines the optimal hyperplane can be written as a linear
combination of training vectors [4]:

w0 =
l∑

i=1

yiα
0
i xi , (2)

where α0
i ≥ 0. Since α > 0 only for support vectors,

the expression (2) represents a compact form of writing w0

[4]. To solve the problem of finding the optimal hyperplane
(SVM training stage), a constrained optimization problem
of maximizing the distance for a given weight vector can
be determined by the Lagrangian multiplier method [10].
The SVM training then consist in the implementation of the
quadratic problem in (3), minimizing over αk subject to (4)
[11].

J =
(
1/
2

) ∑

hk

yh ykαhαk (xh · xk + λδhk) −
∑

k

αk, (3)

0 � αk � C and
∑

k

αk yk = 0, (4)

where xk · xh denotes the scalar product, yk corresponds to
the class label, δhk is the Kronecker symbol and α and C
are positive constants (soft margin parameters) that ensure
convergence evenwhen the problem is non-linearly separable
[11].

2.3.2 Recursive feature elimination (RFE)

Evaluating how one feature contributes to the separation
between classes can produce a feature ranking. One of the
possible uses for the feature ranking is the design of a clas-
sifier on a pre-selected subset of features [11]. Each feature
that is correlated with the separation of interest is by itself
a class separator. The entries that are associated with larger
weights, have a greater influence on the classification deci-
sion, therefore if a classifier has a good performance, those
entries with the highest weights are themore relevant charac-
teristics [11]. This feature ranking could be obtained during
the SVM training stage.

In classification problems the ideal target function is the
expected value of the error, this is the error rate calculated on
a infinity number of examples, whereas in the training stage
this ideal objective function is replaced by a cost function J
estimated only for training patterns. Given this, in [11], the
authors introduced the idea of calculating the change in the
cost function DJ (i) from removing a single feature or equiv-
alently, from making the weight wi zero. Using the change
in the cost function when a feature is removed, a feature
ranking could be constructed in order to discard the features
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with the least ranking value. Nevertheless a good criterion of
feature ranking is not necessarily a good criterion for select-
ing a subset of them. To use the ranking criterion in order
to eliminate features, an iterative procedure called recursive
feature elimination (RFE) [11] was proposed. The procedure
follows as:

1. Train the classifier (optimizing the weights wi with
respect to J).

2. Compute the ranking criterion for all the features DJ (i).
3. Remove the feature with the smallest ranking criterion.

This RFE scheme is applied to the SVM algorithm [11].
The feature elimination method can be applied also in non-
linear cases [10]. The computations assume no changes in
the values of the α′s from the SVM training phase, and the
cost function to minimize (under the conditions 0 ≤ αk ≤ C
y

∑
k αk yk = 0)

J =
(
1/
2

)
αT Hα − αT 1, (5)

where H is the matrix with elements yh ykK(xh, xk), K
is a kernel function that measures the similarity between
xh and xk , and 1 is an l dimensional vector of ones. To
calculate the change in the cost function due to the elimi-
nation of the component i , the α′s remains unmodified and
the H matrix is recalculated. This corresponds to calculat-
ing K (xh (i) , xk (−i)), giving the H (−i) matrix, where the
notation (−i) means that the component i has been removed
[11]. The resulting ranking coefficient is:

DJ (i) =
(
1/
2

)
αT Hα −

(
1/
2

)
αT H (−i) α. (6)

The inputwith the smallest differenceDJ (i) is eliminated.
The elimination of the input with the smallest difference is
repeated iteratively producing the recursive feature elimina-
tion (RFE) method. The change in the H matrix must be
calculated only for the support vectors [11]. Following the
basis of the RFE algorithm, the index m∗ of the first feature
to remove is arg min

m∈{1,...m} |ωm |, and generally in the iteration
i the same rule of selection is applied to the M − i remaining
features.

2.3.3 Margin-maximizing feature elimination

The use of the weights from the trained classifier proposed in
RFE algorithm has no consideration of the maximal margin
of separation between classes of the SVM. RFE is equiva-
lent to the elimination by maximization of the margin if the
following equation is always satisfied [1]:

max
m

min
n

yn f (xn) − ynxn,mwm√
‖w‖2 − w2

m

= min
n

yn f (xn) − ynxn,m∗wm∗
√

‖w‖2 − w2
m∗

, (7)

where x are the input examples, y the corresponding outputs.
w is associated to the DJ (i) vector computed by RFE, so
wm corresponds to the ranking coefficient of the m feature.

In order to consider the margin of separation computed
from the SV’s, a recursive algorithm based in SVM’s called
margin-maximizing feature elimination (MFE)wasproposed
in [1]. The authors argue that experimentally they have shown
that RFE is not in agreement with margin maximization.
RFE is focused on minimally reducing the squared weight
vector 2-norm (2), ignoring the margin constraints [1]. The
authors in [1] also demonstrate that for the kernel case that
the assumption of RFE that the squaredweight vector 2-norm
is strictly decreasing as features are eliminated is not valid
for all the kernels. MFE then propose a feature elimination
method based on the recursion over the kernels. For example

for the polynomial kernel, K (u, v) = exp
(‖u − v‖2/(

γ 2
))

and denoting Hi,m
k,n = H

(
si,mk , xi,mn

)
in iteration i the recur-

sion [1]:

Hi,m
k,n = Hi−1,mi−1

k,n −
∥∥sk,m − xn,m

∥∥2/(
γ 2

)∀k,∀n (8)

where sk corresponds to the support vector k. This recursively
calculated kernels are used to evaluate the discriminant func-
tion

f (x) =
∑

k∈S
λsk ysk K (sk, x) + b (9)

and the weight vector norm through

‖ω‖2 =
∑

k∈S

∑

l∈S
λsk yskλsl ysl K (sk, sl) (10)

building a MFE-kernel algorithm. The MFE method at each
iteration i eliminates the feature mMFE that preserve the
maximum positive margin for the training set from the fol-
lowing Eq. [1]:

(mMFE , nMFE ) = arg max
m∈S=

{
m′|gi,m′

n′ >0,∀n′
}min

n

gi,mn
‖w‖i,m ,

(11)

where notationqi,m corresponds to quantityq at feature elim-
ination step i upon elimination of feature m and gi,mn =
ynb+ ∑M

m=1 δmn with M being the set of eliminated features
and δmn = ynxn,mwm .
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2.4 Implementation details

For the development of the routines for non-linear feature
extraction and the schemes of feature selection based on
discriminant methods (SVM’s), two toolboxes were used.
For the RQA non-linear analysis, the cross recurrence plot
toolbox (CRP) [18] is used. The pattern recognition tool-
box (PRTools) is used for the routines that allow the training
and testing of the SVM’s [5]. The implementation of the
SVM algorithm is from the PRTOOLS toolbox, and the ker-
nel used for the RFE implementation was the radial basis
function (RBF) kernel. An own implementation of the RBF
kernel ismade for further computing ofRFE-SVMandMFE-
SVM and combined with PRTOOLS in the “user kernel”
mode. The PRTOOLS toolbox uses quadratic programming
from theMATLABOptimization toolbox. The regularization
parameter for the SVM, and the parameter of the RBF kernel
are estimated using cross-valiadtion over a grid of values for
both parameters.

2.5 Validation

To assess the functionality of the discriminant selection
algorithms, a validation stage is developed in which we com-
pare the results produced by the algorithms of selection on
different data sets against a classical feature space dimension-
ality reduction scheme such as principal component analysis
(PCA) [13]. The PRTools toolbox includes an implemen-
tation of the PCA algorithm. PCA uses an orthonormal
transformation ton convert possibly correlated variables into
linearly uncorrelated variables called principal components.
The first principal component should have the largest possi-
ble variance, and the succeeding components should have the
highest variance. Each component is subject to the constraint
that has to be orthogonalwith the preceding components [13].
With these reduced spaces, aSVMwith a radial basis function
is trained to determine the respective classification accuracy.

2.6 Procedure

The signals from the database are processed to obtain the set
of features from the linear analysis in Table 1 proposed in
[14], and the features from the non-linear analysis RQA for
the GSR, HR, and respiration pattern [31].

Using the labels from the database for the arousal and
valence dimensions, several datasets are generated for dif-
ferent classification problems. Sets D1 and D2 correspond
to biclass problems for both dimensions with levels from 1–5
to 6–9. In the arousal dimension the range cover the classes
of active and passive. For the valence dimension the range
cover the classes of pleasant and unpleasant. For the MAH-
NOB database, datasets are extracted in a equivalent form as
the D1–D2 datasets. In this case the datasets are named as

Table 2 Datasets

Dataset Description

D1 DEAP database, Arousal dimension, biclass problem,
patterns with values 1–5 and 6–9

D2 DEAP database, Valence dimension, biclass problem,
patterns with values 1–5 and 6–9

M1 MAHNOB database, Arousal dimension, biclass
problem, patterns with values 1–5 and 6–9

M2 MAHNOB database, Valence dimension, biclass
problem, patterns with values 1–5 and 6–9

Table 3 Feature indexes for the two databases

DEAP MAHNOB

Signal Index Signal Index

GSR 1:11 GSR 1:11

GSR-RQA 12:19 Temp 12:15

Temp 20:23 Resp 16:19

Resp 24:27 HR1 20:29

Resp-RQA 28:35 HR2 30:39

HR 36:45 HR3 40:49

HR-RQA 46:53 EEG 50:273

EEG 54:276

EOG y EMG 277:288

Video 289:323

M1–M2 for the two spaces of classification. For this database
we only take into account the linear features. A summary of
the different sets of data generated is presented in Table 2.

For a further quantification analysis, an exact descrip-
tion of the position of each feature into the feature space is
presented in Table 3. This information allows a clear under-
standing of the features that are selected after each feature
elimination step, when the algorithms of feature selection are
applied.

Based on the different data sets extracted, several exper-
iments are performed to evaluate the performance of RFE
and MFE. the RFE-SVM and MFE-SVM algorithms were
set to eliminate one feature at each iteration in order to
avoid possible elimination of correlated features when a
bunch of features is eliminated. A modification of the RFE
algorithm proposed in [33] is implemented in order to test
possible wrong feature removal from the datasets. This RFE-
SVM-CBR implementation is used when RFE-SVM is set to
eliminate a bunch of features in each iteration. The size of
the final subset of features was computed as the 5 % of the
original features set size. This is 16 features for the DEAP
database and 14 features for the MAHNOB database.

The classification accuracy (CA)was computed after each
iteration of the selection algorithms. Crossvalidation is per-
formed by using 80 % of the patterns for training and 20 %
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of the patterns for test. The procedure is repeated 10 times
in order to have an statistical validation of the test. The F1-
score is a measure of the test accuracy. F1-score is defined as
the harmonic mean of precision and recall as the following
equation shows:

F1 = 2 · precision · recall
precision + recall

The F1-score was computed at each iteration of the fea-
ture selection algorithms. The vectors with the indexes of the
selected features and the CA after each iteration are stored
for further analysis. An statistical analysis based on the equal
median test is applied to the classification results for each
method. The equal median test allows to determine which
method has a higher classification accuracy, and if it is statis-
tically different against the other feature selection algorithms
[23]. A final test for the RFE and MFE algorithms is made
by applying the selection algorithms to EEG features only.
The resulting features from the EEG are combined with the
other signals for a new selection test.

3 Results

This section presents the results for the different feature
selection experiments with RFE and MFE over each dataset,
computing the F1-score and the accuracy rate from every
feature elimination method performed and presented as the
mean and the standard deviation of the ten realizations of
each experiment.

3.1 Results for D1 dataset

For the D1 dataset the Fig. 1a, b show the behavior of the
accuracy rate against several feature eliminations using the
RFE and MFE algorithms. For the RFE method, the accu-
racy begins around 72 % for the complete set of features,
and only starts to decrease below 65 % when the size of
the subset corresponds to less than the 20 % of the original
feature space dimension. In the MFE case, the classification
accuracy for subsets of 10 % of the original size, reaches a
value of around 70 %. The value for the sensibility increases
for smaller subsets of features when RFE is applied, in the
case of MFE the value of sensibility maintain similar levels
for smaller subsets. The specificity tend to decrease at each
feature elimination for RFE and for MFE the value of speci-
ficity shows variations with each elimination but maintain a
similar value compared to the initial value at the original size
of features.

Analysis of the features selected in the different subsets is
presented in Fig. 1c, d. These figures show the percentages of
occurrence of each feature in different subsets. For example,

when the algorithm is analyzing a subset of features of size
129, and in the ten repetitions of the experiment a particu-
lar feature xh appeared five times, we assign a percentage
of 0.5 to the occurrence of that feature. The percentage is
represented in a color scale (red for 1 and blue for 0). These
histograms allow us to analyze which signals are more rele-
vant at the recognition step, of the different affective states.
Notice that the histograms can be understood from two points
of view. The first point of view is that given a particular fea-
ture xh , we can see in what percentage that feature appeared
when the algorithm analyzed subsets of different size. For
example, Fig. 1e shows the frequency of appearance of fea-
ture x75, as the size of the features selected changed. The
feature corresponds to one of the features extracted from one
of the EEG channels. For this single feature, it can be seen
how the inclusion of the feature varies for different subsets
selected. From the complete size of the set of features (323
features) to 246 features, this particular feature is selected
always for all the realizations of the experiment. When the
size of the selected subset reaches 169 features, the index of
selection is around 0.7 following the color scale. The index
of selection continues decreasing as the size of the set of
selected features also decreases. When the size of the set is
93, the index of selection is around 0.2, and finally when
the elimination of features reaches the smallest size, this fea-
ture was not selected in any realization. The second point of
view for analyzing the histograms is that given a fixed size
of features selected, S, we can see in what percentage each
of the available features was included when performing the
ten repetitions. For example, Fig. 1f shows the percentage in
which each feature was included in the subset of features of
size 129. While features 1–5 from GSR show percentages of
occurrence of 1, features 6–10 from GSR have percentages
of occurrence from 0.1 to 0.4. All temperature features, all
respiratory features, and most of the HR features have an
index of selection of 1. Due to the large amount of EEG fea-
tures (222 in total), we only show ten EEG features in Fig. 1f.
While some of the EEG features were completely discarded
at this stage, others have percentage of occurrence varying
from 0.3 to 0.5.

From the index distribution of the features in Table 3, it
can be noticed that the features that are discarded in early
iterations, when the RFE algorithm is used, are the features
from the EEG signal. Some features from the physiological
signals are retained despite several feature eliminations. In
the case of theMFEalgorithm, the features initially discarded
are from the physiological signals, while a higher number of
features from the EEG are selected in the final subsets.

3.2 Results for D2 dataset

Following the same analysis for the D2 dataset, correspond-
ing to the biclass problem in the valence dimension, inFig. 2a,
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(c) (d)

(f)(e)

(a) (b)

Fig. 1 RFE and MFE over D1 dataset (mean and standard deviation) and feature apparition in different sized subsets

b the results show a similar behavior compared to the results
from D1 dataset. An initial accuracy of 73 % is reached
using the total set of features in both methodologies, and
this percentage remains around 72 % for subsets of less than
30 features when the RFE algorithm is used, also the level
of the sensibility show a considerable improvement for the

final subset but the specificity level decrease for those smaller
subsets of features . In the MFE selected subsets, the ini-
tial classification accuracy is maintained even for the final
subset as Fig. 2b shows, also the levels of sensibility and
specificity maintain similar values for all the selected sub-
sets.
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(a) (b)

(d)(c)

Fig. 2 RFE and MFE over D2 dataset (mean and standard deviation) and feature apparition in different sized subsets

The corresponding percentage of occurrence for the fea-
tures in different subsets for the D2 dataset are presented
in Fig. 2c, d. Features from all the physiological signals are
selected in smaller subsets using RFE with more influence
from all the physiological signals. Some features from the
EEG are also selected. With the MFE algorithm the fea-
tures retained are mostly selected from the EEG as in the
D1 dataset.

3.3 Results for M1 dataset

For the biclass problem in the arousal space using datasetM1,
the two feature selection methods are employed in a similar
manner as in previous experiments. Figure 3 shows the vari-
ations in the accuracy rate as several features are eliminated
via RFE and MFE. For RFE, Fig. 3a shows an initial success
rate of 69%with the complete set of 273 features, decreasing
below rates of 65 % for subsets of less than 50 features. For

the selection using MFE, the initial success rate with all the
features is around 69 % and this percentage is maintained
despite the different feature eliminations with some slight
increase for reduced subsets of less than 50 features with
accuracy rates close to 60 %.

Occurrence histograms for the selected features in the dif-
ferent M1 subsets are presented in Fig. 3. It can be observed
that the features that were not discarded by the RFE algo-
rithm comes from the HR, GSR and EEG, Fig. 3c. When the
MFE algorithm is used the features are selected predomi-
nantly from the EEGwith few coming from the Temperature
signal and the respiratory pattern, see Fig. 3d.

3.4 Results for M2 dataset

For the valence dimension using M2 dataset, both selec-
tion algorithms show a similar behavior. From the initial
percentage of 65 % using the total set of features, several
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(d)(c)

(a) (b)

Fig. 3 RFE and MFE over M1 dataset (mean and standard deviation) and feature apparition in different sized subsets

feature eliminations are applied and the accuracy is main-
tained around the initial percentage. The accuracy declines
for smaller subsets to percentages around 60 %, as shown in
Fig. 4a, b.

From the analysis of the percentage of occurrence, the
most selected features come from the HR and the respiratory
signal when the RFE algorithm is applied, see Fig. 4c. When
MFE is used, the selected features in the smaller subsets come
from the EEG signal, respiratory pattern and the temperature
signal as well, see Fig. 4d.

A compilation of the classification results from the exper-
iments of feature selection is presented in Table 4. The
classification accuracy (CA) and the F1-score are computed
in every iteration of the RFE and MFE algorithms for each
dataset following the elimination of the less relevant fea-
tures. The table contains the CA average, maximum CA
with the number of features (Nf) where the maximum CA
was reached, and the F1-score average for each experiment.

The equal median test is performed over all the results from
the two selection algorithms. For all the feature subsets in
each experiment, MFE brings better classification results
than RFE. The statistical significance analysis based on the
equal median test is applied for each dataset selected in each
iteration using the RFE and MFE methods. The test allows
to determine which method selected the dataset which pro-
vides a higher classification accuracy (CA). Over the DEAP
database, the equal median test shows that MFE has higher
performance than RFE in the selection of 12 datasets in the
valence dimension and 22 datasets in the arousal dimension.
For the MAHNOB database, the MFE algorithm obtained a
higher performance than RFE in the selection of 26 datasets
in the arousal dimension and 7 datasets in the valence dimen-
sion.

In Table 5, we present a summary of the most selected
features in the smallest subset finally obtained by RFE and
MFE. We only included the features with a percentage of
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(c) (d)

(b)(a)

Fig. 4 RFE and MFE over M2 dataset (mean and standard deviation) and feature apparition in different sized subsets

Table 4 Classification accuracy
and F1-score for RFE and MFE
over different datasets

Dataset Algorithm Metric

CA (average) [%] CA (max) [%]/ (Nf) F1-score (average) [%]

D1 RFE 72.09 ± 2.40 74.82 (115) 72.58 ± 3.02

MFE 72.63 ± 0.82 74.31 (124) 72.65 ± 0.92

D2 RFE 72.35 ± 1.42 74.15 (103) 71.06 ± 1.47

MFE 73.69 ± 0.80 75.17 (167) 72.07 ± 0.74

M1 RFE 67.01 ± 3.57 69.59 (176) 79.25 ± 1.93

MFE 64.20 ± 0.87 67.71 (240) 77.92 ± 1.16

M2 RFE 62.58 ± 1.32 66.09 (52) 75.41 ± 1.08

MFE 63.38 ± 2.20 65.17 (53) 65.17 ± 1.32

occurrence higher than 0.7, both for the arousal and valence
dimensions.

As the summary on Table 5 shows, the RFE algorithm
selects peripheral signal features in most of the experiments.

Meanwhile, theMFE algorithm givesmore relevance to EEG
features when choosing the optimal subset. These results are
similar in both datasets.
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Table 5 Summary of most
relevant features

Method Arousal Valence

Index Signal Index Signal

RFE-DEAP 21, 23 Temp 21, 23 Temp

26 Resp 24 Resp

37 HR 37, 41, 44 HR

52 HR-RQA

RFE-MAHNOB 2, 3, 10 GSR 2 GSR

41–46 HR 41, 42, 43, 45, 46 HR

MFE-DEAP 6 GSR 46 HR-RQA

46 HR-RQA 93, 170 EEG

65, 74, 80, 156, 217 EEG

MFE-MAHNOB 11 GSR 9 GSR

58, 91 EEG 178 EEG

3.5 Feature selection validation

A validation stage for the discriminant feature selection
methods is developed. A classical dimensional reduction
algorithm is used and the classification accuracy from the
reduced subset is obtained for several biclass experiments in
each database. In Fig. 5 it can be observed the results for the
principal component analysis (PCA) method in comparison
against RFE and MFE for the D1 and D2 datasets. As it can
be seen from the results, the performance of the discriminant
feature selection algorithms generally have better classifica-
tion accuracy as the feature space is reduced in comparison
to PCA. Note that the performance of PCA in some cases is
equal or slightly improves the precision on the classification
for some subspaces in comparison with RFE. The selection
schemebyMFEhas clearly better results in terms of accuracy
in all cases, see Fig. 5.

3.6 Additional results

Several additional tests for feature selection were performed
in order to asses other relevant aspects of the emotion recog-
nition problem.

– Since the size of the features extracted from all the EEG
signals is more than four times the size of the features
from the peripheral signals, a feature selection step using
RFEandMFE is previously performedonly over theEEG
features. By doing this, we reduced the number of EEG
features from 219 to 50 most relevant features, this is, to
a similar size in comparison to the size of the peripheral
features (50 for EEG and 49 for the other signals). We
then formed a new feature set of 99 features, andwe again
perform RFE and MFE over this new set. The results
obtained for this selection scheme show that MFE con-
tinues selecting predominantly EEG features in the final

(a)

(b)

Fig. 5 Comparison between RFE and MFE against PCA

subset, even when the pre-selection step is performed,
achieving similar levels of classification accuracy, around
72 %. RFE keeps selecting heart rate signal features
predominantly, reaching classification accuracies around
70 %, for the smallest subsets of features selected. These
results allow us to conclude that even in the original test,
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when the EEG features outnumbered the other signal
features, the RFE and MFE algorithms selected optimal
subsets with consistency. Accuracy levels also have sim-
ilar values in both scenarios: when the number of EEG
features is greater than the number of peripheral features,
and when the number of EEG features is similar to the
number of peripheral features.

– The analysis of correlation proposed in [33] is also per-
formed in an additional scheme. The original selection
test using RFE were made by eliminating one feature
at each iteration. In this scheme the algorithm is set to
remove a bunch of features in each iteration to perform
the RFE-SVM-CBR that allows the inclusion of possible
misseliminated features into the selected set based on a
correlation analysis. The results from this test over the
DEAP and MAHNOB database did not show any inclu-
sion of features possibly removed again into the selected
subset.

4 Discussion

With all the experiments performed over the different data-
bases using the discriminant feature selection algorithms, the
results are consistent with the theory of the recursive fea-
ture elimination, where at each iteration a feature (or set of
them) is discarded on the basis that it has less relevance for
the separation of classes. RFE removes features in each iter-
ation while the classification accuracy remains around the
value obtainedwith the original set of features in both spaces,
arousal and valence. Experiments as the one presented in Fig.
1a, show that the classification accuracy for D1 dataset, after
several eliminations, maintains a constant level. This applies
even for subsets with sizes less than half of the original set.
This behavior is the same for both databases MAHNOB and
DEAP.

Based on the results obtained from the experiments, using
the selection algorithmMFE, it can be observed that bunches
of features are eliminated retaining a percentage of accu-
racy of the same magnitude as the total set of features. MFE
improves the performance compared to the RFE method in
some cases according the statistical analysis. Even with sub-
sets of less than 15 % of the original feature space size, the
classification accuracy is close to the value obtained with the
whole set of features. The results are similar in all experi-
ments for different classification spaces in biclass problems
for both databases. The values of sensibility and specificity
that has high relevance in medical studies gives an additional
insight about the relevance of the study. In general terms, the
sensibility of the classifier improves when less features are
used, that is more realizations of the principal class recog-
nized adequately. This behavior has an important relevance

for using a small set of features for an initial detection of the
emotional state.

The CA and F1-score metrics presented in Table 4 show a
compilation of the classification results. It can be seen that in
most of the cases theCA is higher in theMFE experiment and
also the F1-score shows that the test accuracy using several
subsets of features is also higher in most of the cases for the
MFE algorithm. Nevertheless the two selection algorithms
prove to effectively reduce the dimension of the feature space
without affecting the CA dramatically. Also a statistical test
confirms that MFE is superior in the CAmetric than RFE, as
it was presented in Sect. 3.

Results from the selected features in the different datasets
reveals important information of the signals that are more
relevant for the emotion recognition problem. For the RFE
selection algorithm, it can be seen that the most selected
features come from signals as the heart rate and the respi-
ratory pattern for both arousal and valence dimensions for
the DEAP database. For the study conducted on the MAH-
NOB database, the trend in the set of selected features is the
greater inclusion of features from the heart rateHR. A similar
analysis for the MFE algorithm shows from the occurrence
histograms that the features from the EEG are selected in
both arousal and valence dimensions for the final subset.

The EEG signals and the heart rate signal are the signals
from where most of the features were selected. This result
would be expected in the sense that the brain and the heart
(as part of the central nervous system) are the organs that
react more rapidly to an external stimulus [17]. Results show
that both RFE and MFE are able to pick on this fact, even
when both methods do not select exactly the same features.
On the other hand, as it was pointed out in Sect. 2.3.3, while
MFE removes features taking into account the margin that
separates both classes, and attempts to maximize that mar-
gin, RFE only looks for reducing the squared weight vector
associated to the SVM, ignoring the margin criterion. For
testing the relevance of some signals and features individu-
ally, another scheme of selection and classification must be
implemented.

Additionally, the experiments for the validation of the
discriminant feature selection algorithms showed that RFE
and MFE outperforms, in the majority of the experiments,
the results obtained with PCA. The results from the MAH-
NOB database are comparable with the works presented in
the state of art for this database. Some of the classification
results are even higher than those reported in [15] and [16]
that work in a similar framework. In [15], the authors used
RFE to select features extracted from the EEG signals, and
the video signal. For those features selected, the highest F1-
scores were 67.1 % for arousal, and 71.5 % for valence. In
our experiments, we obtained an averaged F1-score of 79.25
for arousal, and an averaged accuracy of 75.41 for valence,
both results using RFE. In [16], the authors only analyzed the
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EEG features. The selection algorithm is based on a sequen-
tial search of the best feature subset by an inclusion/exclusion
features scheme. The best results reported in this work were
65.1 % in the arousal dimension, and 63.0 % in the valence
dimension [16]. Our results show that adding the features
from the peripheral signals to the EEG features gives an
increment in the F1-score metric in both dimensions, with
similar classification accuracy results. Also, the scheme of
feature selection from the MFE algorithm outperforms the
results obtained with RFE for the smaller subsets of selected
features.

5 Conclusions

The discriminant feature selection methods performed suc-
cessfully in all the experiments by removing several features
without affecting the accuracy rate in the classification task.
Several experiments show that the emotion classification in
the arousal/valence space using the multimodal approach
could be improve with an adequate selection feature stage.
Nevertheless, any conclusions obtained in terms of the fea-
tures selected are given in terms of the specific classifier used
in this paper. Further studies are needed to assess the per-
formance of other classifiers with the same sets of features
selected by our RFE-SVM andMFE-SVM implementations.

For the biclass experiments, theMFE algorithm presented
higher classification accuracy than the RFE algorithm for
reduced feature subsets in most of the experiments. From the
evidence of the results, themore relevant features for emotion
classification due to the selection of the features in the smaller
subsets are the EEG for both methods. The features from the
EEG signal seem to be more relevant in the selection with
MFE and the different physiological signals were selected in
smaller subsets of features when RFE was applied.

Since there are few works that have made an effort in
the feature selection for MER, this work has demonstrated
that MER with a stage of feature selection with an embed-
ded methodology based on SVM’s could be adapted to this
field. Future work could be heading to include audiovisual
information and multiclass problems that allows the differ-
entiation of more ranges of Valence and Arousal.
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