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Abstract Emotion recognition in the wild is a very chal-
lenging task. In this paper, we investigate a variety of different
multimodal features (acoustic and visual) from video clips
to evaluate their discriminative abilities in human emotion
analysis. For each clip, we extract MSDF BoW, LBP-TOP,
PHOG, LPQ-TOP and Audio features. We train different
classifiers for every type of feature on the AFEW dataset
from the ICMI 2014 EmotiW Challenge, and we propose
a novel hierarchical classification framework, which com-
bines the feature-level and decision-level fusion strategy for
all of the extracted multimodal features. The final achieve-
ment we gain on the AFEW test set is 47.17 %, which is
considerably better than the best baseline recognition rate of
33.7%. Among all of the teams participating in the ICMI
2014 EmotiW challenge, our recognition performance won
the first runner-up award. Furthermore, we test our method on
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FERA and CK datasets, the experimental results also show
good performance.
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1 Introduction

Psychologists believe that facial expressions and verbal mes-
sages are sometimes used as the main channel of human
communication [1]. In recent years, automatic emotion
recognition has received great attention. The development of
technologies in emotion recognition is surprisingly fast, and
many of them have already been used in real life. At the early
stage, researchers focused mostly on emotion analysis from
single static facial images under constrained circumstances
[2]. The recognition in the real world is certainly quite differ-
ent. As human emotions are actually dynamic streaming, the
research is turning into recognition through video or image
sequences. There are multiple methods for emotion recog-
nition, which contain different types of feature descriptors,
such as Gabor [3], local binary pattern (LBP) [4], histogram
of oriented gradients (HOG) [5], and active appearance mod-
els [6] etc. Using a single feature descriptor to recognize
emotion is easy to implement, but the result can hardly be
satisfactory.

The Emotion Recognition in the Wild Challenge and
Workshop (EmotiW) Grand Challenge in the ICMI 2014
is an audio—video based emotion classification challenge,
which mimics real-world conditions [8]. The dataset is part
of the Acted Facial Expression in the Wild (AFEW) data-
base [11], which consists of short video clips extracted from
popular Hollywood movies. For the challenge, the database
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Fig. 2 49 facial landmarks tracked by Intraface

is divided into three subsets: Train set (578 samples), Valida-
tion set (383 samples) and Test set (407 samples). The task of
the challenge is to classify a sample (audio—video clip) into
one of the seven basic emotion categories, namely Angry,
Disgust, Fear, Happy, Neutral, Sad and Surprise. The Train
set and the Val set are labeled and can be used for training
or validating models, while the final classification accuracy
on the Test set is taken into account for the overall Grand
Challenge results. In Fig. 1a—g, we listed seven typical clips
of those categories. We also conduct our experiment on other
two facial expression databases: the Cohn Kanade [45] (CK)
database and the Facial Expression Recognition and Analysis
(FERA) [44] database.

From the clips in Fig. 1, we can see that emotion recogni-
tion in the wild may face the challenge of face detection, face
alignment and facial feature extraction in the real world. The
facial expression and speaking voice are common contributed
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to the emotion recognition, so we choose to extract the fea-
tures from them. For data preprocessing, openly available
tools such as MoPS [9] and Intraface [10] are used for face
detection and alignment. For facial expression, we extract the
features of shapes, texture and visual bags. Then, we propose
a novel hierarchical classification fusion framework, which
is a decision-level fusion method for improving the result
of emotion recognition. Pipeline of our method is shown
in Fig. 4. Our classifier fuses different features and gains a
promising recognition performance. In the additional exper-
iments, we also compare the result of it with that of other
multiple kernel methods.

In this paper, based on our work and research in the
EmotiW 2014 challenge, we introduce the novel Hierarchical
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Fig. 4 Our proposed method

Classification Framework. The paper is organized as follows:
In Sect. 2 we review the related works. Section 3 lists the data
preprocessing steps. Section 4 gives the 4 groups of visual
features extracted in the method, whose detailed ideas will
be introduced. Section 5 introduces the classifiers used in
our work, including support vector machine (SVM), MKL
and our proposed classifier. Section 6 gives the entire exper-
iments performed on the study, especially the recognition
rates of our experiments both on the validation set and test
set of the three datasets. Finally, the conclusion is given in
Sect. 7.

2 Related works

For most automatic emotion recognition schemes, the first
step is to locate and extract the position of a face in the
whole scene. There are many methods to detect faces in
the real world which were surveyed by Zafeiriou et al. in
[29]. With aligned faces, there are many ways to recog-
nize emotion through facial expression [38]. There are also
researches focusing on voices or speech based emotion
recognition [37]. When testing on real world data [8,46],
it seems that the previous works got lower results than
that in lab controlled recognition. Since no feature descrip-
tor can handle the problem alone, fusion method can be
used to combine the discriminative abilities of multimodal
features.

Previous works on fusion strategies can be broadly cat-
egorized into feature level fusion and decision level fusion.
Feature level fusion aims to directly combine feature vectors
by concatenation [8,48] or kernel methods [33,36,39]. In
recent years, multiple kernel learning (MKL) has been a pop-
ular fusion method at feature level. MKL aims at weighted
combing the feature kernels for SVM. Gonen and Alpaydin

[7] surveyed quite a few kinds of multiple kernels methods
for common classification problems. Bucak et al. reviewed
the state-of-the-art for MKL in [41], including different for-
mulations and algorithms for solving the related optimization
problems, with the focus on their applications to objectrecog-
nition. Sikka et al. [33] explored the use of general MKL for
emotion recognition in the wild. Chen et al. [36] used a Sim-
pleMKL method to combine visual and acoustic features.
Huang et al. [39] used UFO-MKL for feature fusion. As
combined feature is different from the original features, the
discriminative ability can be further improved by a decision
level fusion.

Decision level fusion combines the prediction scores
of each single classifier. The advantage of decision level
fusion is that it can combine different types of classifiers
like logistic regression and SVM [34,35]. Previous works
usually conducted it by a single layer averaging [49] or
weighted voting [28]. Kahou et al. proposed a voting matrix
in [34] and used random search to tune weight parame-
ters. Results showed that the voting matrix has lower results
on testing set compared with that on validation set. There
are also boosting methods for feature fusion: multiple ker-
nel boosting (MKB) [40] and boosted trees [47], which
may have high computation costs for retraining the basic
classifiers.

3 Data preprocessing

3.1 Face alignment

We follow the face extraction and tracking method of Sikka
et al. [33] and Dhall et al. [8]. First a mixture of tree struc-

tured part model [9] face detector is used to detect the
position of face in the first frame of a video. Then the
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Intraface toolkit used supervised descent method [10] to
track facial landmarks of the rest frames in a Parameterized
Appearance Model. The 49 landmark points can be used to
align faces and generate geometric features for expression
classification.

Through experiments, we choose the position of eyes and
mouth as base landmarks: the first base point is the middle
of two eyes; the second one is the central point of mouth. All
frames are aligned to this base face through affine transfor-
mation and cut to 128 x 128 pixels.

3.2 Image purification

Due to the complex environment background of the AFEW
datasets, the face alignment result is not very well. Then, we
try to obtain a better set of face images by data purifying.
We tried three methods: head frontalization, low-rank face
decomposition, and removing bad images judged by princi-
pal component analysis projection.

Head frontalization method aims to get front view face
images through the estimated head positions generated by
Intraface. By rotating a face in 3D space and padding
the side one, Hassner et al. [31] generated the front view
for faces in the wild. The low-rank decomposition [30]
method aims to remove the high-rank part of the face images
which is considered as occlusion. By other means, Liu
et al. [28] used PCA to remove the images that differed
from others in a sequence by reconstruction error. By our
experiments, using PCA test to purify images has some
effect.

3.3 Audio feature extraction

The audio feature is computed by extracting features using
the OpenSmile toolkit. OpenSmile, Speech & Music Inter-
pretation by Large Space Extraction [24], is a fast and
real-time audio feature extraction utility for automatic
speech, music and paralinguistic recognition research. It
is capable of extracting low-level descriptors (LLD) [25]
and applying various filters, functions, and transformations
to these descriptors. Delta regression coefficients can be
computed from the low-level descriptors, and a moving aver-
age filter can be applied to smooth the feature contours.
Next, functions (statistical, polynomial regression coeffi-
cients and transformations) can be applied to the low-level
features.

The audio feature set we used consists of 34 energy and
spectral related LLD x 21 functions, 4 voicing related LLD x
19 functions, 34 delta coefficients of energy and spectral LLD
x 21 functions, 4 delta coefficients of the voicing related LLD
x 19 functions and 2 voiced/unvoiced durational features [8].
The dimension of the audio feature is 34 x 21 +4 x 19 4
34 x 21 +4 x 19+ 2 = 1582.
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4 Multimodal visual features
4.1 Geometry feature

The geometric feature is based on the theory of emotion
action unit defined by Ekman [32]. With it, Valstar et al.
successfully detected AU detection and then achieved bet-
ter result than some complex descriptors [42]. Similarly, in
our method, the aligned 49 landmarks (Fig. 2) tracked by
Intraface are spilt into three regions: left eye (6-10, 26-31),
right eye (1-5, 20-25) and mouth (32-49). For every region,
we compute the angles between three points and distances
between two points. Then the positions of 49 points of this
frame and the frame before are concatenated into the vec-
tor. At last, the distance of 49 landmarks to the mean central
facial position is added to the geometric feature. The feature
vector has a length of 71 4+ 98 x 2 4+ 49 = 316 at last. The
geometry feature of a video is by taking the mean feature
values of every frame.

4.2 Pyramid oriented gradients features

The pyramid of histograms of orientation gradients (PHOG)
[19] consists of a histogram of orientation gradients over
each image subregion at each resolution level, which is used
for object detection. PHOG features are frequently used to
describe the local spatial image shape and are used by Dhall
et al. [21] for emotion recognition. The PHOG descriptor is
based on two sources: (1) the HOG and (2) Spatial Pyramid
Matching (SPM). We also use the PHOG features to obtain
the statistical local shape information of a face.

Let G, and G, represent the gradients along the X and
Y directions. Then, the gradient intensity and orientation are
defined as M and 6:

M(x, ) = /Ghx, 2 + Gy, v
0(x,y) = arctan(Gp(x, y)/Gy(x, y))

ey

The HOG descriptor is then implemented by dividing the
image window into small spatial cells. For each cell we accu-
mulate a local 1-D histogram of gradient directions 6 over
the pixels of the cell. All histograms concatenate to be HOG
feature.

The spatial layout follows the scheme proposed by Lazeb-
nik et al. [16], which is based on spatial pyramid matching
[20]. Each image is divided into a sequence of increasingly
finer spatial grids by repeatedly doubling the number of divi-
sions in each axis direction as shown in Fig. 3. Through this
type of pyramid form, the overall HOG feature of the image
has more representativeness.

The number of pyramids was set to four, and the bin num-
ber was eight. We divided the face into four levels: 1 x 1,2 x2,
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4 x4, and 8 x 8 and the final PHOG vector is a weighted con-
catenation of histograms for all levels [19]. The dimension
is (12 422 + 4% + 82) x 8 = 680.

4.3 Dynamic local texture features
4.3.1 LBP-TOP

LBP from three orthogonal planes (LBP-TOP) [22] are
efficient representations of the dynamic-image texture, and
has been successfully applied to facial expression recogni-
tion. LBP-TOP is widely used in ordinary texture analysis,
which is calculated with Eq. (2). While, (O, N) means
the bool comparison between a pixel O, and its neigh-
boring pixels N. The binary labels form a LBP. Then
LBP-TOP feature is generated by concatenating LBPs on
three orthogonal planes XY, XT and YT. The XY plane
provides the spatial texture information, while the XT and
YT planes provide information regarding the space-time
transitions.

XY, XT,YT k

d= %: > 270, Ny 2

p i=1

The face images are divided into 4 x 4 blocks from
whose LBP features are extracted and concatenated into an
enhanced feature vector. In [4], Ojala et al. found that the
vast majority of the LBP patterns in a local neighborhood
are 59 “uniform patterns”. All features extracted from each
block volume are connected into one vector to represent the
appearance and motion of the facial expression sequence,
whose dimension is 59 x 3 x 16 = 2832.

4.3.2 LPQ-TOP

Local Phase Quantization from Three Orthogonal Planes
(LPQ-TOP) [23] is a variant of LBP-TOP which is robust
to blur. It bases on binary encoding of the phase informa-
tion of the local Fourier transform at low frequency points
and is an extension to the LPQ operator for spatial texture
analysis.

The local Fourier transform is computed efficiently using
1-D convolutions for each dimension in a 3-D volume. The
achieved features are reduced to a smaller dimension through
PCA before a scalar quantization procedure. Finally, a his-
togram of all binary codewords from dynamic texture is
formed. Similar to the LBP-TOP features, we first divide the
dynamic volume into 16 blocks, then compute the LPQ-TOP
features on each block and finally concatenated them together
to form a LPQ-TOP feature, whichis of 256 x3x 16 =12,288
dimension.

4.3.3 LGBP-TOP

Local Gabor Binary Patterns is a kind of descriptor that is
robust to illumination changes and misalignment. It first takes
a video frame convolved with a number of Gabor filters.
Almaev and Valstar [43] proposed LGBP-TOP descriptor for
AU detection. It is followed by the LBP feature extraction
through the set of Gabor magnitude response images. The
resulting binary patterns are histogrammed and concatenated
into a single feature histogram. Like other volume local tex-
ture features, in our sense, a video is blockwised to 4 x 4
to from XY plane. The LGBP-TOP feature with those three
spatial frequencies and six Gaussian orientations is then be
extracted, and a length of 18 x 4 x 4 x 59 x 3 =50,976
feature is available.

4.4 Bag of multi-scale dense SIFT features

The Bag of Words (BoW) model based on multi-scale dense
SIFT features (MSDF) [12] is used to extract visual fea-
tures, which has shown remarkable performance on object
recognition [13] and facial expression recognition [14]. The
superiority of this approach lies in the combination of dense
SIFT feature extraction, feature encoding using locality-
constrained linear coding (LLC) [15] and spatial information
fusion by multi-scale pooling over spatial pyramid [16].
LLC is known to be more robust to local spatial translations
and captures more salient properties of visual patterns com-
pared to the original simple histogram spatial encoding. Most
importantly, a linear kernel SVM is sufficient to achieve good
performance with LLC encoding, thus avoiding the compu-
tational expense of applying non-linear kernels [18] as in the
case with spatial histogram based encoding [13,16].

First, we extracted multi-scale dense SIFT features with
a stride of two pixels. To retain more spatial information at
different scales, we employed four different scales in MSDF
extraction, defined by setting the width of the SIFT spatial
bins to 4, 8, 12 and 16 pixels. The vocabulary for BoW is con-
structed by using approximate K-means clustering, which
is based on calculating data-to-cluster distances using the
approximate nearest neighbor (ANN) algorithm. For cluster-
ing, we used a feature subset extracted from 100 randomly
selected images in the train samples. The size of the dictio-
nary was set to 800 based on empirical experiments.

After the codebook of MSDF cluster centers was gen-
erated, LLC was used to encode the features and pool
them together. LLC projects each descriptor to a local lin-
ear subspace spanned by some codewords by solving an
optimization problem. Then, max pooling [17] was used to
construct one single code for each region based on the max-
imization principle on each code dimension.

The traditional bag of words model is robust to spatial
translations but sacrifices spatial layout information during
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the histogram computing process. SPM is also combined
to address this limitation. In our method, by experiments,
each image was partitioned into 2/ x 2! segments at multi-
ple scales | = 1,2,4,8, 16. The BoW representation was
then computed within each of these segments using LLC,
and all of these LLC codes were concatenated into a single
feature vector of (12 +2% +4% + 8%+ 16%) x 800 = 272,800
dimensions.

5 Fusion feature classification
5.1 Support vector classifier

SVM is a supervised learning model with associated learning
algorithms that analyze data and recognize patterns. Itis used
for classification and regression analysis [26]. SVM con-
structs a hyperplane in a high or infinite dimensional space,
which can be used for classification. Given a training set of
N data points {xz, yx}, k = 1, ..., N, where x; € R" is the
kth input pattern and y; € R is the kth output pattern, the
support vector method aims at constructing a classifier of the
following form:

N
Y (x) = sign [Z ax ek (x, xi) + b} 3)

k=1

In multi-class classification, binary SVM classifiers (SVC)
are built to distinguish between (i) one of the labels and
the rest (OVR) or (ii) between every pair of classes (OVO).
Classification of new instances for the one-versus-all case is
performed by a winner-takes-all strategy in which the clas-
sifier with the highest output function assigns the class. For
the one-versus-one approach, classification is performed by
a max-wins voting strategy in which every classifier assigns
the instance to one of the two classes. Then, the vote for the
assigned class is increased by one vote. Finally, the class with
the most votes determines the instance classification.

We use the LIBSVM [26] and LIBLINEAR [27], which
are both popular open source machine learning libraries. For
each feature listed above, we perform the SVM classifier
followed by the OVO and OVR multi-class classifier strategy.
For audio and MSDF BoW features, the linear kernel is used
for classification. For the other features, we use a grid search
to find the suitable cost parameter C and Gamma for the
RBF kernels. The accuracies of those methods are shown in
Tables 3 and 10.

5.2 Feature-level fusion multiple kernel classifier
Kernel methods have proven to be efficient for solving learn-

ing problems such as classification or regression. Feature-
Level Fusion aims at directly combining the discriminative
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ability of multiple feature kernel of SVM. It can be done in
the ways of combined kernel or voted results. Recent appli-
cations have shown that using multiple kernels instead of a
single kernel can enhance the interpretability of the decision
function. Multiple kernel learning (MKL) [7] is a popular
type of method for its ability of simultaneously learning ker-
nels and can be used for feature-level fusion for different
features. Multiple kernel boost [40] uses the idea of boosting
to combine the classification result of single kernel SVMs,
but it has a high computation cost for retraining a classifier.

For the MKL problem, a convenient approach is to con-
sider that K (x, x”) is actually a convex combination of basis
kernels:

M M
K@.x) =D dnKp(@,x), dn =0, dn =1
m=1

m=1

Here, M is the total number of kernels. Then, the form of
classifier changes to:

N M
Y (x) = sign |:zakyk > BuK(x, xi) +b} €

k=1 m=1

In our experiment, the RBF kernel we used is in the form
of K = exp(—r|x — x; |A2), x and x; is the training data and
testing data.

Different multiple kernel methods differ at combining
method, functional form, target function, training method
and base learners. We will compare those common-used nine
multiple kernel methods in Sect. 6.3 on their fusion ability
of combining multimodal features for emotion recognition
in the wild.

5.3 Decision-level fusion hierarchical classifier

Single feature kernel SVM classifier has different results on
each specific emotion. To make use of multiple features, we
propose a hierarchical classifier to combine SVCs together.
The proposed classifier is shown in Fig. 5 and consists of
three levels: the feature layer, fusion layer and decision layer.
Whole pipeline is showed in Fig. 4. For the fusion layer, the
weight of each feature is represented as p, and for the decision
layer, the weight of each fusion classifier is A. Suppose [ is
the number of features, and J is the number for the fusion
method in the second layer. Then, the proposed hierarchical
classifier model is:

J 1
Y () =sign | D x> pivix) &)
j=1 =l

First all of the SVM classifiers with each feature make
up the feature layer classification. For the testing set of N
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data points x; € R", the ith SVM outputs, {xr, yx, Pk},
k = 1...N, where y; € {1,2,...,7} is the predicted class
label and py is the estimated prediction probability of the
predicted label yy.

On the fusion layer, we use three different feature-level
fusion methods for voting classification. (1) The first one
is voting based on classification results (VBR). We simply
use parameter p; as the voting weights of each feature-layer
SVM classifier. Each SVC classifies the data x; € R” to one
emotion categories y; € {1, 2, ..., 7}, and the highest voted
emotion is the result of this one. Then, we tune the voting
weights p to obtain the best results for the validation set. (2)
The second fusion classifier is the same as the VBR classifier
except that it is voted on by the prediction probability (VBP)
estimated by the SVM classifier. Each feature layer classi-
fier votes with the estimated probability py as its weight to
class yk. (3) The last fusion classifier is the SVM classifier
with the combined multiple kernel (CMK). In our experi-
ment, all kernels can be combined with the same weights
after normalization as HCF2 in Sect. 6.3 or just with the best
single kernel as HCF1. These second layer classifiers repre-
sent feature-level fusion.

Atdecision layer, A ; is defined as the weight of the second
layer fusion classifiers j and used to vote for each data x; €
R”. We tune the parameters to find the best results by using
the grid search strategy. The hierarchical structure allows us
to tune parameters layer by layers. Through the three-layer
fusion network, we can achieve the best recognition result.

In conclusion, the proposed classification framework
combines both feature-level fusion and decision-level fusion.

Its advantage is that it combines the result of different fusion
methods, which guarantees the robust accuracy of overall
recognition. In the next section, we give the detailed experi-
mental analysis of our method.

6 Experiments
6.1 Data preprocessing result

We first use IntraFace toolkit to get the positions of 49 facial
landmarks for every video frame. Then, LBP-TOP feature
and RBF kernel SVC are used to test the result of face align-
ment and image purification. Parameters of RBF kernel are
tuned by gird search and five-fold cross validation.

The result of face alignment with different resolution
(width x height) and base points are listed in Table 1. Data
of the FERA set [44] and the CK set [45] are also tested.
Details are given in Sect. 6.4.

We set the threshold to 0.27 and remove the non-face
or badly aligned face images on the EmotiW2014 training
set similar to the ones in Fig. 6b. Trained with the purified
data set, the accuracy of the LBP-TOP classifier is improved.
But the Frontalization Method and RASL actually leads to a
worse result as showed in Table 2. The samples are shown in
Fig. 6.

6.2 Single feature classification

We extract the features listed in Sect. 4 and apply the SVM
classification. Because each frame produces a Geometric,
MSDF BoW and HOG feature vector, information from all
frames of the video were combined using pooling [33], which
was accomplished by taking the maximum or mean value of
the MSDF BoW or PHOG feature vectors over all frames.
By experiment, max pooling has better results for MSDF
BoW and HOG, while the Geometric feature fits well with
mean pooling. The classification accuracies and parameters
are listed in Table 3. Because the character of LLC cod-
ing, we choose linear kernel SVM classifier for MSDF BoW
feature. Actually RBF kernel is too complex with so large

Table 1 Face alignment results

Dataset Resolution Base points SVC result (%)
AFEW 128 x 128 L and R eyes 38.27
AFEW 128 x 128 Eye and mouth 39.15
AFEW 128 x 160 Eye and mouth 38.72
FERA 200 x 200 L and R eyes 87.10
FERA 128 x 128 Eye and mouth 87.10
FERA 128 x 160 Eye and mouth 85.81
CK 60 x 80 L and R eyes 87.16
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(a) Frontalization

'%n_unmlml

Phu 4 11

(b) PCA Purifying

(c) RASL

Fig. 6 a Head frontalization progress. b Samples with largest mean reconstruction rrror. ¢ Sample images before (left) and after (right) RASL

alignment

Table 2 Results of image purification on AFEW

Original RASL Frontalization PCA

39.15% 35.94 % 20.11% 40.50 %

Table 3 Our single feature result in EmotiW challenge

Feature OVR (0)%0) Kernels and parameters
accuracy (%)  accuracy

MSDF-BoW  42.32 N/A Linear, ¢ =0.9

PHOG 31.27 30.73 % RBF, c=128,g=8

LBP-TOP 36.12 33.15% RBF, c=12,g=2.8

LPQ-TOP 19.41 19.68 % RBF, c=2,g=38

Audio 26.68 16.98 % Linear,c =2

dimensions. For the other features except audio feature, RBF
kernels achieve better results while consuming more training
time.

The results on the validation set are listed in Fig. 7. Here,
we observe that Angry, Happy and Neutral are relatively easy
to distinguish. In addition, those features’ abilities to classify
specific emotion is quite different.

Obviously, the bag of multi-scale dense SIFT features has
the highest validation result. Take note that we do not have
the labels of the AFEW test set. All of the training progress
is performed on the training set, and we tune the parameters
through 5-fold cross validation and test the trained model on
validation set.

6.3 Results of fusion classification

Observing the classification accuracy of each single feature
SVM classifier in Fig. 7, we find that those features show
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different results on each specific emotion [34]. To make use
of multiple features, we propose a hierarchical classification
framework (HCF) to combine the results of each SVM clas-
sifier.

Then our proposed HCF is performed on AFEW valida-
tion set. Mean weights of each feature are listed in Tables 4
and 5. The difference between HCF1 and HCF?2 is the weight
in combined multiple kernel (CMK). HCF1 only uses MSDF
BoW kernel while HCF2 use the mean of all kernels. After
testing HCF1 on the validation set, we obtained an accuracy
of 45.55 % with decision level weights A; (VBR) =
A2 (VBP) = 0.3 and X3 (CMK) = 0.4. Detailed weight
parameters of HCF1 and HCF2 are listed in Tables 4 and
5. Note that although the Audio feature did not perform so
well in SVM classification, it has a large scale of weight.
This shows that acoustic feature has some information that is
complementary to the homogeneous visual features. With
the proposed method, in August 2014, we submitted our
HCF1 prediction of test set and got the final result of
47.17 %, which make us the first runner-up of EmotiW 2014
Challenge.

We also compare our HCFs to eight representatives
multiple kernel methods by using Gonen and Alpaydin’s
implement in [7]. We changed their code to suit multi-class
classification with One-VS-Rest strategy. The methods we
compare are: MSDF Single Kernel SVM, alignment-based
ABMKL, group Lasso-based GLMKL, generalized GMKL,
localized LMKL, original MKL, nonlinear NLMKL, rule-
based RBMKL and SimpleMKL. For comparison, we all
use LIBSVM for their SVM solver. The kernels for each fea-
tures are the same as in Sect. 6.2. Grid searching is used to get
best training cost parameters of each method. The comparing
results are listed in Table 6.
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Fig. 7 Single feature classification accuracies of each emotions in

AFEW validation set

of the sequences for training, 1/4 for validation and the rest
for testing. FERA set has 155 training videos. We also divide
the training set by half for training and validation. Though
they are not specific dataset for emotion recognition in the
wild, we can still use them to test the generalized ability of
proposed method. FERA set and AFEW set are tracked and
aligned in the same way, while CK set is aligned by manually
aligning eyes for first image of a sequence.

As our LPQ-TOP feature has not work well in EmotiW
2014 set, we bring in LGBP-TOP and Geometric features to

Table 7 HCF Result on different datasets

6.4 Results of proposed method on different datasets Dataset ~ Baseline  Best SVC (%)  Validation  Test result (%)
result (%)
We also test our HCF method on other datasets: the Cohn AFEW  332% 42.32 45.82 472
Kanade [45] (CK) database and the facial expression recog-  FErRA  55.6% 83.12 9091 N/A
nition and analysis (FERA) [44] database. CK set consist of g N/A 82.93 89.02 85.19
327 image sequences of seven kind of emotion. We use half
iTna:)’l'l‘; ﬁle\r)ﬁéi?ctiﬂpcll;):sfiiact;ltl;z; A Audio MSDF Bow LBP-TOP LPQ-TOP PHOG
framework (HCF1) on AFEW VBR, 41 = 0.3 0.375 0.375 0.042 0.083 0.125
VBP, 1, =0.3 0.467 0.400 0.033 0.016 0.083
CMK, A3 = 0.4 0 1 0 0 0
Mean weight 0.2526 0.6325 0.0260 0.0315 0.0574
;agl&sz xefgg\gi of features 3 Audio MSDF BoW LBP-TOP LPQ-TOP PHOG
VBR, 11 =04 0.375 0.375 0.042 0.083 0.125
VBP1, A, =0.2 0.467 0.400 0.033 0.016 0.083
CMK, 23 = 0.4 0.2 0.2 0.2 0.2 0.2
Mean weight 0.3234 0.31 0.1035 0.1165 0.0574
;i;?t:feﬁt riﬁiﬁiiiigrzeeiween Method Mean kernel weights Training Accuracy (%)
methods cost €
Audio MSDF BoW LBP-TOP LPQ-TOP PHOG
Single SVM 0 1 0 0 0 0.9 42.32
ABMKL 0.0532  0.3083 0.0975 0.4435 0.0975 2 38.27
GLMKL 0.0527 0.2344 0.3349 0.0430 0.3349 16 43.94
GMKL 0.0595  0.1983 0.3427 0.0128 0.3867 4 45.55
LMKL N/A N/A N/A N/A N/A 0.25 34.50
MKL 0.0424  0.1884 0.3781 0.0130 0.3781 2 43.94
NLMKL 0.2041  0.2028 0.1996 0.1940 01996  0.125 26.95
RBMKL 0.2 0.2 0.2 0.2 0.2 2 42.32
SimpleMKL  0.0459 0.1981 0.3456 0.0132 0.3971 4 45.01
HCF1 0.2526  0.6325 0.0260 0.0315 0.0574 N/A 45.55
HCF2 0.3234  0.31 0.1035 0.1165 0.1466  N/A 45.82

@ Springer



134

J Multimodal User Interfaces (2016) 10:125-137

Table 8 Weights p; of features

in HCF on CK dataset Aj MSDF BoW LBP-TOP LGBP-TOP HOG PHOG
VBR, 11 =0.3 0.2 0.3 0.3 0 0.2
VBP, 1, =04 0.1 0.6 0.2 0.1 0
CMK, 123 =0.3 0.2 0.2 0.2 0.2 0.2
Mean weight 0.16 0.39 0.23 0.10 0.12
iTnai’I'&? ozv;;zggi g;t‘::famres A MSDFBoW  LBP-TOP  LGBP-TOP ~ HOG  PHOG  Geometry
VBR, 11 =0.3 0.2 0.2 0.1 0.1 0.2 0.2
VBP, A, =04 0.1 0.2 0.2 0.1 0.1 0.3
CMK, 13 = 0.3 0 0 0 0 0 1
Mean weight 0.10 0.14 0.11 0.07 0.10 0.48
Table 10 Cross validation result of training sets
Feature AFEW FERA CK Multi-class
strategy
Accuracy (%) Kernels and Accuracy Kernels and Accuracy Kernels and
parameters parameters parameters
Audio 32.68 Linear, ¢ =2 N/A N/A N/A N/A OVR
Geometry — 42.04 RBE c=131072,g= 80.00% RBF c=2048, g= N/A N/A ovo
1.86e-9 4.77e-7
HOG 37.74 RBE c=2,g=0.5 7871% RBF,c=8,g=2 70.64%  RBF,c=8,g=0.125 OVO
PHOG 35.27 RBF, c=120,g=8 76.12%  RBF,c=2048,2g=0.5 7125% RBF,c=128,g=8 (0)%¢)
LBP-TOP 39.15 RBF,c=8,g=0.125 87.1% RBF, ¢ =2048, 87.16% RBF, ¢ = 128, (0)%©)
g=0.031 g=0.031
LGBP-TOP  37.04 RBE c=8,g=0031 7484% RBEc=32g=0031 81.35% RBF c=2043, ovo
g=1.22e-4
MSDF BoW  46.96 Linear, c =1 90.67 % Linear,c =4 83.44 % Linear, c = 16 OVR
replace. Note that CK set is consisting of grey images; the = Table 11 Accuracies on validation set of datasets
Intraface video tracking method is unsuitable. Features AFEW (%) FERA (%) CK (%)
We list the results in Table 7. We can see our fusion method
achieve improvements on both sets, comparing to the best Audio 26.68 N/A N/A
single kernel SVC. Parameters on those sets are shown in ~ Geometry 29.30 76.62 N/A
Tables 8 and 9. HOG 29.38 80.52 64.63
PHOG 31.27 74.03 63.41
LBP-TOP 36.12 81.82 82.93
6.5 Discussion LGBP-TOP 28.57 79.22 80.49
MSDF BoW 42.32 83.12 78.05

Result of data preprocessing show that adding image pixels
to gain more information or using complex methods to purify
images do not have much improvement on classification. The
large size of images may add more noise to disturb the fea-
ture extraction progress on the contrary. Data purifying by
takeout bad images have some effect, but could not solve the
misalignment problem thoroughly, which is still one of the
most challenging part for emotion recognition.

Single feature classification shows that no single feature
SVC can achieve convincing result for emotion recognition

@ Springer

in the wild. MSDF BoW and LBP-TOP are most robust
features for all three datasets. On CK set, LBP-TOP beats
MSDF BoW:; this is caused by the low image size that limits
the amount of Dense SIFT descriptors. Another interest-
ing phenomenon is that PHOG is no better than HOG on
some situations in Tables 10 and 11. The concatenation way
of SPM feature may need to be replaced by multi kernel
methods.
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Fig. 8 Submission results on test set

An Di Fe Ha Ne Sa Su

An 0% 0.00 000 003 012 0.09 0.02
Di 0.2 0.19 004 027 035 004 0.00
Fe 024 002 017 007 024 024 0.02

Ha 0.2 0.04 0.02 -g 0.11 0.00
Ne 0.2 0.03 003 004 0.13  0.00
Sa 0.1 015 002 021 028 023 0.00
Su 0.5 000 012 012 038 023 0.00

Fig. 9 Confusion matrix of our final result on AFEW test set
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Fig. 10 Final experimental results on validation set

Due to the different discriminate ability of those features,
we propose the hierarchical fusion framework to combine
them. Comparison results in Table 6 show that our HCF
achieves the highest result among the multiple kernel meth-
ods we have reviewed. Actually, the MKL algorithms can
be used to replace our simply combined kernel SVC in fea-
ture level. Our fusion method shows robust result on all three
datasets. Results and confusion matrices of them on AFEW
validation and test sets are showed in Figs. 8, 9, 10, 11.
HCF?2 only got result on validation set. As acoustic feature
has large weight in many fusion methods, dig more infor-
mation through audio may be a way to improve the whole
recognition result. Another indication is our HCF improves
more when single feature has better recognition rates. For
better recognition result, we should continue to improve the
result of single feature SVC.

An  Di Fe Ha  Ne Sa Su
An [OBIY 003 0.03 003 0.05 002 0.02
Di 031 013 003 026 018 0.08 0.03
Fe 045 005 009 018 009 0.1 002
Ha 0.08 0.00 0.02 [0:847 0.05 0.02 0.00
Ne 0.0 003 002 025 052 005 0.03
Sa 024 008 002 024 020 0.9 003
Su 030 009 024 013 015 004 004

Fig. 11 Confusion matrix of our final result on AFEW validation set

7 Conclusions

In this paper, we present several image sequence feature
extract-ion methods and investigate different features and
classifiers for multimodal human emotion recognition in the
real world. For each feature, we trained individual classi-
fiers on the train data. The experimental results show that
different features have different discriminative abilities for
emotion classification. We propose the feature-level fusion
strategy to combine different features, which significantly
improves the emotion recognition performance. Then, we
propose a novel decision-level fusion hierarchical classifier
framework, which combines these single feature classifiers
and combined multiple kernel classifier results using adap-
tive weighted parameters to further improve the multimodal
recognition performance. The method is evaluated on sev-
eral datasets and gains very promising achievements on the
validation set and test set.

In the future, we will try to conduct more experiments
on more public benchmark databases to obtain more detailed
performance analysis on our work. We will do more research
on feature level to get better single kernel result.
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