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Abstract This paper presents a novel gesture recognition
systemusing a single three-axis accelerometer, that is to serve
as an alternative or supplementary interaction modality for
controlling mobile devices. Capturing, training and classi-
fication of the detected hand gestures are expected to be
executed in their entirety on the mobile device running the
proposed system, instead of being passed to a nearby com-
puter. As gesture recognition belongs to the group of pattern
recognition problems where the underlying class probabil-
ities are not a priori known, the classification is based on
the distance between neighbouring examples. The distance
metric is optimized by using large margin nearest neighbour
(LMNN) method. To measure the amount of classification
confidence, a fuzzy version of nearest neighbour algorithm
is employed. Obtained results for recognition of nine hand
gestures using proposed LMNN—fuzzy combination are
presented and compared to that of other similar approaches.
The system achieves near perfect recognition accuracy that is
highly competitive with systems based on statistical methods
and other accelerometer-based gesture recognition systems
in the literature.
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1 Introduction

With mobile computing having an increasingly important
role in enhancing the quality of life, an increasing amount
of research nowadays is directed towards more physical,
intuitive and pervasive human–computer interaction. Most
modern mobile devices share a common problem—they
are attempting to provide users with powerful computing
services and resources through very small interfaces. The
device’s shrunken form factors and physical size limitations
in both keyboards and screens, make operating with these
devices a rather cumbersome task and are frequently stressed
as main sources of dissatisfaction and frustration for their
users [2,3]. In this regard, gesture-based interaction can be
seen as a viable alternative for controlling devices.

Up to date, gesture-based interaction has been imple-
mentedutilizingmanydifferent sensing technologies, includ-
ing cameras and computer vision techniques, as well as
devices such as magnetic field trackers, instrumented (data)
gloves and body suits, attached to the user. Each of these
technologies varies in accuracy, resolution, latency, range
of motion, user comfort and cost [20]. Glove-based gestural
interfaces [4] typically require the user towear a cumbersome
device and carry a bundle of cables connecting the device
to the computer. This hinders the ease and naturalness of
the user’s interaction with the computer. While overcoming
this problem, gesture recognition systems based on com-
puter vision techniques need to contend with other problems
related to occlusion of user’s bodyparts and immobility. They
tend toworkwell in controlled environments, but are not suit-
able for everyday use [13].

Identifying the movement (or “gesture”) made by the user
when holding the device from acceleration data is an emerg-
ing technique for gesture-based interaction, enabled by the
rapid development of low-cost Micro Electro-Mechanical
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System (MEMS) technology,which has resultedwith a grow-
ing number of new generation consumer electronic devices
that began to incorporate small and precise sensors, like
accelerometers and gyroscopes. This allowed the develop-
ment and exploration of new input modalities, in which the
user interacts with the device not by traditional button press-
ing, but by rotating andmoving the device, effectively turning
it into a physical interface. Such modalities add new degrees
of freedom to interaction and also make interaction calmer
by reducing cognitive load.

1.1 Related work

Though majority of the available literature on gesture or
action recognition combines data from a triaxial accelerom-
eter with data from another sensing device, like a biaxial
gyroscope [24], in order to improve the systems performance,
there has also been a great deal of publications where solely
accelerometer-based gesture recognition has been discussed,
most prominent one being that by Hofmann et al. [11]. Most
of the systems presented in these papers utilize continuous or
discrete hiddenMarkovmodels based recognition algorithms
[14,17,22,23], although other methods, such as conditional
Gaussianmodels, support vectormachines andBayesian net-
works, have also been explored.

The design of a gesture recognition system can follow a
user-independent or a user-dependent approach. The differ-
ence lies in whether the user has to train the system before
being able to actually utilize it. User-dependent systems
require the user to repeat the gesturemovements several times
to train the system; alternatively, user-independent systems
are oriented to general users and do not need a training phase
before being usable.

Liu et al. [16] developed μWave, a user-dependent
accelerometer-based system that supports personalized ges-
ture recognition, working on the premise that human gestures
can be characterized by the time series of forces measured
by the hand-held device. The core of the μWave is dynamic
timewarping (DTW),whichmeasures the similarity between
two sample sequences, varying in time or speed. The sys-
tem’s database undergoes two types of adaptation: positive
and negative; however, since the database adaptation resem-
bles a continuous training, in some cases removing an older
template every other day might lead to replacing a very good
representative of a gesture, which is best avoided. Despite
this, μWave demonstrates both computational as well as
recognition efficacy, and produces an accuracy of 98.6% for
a dictionary of 8 gestures.

An amalgamation of DTW and affinity propagation is
the foundation of yet another novel accelerometer-based
gesture recognizer [1], that utilizes the sparse nature of ges-
ture sequences. After projecting all candidate gesture traces
onto the same lower dimensional subspace, the recognition

problem is formulated as an �1-minimization problem. The
system can be implemented for user-dependent recognition,
mixed-user recognition and user-independent recognition.
In mixed-user recognition mode, the system yields a very
respectable accuracy of 98.71% for a dictionary of 18 ges-
tures.

Xu et al. [28] presented a user-independent gesture recog-
nition system, capable of recognizing seven hand gestures,
based on the input signals from the Micro Inertial Measure-
ment Unit (μIMU), which is essentially a MEMS triaxial
acceleration sensing chip integrated with data management
and Bluetooth wireless data chips. Their recognition sys-
tem consisted of sensor data collection, segmentation and
recognition. They have examined three different gesture
recognition algorithms, including: (1) sign sequence and
Hopfield based gesture recognition algorithm; (2) velocity
increment based gesture recognition algorithm; and (3) sign
sequence and template matching based gesture recognition
algorithm; all of which were implemented and executed on
PC. The best of the three algorithms, the one based on sign
sequence and template matching, achieved an overall mean
recognition accuracy of 95.6%.

In this paper, we propose a concept of a novel ges-
ture recognition system, based on the use of a single
triaxial accelerometer sensor. Our system targets only user-
dependent gesture recognition, due to the difficulties in
user-independent gesture recognition originating from the
great variation between different users, even for the same
predefined gesture. What distinguishes our approach from
most of the aforementioned existing systems is that, in the
herewith presented system, all sensing and capturing of the
data, as well as gesture recognition and training, should to be
doneon themobile device itself.Most of the other approaches
transmit the sensor data to a nearby computer, where the
training and recognition software is running, or the off-line
data analysis is performed. The proposed system uses dis-
tance metric learning—a recent technique that has not yet
been exploited in this particular field—combined with fuzzy
k-nearest neighbour rule to improve the results of multi-class
gesture recognition and classification. The offline validation
using an arbitrarily defined gesture vocabulary of 9 test ges-
tures, has shown that the proposed system yields extremely
competitive results in terms of both recognition accuracy and
computational complexity.

This article presents the further extension of our work,
published in [18], with significant improvements which
reflect primarily in (1) the introduction of new feature
descriptor and (2) the employment of fuzzy version of nearest
neighbour classification algorithm, as a means of measuring
the level of classification confidence. The remainder of it
is organized as follows. Section 2 describes the proposed
gesture recognition system set-up and gives an overview of
its baseline functionality, whilst Sect. 3 provides a detailed
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overview of the employed feature extraction scheme. Sec-
tion 4 further introduces the general problem of distance
metric learning for nearest neighbour classification and pro-
vides a short theoretical background to the fuzzy k-nearest
neighbour rule and the corresponding membership assign-
ment techniques. The results of simulations, conducted in
order to evaluate the system’s performance, are reported
in Sect. 5. Finally, Sect. 6 ends the paper with concluding
remarks.

2 Problem setup

Building agesture communication interface for amobile plat-
form, is a daunting task, since there are several major general
usability requirements that have to be met. Such a system
should be available anywhere and any time. All the while, it
should be unobtrusive (or inconspicuous), meaning that the
end-user should barely notice that he/she is using it. Given
that hand gestures suffer from temporal variations, i.e. they
differ from one person to another and even the same per-
son cannot perfectly replicate the same gestures, within the
system gestures should be freely trainable, with minimum
training effort. Data samples that do not match one of the
predefined gestures well enough should not be classified as
one of them, but instead stated separately as unclassifiable,
unknown gesture.

Another key system characteristic that has to be carefully
considered is its response time. Whenever the user inputs a
gesture in the system, the actions tied to that gesture have to be
executed almost instantly. Usability engineering books [21]
suggest that response time should be as low as 100ms. Sys-
tem response time greatly depends on the available resources,
such as storage space and CPU performance, of the mobile
device platform it is running on. The latest generations of
mobile devices boast powerful processors andother advanced
features that up to a few years ago belonged to the realm
of desktop computers, which makes them capable of run-

ning complex and computationally demanding applications.
However, due to their size and battery requirements, even
today’s most evolved models have constraints that limit their
response.

Figure 1 visualizes the flow of the proposed gesture recog-
nition system. Users freely move their mobile device (e.g. a
smartphone)with a built-in accelerometer in space, to signal a
particular gesture; thus, temporarily variable, 3-dimensional
acceleration data signals are obtained. The system consists
of a knowledge database, that stores several sets of gestures
and the corresponding execution actions, and a gesture recog-
nizer algorithm, that picks up the traced data and uses it to
identify the gesture intended by the user. During the detec-
tion stage, the data is being processed to filter out any noise
which might have accumulated in it, upon which a feature
extraction process, that translates the original acceleration
signals into a corresponding vectors of features, is started.

The system’s operation is carried out in two distinct
modes. In teaching mode, gesture example feature vectors
are simply saved to the knowledge database with an appro-
priate label attached, so that they could, at some point, be
used for metric learning. To ensure that the device’s primary
functionality remains unhindered, distance metric learning
is realized as a background process, which triggers on only
when the device is in stand-bymode. In the recognitionmode,
the gesture example feature vectors are passed on to the clas-
sifier component that re-evaluates the assigned fuzzy class
memberships of the known gesture examples, stored in the
knowledge database, and identifies the most probable ges-
ture. Finally, the result of the gesture recognition process is
displayed to the user and the corresponding actions are exe-
cuted.

2.1 Device and sensing

The gesture traces are acquired usingAndroid-operated Sam-
sung i9000 Galaxy S smartphone, equipped with Bosch
BMA-023 MEMS accelerometer. At 3 × 3 × 0.9mm, it is a

Fig. 1 Gesture recognition system functionality flowchart
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Fig. 2 Orientation of the Samsung i9000 accelerometer axes

tiny, lowpower, high performance, triaxial digital accelerom-
eter with a nominal range of ±2g. The alignment of the
sensor’s axes with the device casing is such that—with the
phone lying flat on a perfect horizontal surface in front of
the user, oriented so that the screen is readable by the user
in normal fashion—the x axis goes from left to right, the y
axis goes from the user toward the device and the z axis is
perpendicular to the surface (Fig. 2). The acceleration val-
ues, recorded in meters per second squared, are delivered in
a form of a 3-valued vectors of floating point numbers.

2.2 Data processing

Threshold filtering Considering the relatively high
accelerometer sensitivity and the average data sampling rate
of approximately 30Hz, which is well above the Nyquist
sampling frequency, consecutive data vectors are almost
identical when the data is produced by the natural hand
movement. Therefore, the first processing step consists of
removing all similar vectors from the input data set to speed
up the consequent calculations.Vectors are eliminated if their
components at time instant t are very close to the vector’s
component at instant t − 1, i.e. if |xt − xt−1)| < ε. The
threshold value ε is determined empirically and for this sys-
tem it is set at the value ε = 0.055.

Noise reduction There are two primary sources of noise in
the received signal. The first are irregular sampling rates and
the second is the noise inherent in discrete physical sampling
of a continuous function.

The accelerometer data is likely irregularly sampled
because of the Android’s implementation of the sampling
mechanism. On an Android platform, the accelerometer
sensor data can be obtained by using the Android sen-
sor framework, which include various classes and methods
for accessing sensors, registering sensor event listeners and
retrieving raw sensor data. The Android API offers four
abstract sampling frequencies for its accelerometer sensor
(listed from fastest to slowest): Fastest, Game, Normal and

UI. However, the actual physical sampling capabilities of the
accelerometers vary from device to device, so these sam-
pling frequencies are used more as guidelines than as actual
physical sampling frequencies. Another reason for irregu-
lar sampling lies in the manner in which applications on
Android framework receive raw acceleration readings. The
Android API allows the acquisition of acceleration samples
on either the onAccuracyChanged() or onSensorChanged()
event, which fire whenever the Android OS determines that
the sensor accuracy or its values have changed. There is no
public method for determining the rate at which the sen-
sor framework is sending sensor events to an acceleration
sampling application. The delay that is specified is only a
guideline and it can be altered depending on the varying
loads of activity of the Android OS, which in turn results
with irregularly sampled values.

To handle irregularities in the accelerometer sampling fre-
quency, a data linearisation process is used. The process
involves choosing a desired sampling frequency and inter-
polating all the holes in the signal via linear interpolation.
The linearised values are calculated by finding the closest
sampled data points before and after the desired sampling
times, and then interpolating what the values of the desired
sample times would have been. One significant problem in
the linearisation process is determining the optimal sampling
frequency.

To ensure that not too much data is calculated via
interpolation—which could result in a false recreation of
the original signal—a program that determines the mean
and minimum differences in time (in milliseconds) of subse-
quent readings was created. The arithmetic average of these
two values was then calculated and analysed for the entire
dataset in order to provide a general guideline of what might
be an ideal sampling frequency. Based on this analysis, it was
concluded that one sample every 21ms or approximately 48
samples per second was a good enough desired sampling
frequency for our data. It should be underlined that, though
this particular choice of sampling frequency will cause the
signal to almost double in its size, all the key features of the
signal will remain unchanged. This is expected since data
linearization is simply meant to fill the holes in the sampled
signal and should not in any way significantly alter the sig-
nal itself. The signal length (i.e., number of samples) will be
doubled because we decided to use the arithmetic average of
the minimum and mean sampling time differences, which in
this scenario corresponds to about half the mean difference.

Outside of irregular sampling frequencies, additional
noise that can come fromany number of sources is introduced
in the signal. For example, a slight change in the phone ori-
entation or a screen tap can result in anomalous peak in the
corresponding signal. A 5-point smoothing algorithm was
applied in order to reduce this type of noise in the obtained,
linearised signal. This algorithm calculates each point to be
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Fig. 3 a Raw vs. b Processed acceleration waveforms, along x- (top), y- (middle) and z- (bottom) axis, defining a left-to-right straight line gesture

the average of its four nearest neighbouring points, the two
nearest before and the two nearest after. The 5-point smooth
was chosen so that spikes with an observable, steady progres-
sion would be preserved, while anomalous, sudden spikes
would be eliminated.

Figure 3 shows the acceleration waveforms along all three
physical axis, before and after processing, for an upright-held
device performing a left-to-right straight line gesture.

3 Feature extraction

Finding a compact, yet effective set of predictive features
is a very important step in pattern recognition, since it can
greatly reduce the data sensitiveness to intra-class variation
and noise, thus improving the recognition performance. In
our paper [19], we have shown that very good results in terms
of gesture recognition accuracy can be obtained by using a
mixed feature scheme, combining “blind”, data-driven, sta-
tistical signal features—namely, gesture duration, Pearson’s
correlation coefficient, mean, standard deviation, energy
and entropy of acceleration along individual axis—with our
newly introduced, special-purpose feature descriptor, named
histogram of directions (HoD), which is particularly suited
for the task of accelerometer-based gesture recognition.

3.1 Histogram of directions

The HoD feature descriptor is based on a notion that the
performed gesture shape and appearance can be clearly dis-
tinguished by the distribution of input device’s movement
directions. The direction in which the device has beenmoved
is determined by the angle that its resultant velocity vector
forms with the horizontal axes. Owning to the random noise
associated with accelerometers, error-reduction techniques

need to be employed, prior to actual direction detection, to
compensate for velocity-drift.

When creating the movement direction histogram, each
time sample casts a weighted vote for the direction histogram
channel based on the orientation of the resultant velocity vec-
tor at the particular time instant k. The votes are accumulated
in direction bins spread evenly over 0◦–360◦. As for the vote
weight, sample contribution can be expressed in a form of
some function of acceleration magnitude, |A (k) |; however,
in actual tests, the magnitude itself generally produced the
best results. In order to account for the noise and variation of
gesture data, the resulting descriptor representation is further
normalized by using the L2-normalization scheme.

The HoD descriptor has several key advantages. It cap-
tures the stroke structure that is very characteristic of gesture
shape and produces a relatively simple gesture representation
with an easily controllable degree of invariance to geometric
transformations: tilts of the input device make little differ-
ence as long as they are smaller then the orientation bin
size. It should be noted though that, in its current imple-
mentation, HoD feature descriptor is time-independent and,
for that reason, for example, gestures up-left-down-right and
up-down-left-right would yield roughly the same direction
histograms.

4 Distance metric learning and classification
algorithm

The k-nearest neighbour is one of the oldest and simplest
machine learning algorithms for pattern classification. Fol-
lowing the k-nearest neighbour decision rule, unlabelled
examples are classified by the majority vote of their k nearest
neighbours in the training set. Needless to say, the accuracy
of this algorithm depends strongly on the manner in which
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distances between different examples are computed.With no
prior knowledge available, most k-nearest neighbour imple-
mentations use simple Euclidean distances as a measure of
similarity between different examples.

Seeing the Euclidean distance metric as overly simplistic,
many researchers have begun to ask how to improve on ad-
hoc or default choices of distance metric [6,9,27]. Distance
metric learning is an emerging sub-area of machine learning
in which the goal is to adapt the underlying metric in order
to achieve better results of classification and pattern recogni-
tion. Inmany applications, a simple yet effective strategy is to
replace the Euclideanmetric with so-calledMahalanobis dis-
tance metric, which computes the squared distance between
vectors x and y as:

d2M(x, y) = (x − y)TM(x − y) (1)

where the matrix M ≥ 0, that directly represents the Maha-
lanobis distance metric itself, is required to be positive
semidefinite.

4.1 Large margin nearest neighbour

Large margin paradigm, as described in [26], is based on two
simple intuitions that ensure robust nearest neighbour clas-
sification: (1) each training input xi should share the same
label yi as its k nearest neighbours; and (2) training inputs
with different labels shouldbewidely separated.These objec-
tives are neatly balanced through two competing terms in the
resulting loss function, which is given by:

F(M) = (1 − μ)
∑

j�i

d2M(xi , x j )

+ μ
∑

i, j�i

∑

l

(1 − yil)[1 + d2M(xi , x j ) − d2M(xi , xl)]+

(2)

The first term in (2) pulls closer together neighbouring
inputs sharing the same label, while the second term acts
to alienate each input xi from differently labelled inputs by
an amount equal to one plus the distance from xi to any
of its k similarly labelled closest neighbours. The weighting
parameterμ ∈ [0, 1] is used to balance the trade-off between
these two terms. Generally, its value can be tuned via cross
validation.

The optimization problem in (2) can be cast as an instance
of convex programming [5]. Convex programming is a gen-
eralization of linear programming in which linear costs and
constraints are replaced by convex costs and constraints. Due
to recent advances in numerical optimization, convex pro-
grams can now be solved efficiently on modern computers.

4.2 Fuzzy k-nearest neighbour classifier

One of the main issues encountered in using the k-nearest
neighbour classifier is that normally each of the examples
in the training set is considered equally important in the
assignment of class label to the input vector. This can cause
problems in those places where the example sets overlap,
since atypical vectors are given as much weight as those that
are truly representative of the certain class. Another difficulty
is that once an input vector is assigned to a class, there is no
indication of the “strength” of its membership in that class.
Both of these problems can be addressed by incorporating
fuzzy set theory in k-nearest neighbour rule.

The basis of fuzzy k-nearest neighbour algorithm [15] is
the assignment of membership as a function of the inverse
of input’s Mahalanobis distance from its k-nearest neigh-
bours and their memberships in the potential classes. The
labelled examples can be assigned membership in two ways.
The first method, called crisp labelling, is to assign each
labelled example complete membership in its known class
and non-membership in all other classes. The second tech-
nique assignsmemberships based on the k-nearest neighbour
rule. The k (not the k of the classifier) nearest neighbours to
each input xi (say in class i) are found, and then membership
in each class is assigned according the following equation:

u j (xi ) =
{
0.51 + n j/k · 0.49 if j = i,

n j/k · 0.49 if j �= i.
(3)

where n j denotes the number of found neighbours, that
belong to the jth class. This technique attempts to “fuzzify”
the memberships of labelled examples that are situated in
the intersecting class regions in the input space, leaving the
examples that are well away from this area with complete
membership in the known class. As a result, an unknown
example lying in this intersecting region is influenced to a
lesser extent by the labelled examples that are in the “fuzzy”
area of class boundaries.

5 Experimental results

For experimental purposes, a dataset containing 9 differ-
ent test gestures, ranging from simple left-to-right and
up-to-down gestures, to more complex gestures resembling
geometrical shapes and letters, has been created. This defin-
ition of gesture dataset is to a certain degree inspired by the
gesture vocabulary identified in theNokia research study [14]
as preferred by users for interaction with home appliances
and is aimed at increasing the robustness of the gesture recog-
nition system. All the defined gestures, depicted in Fig. 4, are
limited to a vertical (x − y) plane in front of the user as the
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Fig. 4 The gesture dataset used in experiments

same previously mentioned Nokia study has indicated that
users are more likely to use spatial 2-dimensional gestures
and that utilizing all three dimensions in one gesture is fairly
rare. Given the nature of the performed gestures and their
stroke directions, an eight channel histograms were used in
the experiments, with ith channel being denoted as:

ch(i) = iπ

4
± π

8
, i = 0, 1, . . . , 7 (4)

The gesture database, used in the experiments, consisted
of 1890 examples, gathered from seven (2male and 5 female)
participants, aged between 24 and 58, all but one of whom
were right handed. Each of them was asked to repeat each
gesture for 30 timeswithin the course of severalweeks,which
provided an overall total of 210 examples for all participants
per gesture and 270 examples for all gestures per participant.
During data collection, the participants were requested to
hold the input device (smartphone) in a natural way and to
try their best to avoid excessive tilting of the device as much
as possible. As gesture samples acquired on the same day do
not exhibit regular high variability over time, which may in
turn lead to overly optimistic recognition results, participants
were strictly forbidden to perform more than five repetitions
of each gesture per day.

The herewith presented results were obtained by employ-
ing tenfold cross validation. For each participant, we divided
the 30 examples of single gesture into 10 partitions, namely
3 examples per partition. At each turn, 7 out of 10 randomly
chosen partitions were used as training (T ) and the remaining
3 as testing (T ′) subset. This procedurewas repeated ten times
and then the average recognition rate was taken. Finally, the
total average recognition accuracies were produced by aver-
aging over all participants.

The performances of fuzzy classifiers on a raw dataset
(without any metric learning), summed up in a Table 1, are
reported in terms of the simplest crisp partition, where a sam-
ple vector is assigned to the class of maximum membership.
Upon the comparison of the results of crisp classifier, fuzzy
classifier with crisp initialization (1) and fuzzy classifier
with nearest neighbour initialization (2), it can be seen that

Table 1 Summary of k-nearest neighbour classifiers recognition accu-
racies, depending on the varying training set size

Crisp Fuzzy-(1) Fuzzy-(2)

N T T ′ T T ′ T T ′

9 0.8734 0.8379 0.9204 0.8596 0.9202 0.8558

12 0.9450 0.8818 0.9740 0.8981 0.9746 0.8946

15 0.9784 0.9128 0.9978 0.9222 0.9983 0.9200

18 0.9822 0.9215 0.9966 0.9284 0.9969 0.9274

21 0.9850 0.9339 0.9928 0.9374 0.9930 0.9366

both fuzzy classifiers produce somewhat higher recognition
accuracies. But, more importantly, they provide membership
assignments that give an indication of classification correct-
ness degree. Although not shown in the tables, the results of
fuzzy classifier using nearest neighbour initialization tech-
nique show that correctly classified samples were generally
attributed relatively higher membership in their known class
than in other classes. Furthermore, the majority of them had
membership in the correct class greater than 0.7, thus pro-
viding an assurance, based on the membership assignment,
that they are correctly classified. On top of that, only 4%
of misclassified samples were attributed high memberships
(greater than 0.8) in the wrong class.

To assess the usability of LMNN metric learning scheme
for accelerometer-based gesture recognition, its performance
was compared to those of other, competing distance metric
learning methods, namely the principal component analy-
sis (PCA) [12], the linear discriminant analysis (LDA) [8]
and the neighbourhood components analysis (NCA) [10].
In all the experiments reported in this paper, the classifi-
cation was done by looking at k = 3 nearest neighbours.
The initial target neighbours for LMNN classification were
chosen based on Euclidean distances in input space. The
LMNN training was done by utilising the Weinberger—Saul
special purpose solver [25], which iteratively re-estimates
the Mahalanobis distance metric as it attempts to minimize
the objective function for LMNN classification. Multi-class
support vector machines (SVM) [7] were also evaluated as
providing a fair representation of state-of-the-art. They were
trained using linear, polynomial and RBF kernels and the
best kernel was chosen with cross validation.

Table 2 sums up the recognition results of the aforemen-
tioned distance metric learning algorithms, averaged across
all participants, dependingon thenumber of training samples.
As can be seen, whilst all five tested approaches improve
on nearest neighbour classification using a Euclidean dis-
tance metric and yield respectable recognition accuracies
greater than 90%, the LMNN classification constantly out-
performs all othermethods—even the benchmarkmulti-class
SVM that do not perform very effectively with small train-
ing set sizes—and achieves the highest recognition rate of
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Table 2 The performance analysis for different variants of nearest
neighbour classification, using Euclidean vs. Mahalanobis distances,
in view of the number of training samples

Method

N Eucl. PCA LDA NCA LMNN SVM

9 0.8596 0.9669 0.9514 0.9231 0.9904 0.9170

12 0.8981 0.9658 0.9531 0.9415 0.9943 0.9230

15 0.9222 0.9671 0.9603 0.9565 0.9958 0.9323

18 0.9284 0.9661 0.9679 0.9528 0.9968 0.9368

21 0.9374 0.9656 0.9675 0.9665 0.9989 0.9405

Note that SVM uses linear classifier and the results are presented here
for comparison

Fig. 5 Average recognition accuracies against number of training sam-
ples for a fuzzy 3-nearest neighbour classifier on the testing subset

99.89% with N = 21 training samples. A one-way analy-
sis of variance (ANOVA) was conducted to further compare
presented performance results. The analysis was significant
at p < 0.0001 level (F = 30.1408). Post hoc comparison
using Fisher’s Least Significant Difference test indicated that
the mean score for LMNN (M = 99.89, V = 5.53 × 10−5)
is significantly different from scores of all other examined
metric learning algorithms. On the other hand, the mean
scores of remaining algorithms, except SVM, did not differ
significantly amongst themselves. Figure 5 illustrates these
improvementsmore graphically,while Fig. 6 provides further
comparison of performance between two fuzzy classifiers
and the baseline k-nearest neighbour algorithm. In addition,
Fig. 7 shows the final, global confusionmatrices for the fuzzy
nearest neighbour classifier that record the percentages of
times of how samples are recognized.

It is a well known fact that computational complexity is
one of the main drawbacks regarding the use of convex opti-
mization in practical applications. Accordingly, the LMNN
algorithm faces the same challenges. In order to evaluate

Fig. 6 Graphical representation of different nearest neighbour classi-
fiers performances for testing subset. The reported accuracies refer to
the largest training set size of 21 training samples per gesture

the computational efficacy of the tested methods, Table 3
provides the comparison of CPU times for a single run of
different distance metric learning algorithms. These simula-
tion results were generated on a 1.4GHz notebook computer,
that has 1GB memory and runs a Windows XP operating
system. As shown, the computational burden of LMNN is
significantly larger than those of conventional nearest neigh-
bour based metric learning methods, such as PCA, LDA,
NCA and SVM. In practice, however, training (i.e. learn-
ing distance metric) is usually an off-line process and only
recognition needs to be performed in real time. The recog-
nition time of all algorithms is roughly the same and well
under one-hundredth of a second, which is a standard set by
other systems in literature.

The presented results of the performance analysis clearly
prove that the system exhibits a very competitive perfor-
mance, both computationally and in terms of recognition
accuracy, by running the code on a computer. However, it
is more reasonable to validate its novelty and performance
by testing how it performs in real-life scenario. To test the
real-world functionality of the proposed gesture recognition
algorithm, the algorithm was ported to a mobile device, by
implementing and executing a prototype user application on
Google’s Android platform. The user application was devel-
oped by making use of MIT App Inventor for Android IDE
and Android SDK. An example of user application running
on the smartphone is shown in Fig. 8.

To teach a system a new gesture, the user can choose the
Learning tab from the main menu. The gesture start and
finish are signalled by tapping on the designated button in
the application screen. The recorded gesture trace is then
processed and stored in the device’s memory as training data.
To recognize a gesture, the user selects the Recognition
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Fig. 7 Confusion matrices for the gesture dictionary (a) with and (b) without distance metric learning (%). Columns are recognized gestures and
rows are the actual identities of input gestures

Table 3 Average CPU times (in seconds) spent on the training and
recognition by different methods

Recognition

Method Training Crisp Fuzzy-(1) Fuzzy-(2)

Eucl. 0.0000 0.0009 0.0021 0.0024

PCA 0.0023 0.0013 0.0016 0.0021

LDA 0.0063 0.0017 0.0021 0.0027

NCA 3.4494 0.0011 0.0016 0.0021

LMNN 12.0994 0.0013 0.0013 0.0021

SVM 1.1654 0.0016 0.0016 0.0016

tab from the main menu. Same as before, data acquisition
process is initiated by tapping on the button displayed in
the application screen. When the same button is pressed
again, the gesture recording is terminated and the applica-
tion executes the gesture recognition algorithm. After the
most probable gesture type has been identified, the confir-
mation message is displayed asking the user if he wishes to
proceed with running the corresponding action.

The algorithm’s execution time on mobile device was
determined by computing the delay (time interval) that the
user experiences between the time instant in which the
gesture has finished and the instant inwhich it has been recog-
nized.Tomeasure this delay, the events shown inTable 4were
defined. Whenever a specific event occurred, the application
invoked a system call in order to obtain system time. This
experiment was repeated 20 times, whilst making sure no
other applicationswere running on the phone simultaneously.

Fig. 8 Prototype user application a main menu and b data acquisition
screenshots

Table 4 Two event types

Time Event description

T1 The user presses the Stop button

T2 The confirmation message is displayed to the user

Ti denotes the time the i-th event is recorded

The resulting average execution time of the gesture recog-
nition was 7.85ms. This time is negligible in comparison to
the acquisition time (9.33 s per measurement on average).
Therefore, we can conclude that the computation of gesture
recognition algorithmdoes not induce any human perceptible
lag and that it can be done in real time.
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6 Conclusion

Motivated by the proliferation of MEMS accelerometer sen-
sors embedded in personal electronic devices, such as music
players, smartphones and game consoles, this paper presents
a novel gesture recognition system based solely on a data
from a single triaxial accelerometer. The system utilizes
LMNN framework for distance metric learning and a fuzzy
version of k-nearest neighbour algorithm for efficient training
and classification. The metric is learnt with the goal of sepa-
rating the inputs from different classes by large local margins
and pulling closer together k-nearest neighbours from the
same class.

During recognition stage, the unknown gesture example
feature vector is allocated fuzzy class memberships, based
on its distance from its k closest training examples (nearest
neighbours) and their memberships in the possible classes.
Two methods of assigning class memberships are examined
and the experimental results for “crisp” and fuzzy k-nearest
neighbour rule are presented and compared. Regardless of
the initialization technique being used, the fuzzy algorithm
is shown to dominate its crisp counterpart not only by having
a higher average classification accuracies, but also by produc-
ing membership values that provide a confidence measure to
accompany the resultant classification.

The performance of the system is evaluated off-line, by
comparing it to the series of other, commonly used, com-
peting distance metric learning methods. Support vector
machines were also included due to the parallels that can be
drawn between them and the LMNN metric learning frame-
work and their proven effectiveness in pattern recognition
problems. Experiments, conducted on a user-defined vocab-
ulary of 9 arbitrary gestures, have demonstrated that LMNN
consistently outperforms all other distance metric learning
methods that it was compared to for all training set sizes and
yields near perfect results in terms of recognition accuracy.

As future work, we are planning to run a series of empiri-
cal measurements with real users using system metrics, such
as time delay, battery consumption and CPU load, to further
assess the proposed gesture recognition system’s usability in
real situations. The assessment will also include an elabo-
rate subjective user study, which will provide more in-depth
insight about the quality of user experience while running the
system. With respect to the gesture recognition algorithm,
a natural enhancement would be extending it to incorpo-
rate gesture spotting. In our proposed system, the starting
and ending point of a gesture trace was marked by pressing
the designated button on the application screen. This way of
acquiring gesture traces—by assuming known starting and
end points—is not realistic. A more realistic scenario would
be to segment meaningful gesture traces from a stream of
hand movements. The beginning and the end of a gesture
can be detected by sliding a window over n consecutive

accelerometer readings and checking if the variance inside
the window is greater than set threshold. The window size
and threshold value may be determined empirically based on
the sensor noise floor and the average vibration caused when
the device is held stationary.
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