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Abstract This paper proposes extreme learning machines
(ELM) for modeling audio and video features for emotion
recognition under uncontrolled conditions. The ELM para-
digm is a fast and accurate learning alternative for single
layer Feedforward networks. We experiment on the acted
facial expressions in the wild corpus, which features seven
discrete emotions, and adhere to the EmotiW 2014 challenge
protocols. In our study, better results for both modalities are
obtained with kernel ELM compared to basic ELM.We con-
trast several fusion approaches and reach a test set accuracy
of 50.12% (over a video-only baseline of 33.70%) on the
seven-class (i.e. six basic emotions plus neutral) EmotiW
2014 Challenge, by combining one audio and three video
sub-systems.Wealso compareELMwithpartial least squares
regression based classification that is used in the top perform-
ing system of EmotiW 2014, and discuss the advantages of
both approaches.

Keywords Audio-visual emotion corpus · Audio-visual
fusion · Feature extraction · Emotion recognition in the
wild · Extreme learning machines

1 Introduction

Emotion recognition fromvideo and audio is gaining increas-
ing attention, especially because its outputs can be used in
many related domains [5]. In the last decade, a considerable
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amount of research efforts spent in the field was on con-
trolled, laboratory-condition data. In some of such corpora
(e.g. Berlin emotional speech database [4]) it was possible
to obtain classification scores even better than human per-
ception [34]. Now the field is moving on to less controlled
conditions, including noisy audio-visual background, large
variance in facial appearance and spoken content.

Audio-visual emotion related challenges have been instru-
mental in improving the state-of-the-art in this field. The
challenges provide a great opportunity for the researchers in
the field and help advance the state-of-the-art by bringing
together experts from different disciplines, such as signal
processing and psychology. One such challenge series is
emotion recognition in the wild (EmotiW) [7,8] that pro-
vides out of laboratory data—acted facial expression wild
(AFEW)—collected from videos that mimic real life [6].

In this paper, we apply a powerful classification paradigm,
extreme learning machines (ELM), to audio-visual emotion
recognition. We investigate feature/group selection in both
modalities to enhance generalization of learned models. We
further extract audio features using the most recent INTER-
SPEECH Computational Paralinguistic Challenge baseline
set [37] with the freely available openSMILE tool [10] and
augment the AFEW dataset with four other publicly avail-
able emotional corpora: Berlin EMODB [4], Danish emotion
database (DES) [9], eNTERFACE Database [29], and the
Turkish emotional database (BUEMODB) [23], respectively.

Further contributions of this paper are as follows. In addi-
tion to the baseline feature sets, we use new visual feature
types and compare ELMs with a Partial Least Squares based
classifier, which yields the best performance in the state-
of-the-art system on the EmotiW 2014 Challenge [25]. We
extract dense SIFT features from images, representing the
videos (image sets) using a linear subspace obtained via sin-
gular value decomposition, the data covariance matrix and
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the distribution statistics (assuming a normal distribution),
all of which lie on Riemannian manifolds. In line with [25],
Riemannian kernels are used in classifiers. We also extract
video features using local Gabor binary patterns from three
orthogonal planes (LGBP-TOP), which is shown to be less
sensitive to registration errors compared to LGBP and LBP-
TOP [1]. We finally use a weighted score fusion strategy,
searching for the optimal weights in a pool of randomly
generated fusion matrices. This combination of modality-
specific models boosts the accuracy of individual models.

The remainder of this paper is organized as follows. In
the next section we provide background on ELM. Then in
Sect. 3 we overview the corpora and describe our proposed
approach. In Sect. 4 we give experimental results, and con-
clude in Sect. 5.

2 Background: extreme learning machines

The extreme learning machine (ELM) classifier was first
introduced in [14] as a fast alternative training method for
single layer Feedforward networks (SLFNs). The rigorous
theory of the ELMparadigm is presented in 2006 byHuang et
al. [15], where the authors compare the performance of ELM,
SVM, and back propagation (BP) learning based SLFN in
termsof training time and accuracy.ThebasicELMparadigm
has matured over the years to provide a unified framework
for regression and classification, related to generalized SLFN
class including least square SVM (LSSVM) [16,39].

Despite the speed and accuracy of ELMs, they were
only recently employed in affective computing exhibiting
outstanding performance with typically undersampled, high
dimensional datasets [12,22]. In one of the recent studies,
Han et al. [12] use deep neural networks (DNN) for extrac-
tion of higher level features (class distribution) from segment
based acoustic descriptors, then summarize these features
over the utterances using simple statistical functionals (e.g.
mean, max). The suprasegmental features were stacked as
input to ELMs. They show that ELM based systems outper-
form both SVM and HMM based systems.

The argument of the basic ELM introduced by Huang
et al. [15] is that the first layer (input layer) weights and
biases of a neural network classifier do not depend on data
and can be randomly generated, whereas the second layer
(output weights) can be effectively and efficiently solved
via least squares. The input layer can be considered as car-
rying out unsupervised feature mapping, and the activation
function outputs (the output matrix) are subjected to a super-
vised learning procedure. Let (W,b,H, β) denote an SLFN,
where the output with respect to input x ∈ R

d is given as
ŷ = h(Wx + b)β. Here, W and b denote the randomly
generated mapping matrix, and the bias vector, respectively.
h(x) ∈ R

p denotes the hidden node output and H ∈ R
N×p

denotes the hidden node output matrix. β is the analytically
learned second layer weight matrix.

The nonlinear activation function h() can be any infinitely
differentiable bounded function. A common choice for h()

is the sigmoid function:

h(a) = 1

1 + exp (−a)
. (1)

ELM proposes unsupervised, even random generation of
the hidden node output matrix H. The actual learning takes
place in the second layer betweenH and the label matrixT.T
is composed of continuous annotations in case of regression,
therefore is a vector. In the case of K-class classification, T
is represented in one vs. all coding:

Tt,k =
{+1 if yt = k,

−1 if yt �= k.
(2)

The second level weights β are learned by least squares solu-
tion to a set of linear equations Hβ = T. Proving first that
random projections and nonlinear mapping with L ≤ N
result in a full rank H, the output weights can be learned
via:

β = H†T, (3)

whereH† is theMoore–Penrose generalized inverse [33] that
gives the minimum L2 norm solution to ‖Hβ − T‖, simul-
taneously minimizing the norm of ‖β‖. It is important to
mention that ELM is related to Least Square SVMs via the
following output weight learning formulation:

β = HT
(
I
C

+ HHT
)−1

T, (4)

where I is the N × N identity matrix, and C , which is used
to regularize the linear kernel HHT , is indeed the complex-
ity parameter of LSSVM [39]. The approach is extended to
use any valid kernel. A popular choice for kernel function is
Gaussian (RBF):

K (xk, xl) = φ(xk) · φ(xl) = exp

(
−‖xk − xl‖

σ 2

)
(5)

In both (basic and kernel) approaches, the prediction of
x is given via ŷ = h(x)β. In case of multi-class classifi-
cation, the class with maximum score in ŷ is selected. In
our study, we utilize both basic and kernel versions of ELM.
Inspired by the success of SLFN based auto-encoders for
feature enhancement and the relationship between principal
component analysis (PCA) and SLFNs [2], in this study, we
further consider the use of PCA instead of randomgeneration
of input weights.
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3 The corpus and features

3.1 The AFEW corpus

The EmotiW 2014 Challenge [7] uses the AFEW 4.0 data-
base, which is an extended version of AFEW 3.0 used in the
EmotiW 2013Challenge [8]. The corpus contains videos that
are clipped frommovieswith the guidance of emotion related
keywords in the movie script for the visually impaired [6].
The 2014 challenge provides a total of 1368 video clips
collected frommovies, representing close-to-real-world con-
ditions [6]. The challenge is a seven-class classification
problem, where the video is assigned to one of A(nger),
D(isgust), F(ear), H(appiness), N(eutral), SA(dness), and
SU(rprise) classes. The corpus is partitioned into training,
development and test sets. The challenge participants are
expected to develop their system using the first two sets
and send their predictions for the test set, whose labels are
sequestered.

The nature of the data collection poses challenging con-
ditions, e.g. in terms of background noise, head pose and
illumination. In most of the clips there is a single actor.
However, in some cases there are multiple actors on the
scene. Speech is generally accompanied by the background
music and noise. While the challenge annotations come with
a standard face detector result, the difficult conditions cause
problems even in the early stages of the processing pipeline.
Some example aligned images illustrating this problem are
shown in Fig. 1. We observe that in addition to precisely
aligned frontal faces, there are misaligned or occluded faces,
or images that do not contain faces.

3.2 Baseline feature sets

The baseline video features consist of local binary patterns
from three orthogonal planes (LBP-TOP), compacted via
uniform LBP [31] extracted from the detected and aligned
faces in the videos. After face alignment and conversion to
gray scale, LBP computation amounts to finding the sign of
difference with respect to a central pixel in a neighborhood,

Fig. 1 Illustration of aligned images with varying conditions

transforming the binary pattern into an integer and finally
converting the patterns into a histogram. Uniform LBP maps
the patterns into 59 bins, and takes into account occurrence
statistics of common patterns [31]. To add structural infor-
mation to the histogram representation, the face is divided
into non-overlapping 4 × 4 = 16 regions and an LBP his-
togram is computed per region. The TOP extension applies
the relevant descriptor on XY, XT and YT planes (T rep-
resents time) independently and concatenates the resulting
histograms. In total, we have 59 × 3 = 177 dimensional
visual descriptors per region.

The baseline audio features are extracted via freely avail-
able openSMILE tool [10] using INTERSPEECH 2010 Par-
alinguistic challenge baseline set [36]. The 1582 dimensional
feature set covers a range of popular low level descriptors
such as fundamental frequency (F0), Mel-frequency cepstral
coefficients (MFCC) [0–14], line spectral Pairs frequency
(LSF) [0–7]mapped to a fixed length feature vector bymeans
of functionals such as arithmetic mean and extrema.

MFCC features correspond to Inverse Fourier Transform
or preferably the discrete cosine transform (DCT) of the log
of the Mel-scaled Fourier transform of the speech signal.
Mel-scale mimics the human hearing capabilities in the way
that it allows discriminating lower frequencies better than the
higher frequencies.

LSF feature representation of speech is proposed by
Itakura [17] and provides efficient and robust estimation of
formant frequencies. Formant frequencies, especially thefirst
two, are known to carry affect related information.

3.3 Exracted features

In our experiments, we use the aligned faces provided by
the challenge organizers for visual signal processing. The
images are first resized to 64 × 64 pixels. In the preprocess-
ing step, we use PCA based data purification as shown to
be effective in [24,38]. The idea is to measure the mean
reconstruction error per image xi ∈ R

D with Erri =
1
D ‖(xi − μ) − WT

pcaWpca(xi − μ)‖, where μ ∈ R
D is the

training set mean vector, and Wpca is the reduced PCA pro-
jection coefficient matrix. We discard the frames with a high
reconstruction error, as these are probably poorly detected or
aligned images. In our study, we use the L1 norm and remove
the videos that have less than three valid images from training
and validation sets. In our preliminary studies on AFEW 4.0,
we observe a considerable accuracy increase due to purifica-
tion.

We first extract dense SIFT features from images, due to
their popularity in compact representation of local appear-
ance [27]. The dimensionality of image features are reduced
via PCA, whose coefficients are learned from the training
set, prior to video modeling. We use the same parameters as
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in [25] to extract SIFT features: typical 128dimensional SIFT
descriptors are extracted from 16 × 16 pixel patches with
steps of 8 pixels that gives 7 × 7 = 49 overlapping blocks.
Therefore, the dimensionality of the concatenated SIFT fea-
ture vector is 49 × 128 = 6272. As mentioned earlier, the
feature dimensionality is reduced via PCA, preserving 90%
of the total variability.

In addition to dense SIFT based video representation,
which will be detailed below, we also implemented LGBP-
TOP feature representation [1]. The basic idea here is
to combine the power of static LGBP descriptor and the
dynamic LBP-TOP. The work of Almaev and Valstar [1]
has shown that LGBP-TOP descriptor outperforms LGBP
and LBP-TOP for Facial Action Unit (FAU) recognition and
it is less susceptible to rotation errors compared to these
methods.

3.3.1 Video representation for dense SIFT descriptor

After extraction of image features, the image sets are repre-
sented via four alternatives from which kernels are obtained.
The first and simplest approach is using statistical function-
als to provide a baseline. Here we use mean and range of
image features over frames. Let Xv ∈ Rd×Fv be the matrix
representing d dimensional features of video v having Fv

frames. Using mean and range functionals results in a 2× d
dimensional video feature vector.

The second approach is taking singular value decomposi-
tion (SVD) of the video feature matrix X . Let r be the rank of
matrix X . SVD gives an orthonormal decomposition in the
form:

X = UΛV T , (6)

where columns of U are normalized eigenvectors of XXT ,
rows of V T are normalized eigenvectors of XT X , and first r
diagonal elements of Λ are square the roots of correspond-
ing sorted eigenvalues. Representing the video with the first
l ≤ r columns of U leads to a matrix L ∈ R

d×l . This lin-
ear subspace representation is known to lie in a Grassmanian
manifoldG(l, d),which is a special case ofRiemannianman-
ifold [11].

Our third approach represents the image set Xv ∈ R
d×Fv

with its d×d covariancematrixΣ . The fourth extends this by
introducing the mean statistic μ of the features, thus obtain-
ing a multivariate Gaussian. To embed the Gaussian in a
Riemannian manifold, it is represented as a symmetric posi-
tive definite (SPD) matrix [26]:

N (μ,Σ) ∼ M = |Σ |− 1
d+1

[
Σ + μμT μ

μT 1

]
(7)

3.3.2 Riemannian kernels

In functional based video representation, the video feature
vectors are used as if they reside in a regular vector space
when kernels are computed. For the other three video repre-
sentations, however, we use Riemannian kernels to compute
video similarity. For the SVD-based linear subspace, the
similarity of the video matrices Li and L j is computed via
Mercer kernels that map the points in a Grassmanian man-
ifold to Euclidean space [11,25]. Linear projection kernel
KProj.−Lin.
i, j is defined as:

KProj.−Lin.
i, j = ‖LT

i L j‖2F , (8)

where ‖·‖2F is the Frobenius norm. TheRBF kernel is defined
over the mapping ΦProj. = Li LT

i [40]:

KProj.−RBF.
i, j = exp

(
−γ ‖Li L

T
i − L j L

T
j ‖2F

)
(9)

The covariance matrix and the Gaussian matrix repre-
sentation of videos are both symmetric positive definite
(SPD). A popular distance measure for SPD matrices is the
log-Euclidean distance (LED), which is based on a matrix
logarithmoperator [3]. The proposedLinear andRBFkernels
between SPD matrices Si and S j are formulated as [40,41]:

KLED−Lin.
i, j = trace

[
log(Si )log(S j )

]
(10)

KLED−RBF.
i, j = exp

(−γ trace
[
log(Si ) − log(S j )

])
(11)

While the obtained kernels can be given to kernel
machines as input, they can also suitably be used in other
learners, where similarity to training instances is considered
as a new feature representation. In this study, we trainmodels
using partial least squares (PLS) and ELM on the obtained
kernels.

3.3.3 LGBP-TOP

In LGBP-TOP, the images are convolved with a set of 2D
complex Gabor filters to obtain Gabor-videos, then LBP-
TOP is applied to image blocks from each Gabor-video. A
2D complex Gabor filter is the convolution of a 2D sinusoid
(carrier) having phase P , spatial frequencies u0 and v0 with
a 2D Gaussian kernel (envelope) having amplitude K , ori-
entation θ , and spatial scales a and b. In line with [1], for
simplicity we take a = b = σ, u0 = v0 = φ and K = 1 to
obtain:

G(x, y) = exp
(
−πσ 2((x − x0)

2
r + (y − y0)

2
r )

)
× exp ( j (2πφ(x + y) + P)) , (12)
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Fig. 2 A face image and two Gabor magnitude responses

where the subscript r stands for a clockwise rotation opera-
tion around reference point (x0, y0) such that:

(x − x0)r = (x − x0)cosθ + (y − y0)sinθ

(y − y0)r = −(x − x0)sinθ + (y − y0)cosθ (13)

Note that the effect of the phase is canceled out, since only the
magnitude response of the filter is used for the descriptor. A
sample video image with Gabor magnitude response images
is given in Fig. 2.

When 2D complex Gabor filters are formed, all video
frames are convolved and separate Gabor-videos are stacked
to LBP-TOP operation. For LBP-TOP computation, we use
non-overlapping blocks of 4 frames and divide all planes
(i.e. XY, XT and YT) into 16 non-overlapping, equal-size
regions. Also in our implementation, we divide the video
into two equal length volumes over the time axis and extract
LGBP-TOP features from each volume to further enhance
temporal modeling. Using three spacial frequencies (φ =
{π/2, π/4, π/8}) and six orientations (θ = kπ/6, k ∈
{0..5}), we form a set of 18 Gabor filters. The dimension-
ality of the feature vector is therefore 2 × 18 × 16 × 58 × 3
= 100,224.

4 Experimental results

In our experiments we test the suitability of basic and kernel
ELM for the problem of audiovisual emotion recognition. To
probe the individual performance, we handle the video and
audio separately and then combine the decisions of best per-
forming modality-specific ELMs. Fast ELM training gives
us the ability to simulate a wide range of hypotheses with
moderate system requirements.1

4.1 Comparison of basic and kernel ELM

As a preliminary system development step, we carried out
tests using the full set of baseline features in both modali-
ties to see which ELM type is better suited to the problem at
hand. For basic ELM, we chose the sigmoid activation func-
tion, since it provided the best among alternatives (sine, hard

1 http://extreme-learning-machines.org/.

Table 1 Validation set classification accuracy of modality-specific
ELMs with different kernels and input weight arrangements

Basic ELM Kernel ELM

Random (%) PCA (%) Linear (%) RBF (%)

Audio 27.94 32.64 35.77 35.77

Video 25.07 37.74 38.81 39.35

limit and Gaussian functions). Considering the dimensional-
ity of video and audio features, we tested basic ELM with a
different numbers of hidden units (h ∈ 2{1,2,...,9}) both using
random projection and PCA (ranked eigenvectors) for input
weights. For kernel ELM, we experimented with both Linear
and RBF kernels, and tested different regularization parame-
ter values τ ∈ 10{−5,...,5}. The same set of hyper parameters
was tested for the scatter parameter σ of the RBF kernel.

The best results from the preliminary experiments with
EmotiW 2014 baseline features (without feature selection)
are given in Table 1. The challenge validation set baselines
are 26.2 and 34.4% for audio and video, respectively. We see
that the using PCA improves the input layer modeling on this
dataset. Moreover, the video modality features seem to ben-
efit more from PCA compared to audio features. Although
basic ELM with PCA modeling of input weights is found to
outperform the challenge baselines, we use kernel ELM for
the rest of our experiments, as it provides better performance
in both modalities. The best accuracy obtained in both kernel
types are either the same (for audio) or very close.

4.2 Experiments with baseline visual features

For visual classification, we assess the contribution of dif-
ferent facial regions. Apart from reduced dimensionality for
better modeling, the reason of focusing on a small number of
facial regions are (1) partial peripheral occlusion of face, (2)
cluttered background in case the face is tilted and (3) robust-
ness of different regions to alignment issues. Some example
facial group configurations are given in Fig. 3.

Using the same experimental setting described in the pre-
vious section for kernel hyper parameters, we issue ELM
tests with Linear and RFB kernels on various facial region
combinations. The best results for each region and kernel
type are provided in Table 2. Even using features of a single
facial region (e.g. region 11), it is possible to outperform the
challenge baseline score.Moreover, using 2-by-2 inner facial
regions or 2-by-4midface vertical regions, we can obtain bet-
ter performance than the full set of 16 regions. Our results
indicate that for emotion related tasks with difficult registra-
tion conditions, focusing on the inner face reduces the feature
dimensionality, while preserving discriminative information,
and results in better classification rates. Note that we carry
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Fig. 3 Illustration of facial regions tested in the study. Top-left full
face, top-right inner face (regions 6, 7, 10 and 11), bottom-leftmidface
vertical, bottom-right midface horizontal

Table 2 Validation set accuracy comparison of facial regions using
Linear and RBF

Facial regions (#) RBF (%) Linear (%)

Whole face (16) 39.35 38.81

Midface horizontal (8) 37.47 39.08

Midface vertical (8) 38.89 40.16

Inner face (4) 39.89 39.08

Regions 6 and 7 (2) 36.39 35.31

Regions 10 and 11 (2) 37.47 34.77

Regions 6 and 11 (2) 37.74 35.31

Regions 6 and 10 (2) 36.12 36.12

Regions 7 and 10 (2) 36.12 36.66

Regions 7 and 11 (2) 37.74 37.74

Region numbering starts from the top-left corner of the face and pro-
ceeds in reading order

out group-wise feature selection, since individual selection
of histogram features are not meaningful or sufficient for
pattern recognition.

To keep the table uncluttered, the parameters yielding the
reported results are not included. The best RBF kernel results
using at least four regions are obtainedwith scatter parameter
σ = 103 and regularization parameter τ = 10. On the other
hand, best results with linear kernel are obtained with τ =
10−2. Both in video and audio modalities, we record the
hyper parameters giving the best results to be later used in
test set predictions.

Table 3 Validation set performance comparison of acoustic feature
selection methods

RBF (%) Linear (%)

All baseline feats 35.77 35.77

mRMR ranked feats 33.16 34.46

mRMR-LLD (k = 10) 33.68 32.38

SLCCA-LLD (k = 10) 35.51 35.25

4.3 Experiments with baseline acoustic features

After the first probe into the full set of baseline acoustic
features, we applied several feature selection methods. This
was followed by extraction of amore recent and larger feature
set that was used in INTERSPEECH 2013 via openSMILE
tool.

We first used the iterative minimum Redundancy Max-
imum Relevance (mRMR) filter [32] for feature selection.
mRMR adds features to a set of selected features one by one.
At the kth step, mRMR maximizes the difference between
relevance and redundancy terms to add the kth feature to the
set [32]:

max
x j∈X−Sk−1

⎡
⎣MI (x j , t) − 1

k − 1

∑
xi∈Sk−1

MI (x j , xi )

⎤
⎦, (14)

whereMI (x, y) ismutual information between randomvari-
ables x and y. As suggested byPeng et al. [32],we discretized
the continuous acoustic features into seven bins based on z-
scores.2

In addition to mRMR, we use a multi-view feature filter
based on canonical correlation analysis (CCA). CCA is a sta-
tistical method that seeks to maximize the mutual correlation
between two sets of variables by finding linear projections
for each set [13]. We apply samples versus labels CCA
(SLCCA) Filter [20] to Low Level Descriptor (LLD) based
feature groups and then concatenate the ranked k features
from each group as in [21]. When all features are subjected
toCCAagainst the labels, the absolute value of the projection
matrix V can be used to rank the features [19]. We extend
the LLD based approach using mRMR and combine top
k = {5, 10, 15, 20} ranking features from each LLD group.
For mRMR, the first 200 features are tested with steps of 10,
each with the set of ELM hyper parameters discussed in pre-
vious sections. Together with regular mRMR, we test three
feature selection approaches on baseline acoustic features.

The best validation set results of feature selection
approaches utilized in the study are given in Table 3. We
observe that the best LLD-based SLCCA-Filter outperforms

2 The z-score ranges are {(−∞,−2.5], (−2.5,−1.5], (−1.5,−0.5],
(−0.5, 0.5], (0.5, 1.5], (1.5, 2.5], (2.5,∞)}.
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the best performance obtained with LLD-based mRMR.
However, no feature selection method performs better than
the full set of features. The superior performance of the full
set can be attributed to the ELM learning rule, which min-
imizes the norm of the projection, thus making use of all
features without over-fitting. In a regular Neural Network
where the weights are learned via gradient descend based
back-propagation, feature selection would help avoid over-
fitting, therefore may yield better results than the full set.
Another reason that a selected subset does not perform better
than the full set is the fact that the paralinguistic information
can be distributed over a wide range of features. This is the
reason why state-of-the-art results in the field are obtained
with very high dimensional supra-segmental acoustic fea-
tures [34].

We further included four other publicly available emo-
tional corpora to test whether additional corpora would
improve training or not. These are Berlin Emotional Speech
Database (EMODB) [4],DanishEmotionDatabase (DES) [9],
eNTERFACE Database [29], and the Turkish Emotional
Database (BUEMODB) [23]. Note that all corpora are acted,
though two are recorded in studio. Here, we use only the
instances belonging to the seven classes of AFEW.

Cross-corpus evaluation results are given in Table 4. Class
distribution and some basic information about the corpora are
given in Table 5. All corpora are individually normalized to
range [−1, 1]. Without corpus-wise normalization, the cor-
pora are found to impair the generalization of the learner. This
finding is in accordancewith cross-corpuswork of Schuller et
al. [35]. We see a performance decrease with respect to given
baseline features. eNTERFACE and EMODB provide some
performance increase with respect to INTERSPEECH 2013

Table 4 Best validation set performance of multi corpus training

Corpora Accuracy (%)

AFEW 4.0 IS13 Features 33.42

+eNTERFACE 34.20

+EMODB 34.20

+BUEMODB 33.42

+DES 33.42

+ENTERFACE + EMODB 33.42

+All corpora 34.20

baseline set, whereas BUEMODBandDES do not contribute
at all. Even when all additional corpora are included, the per-
formance is below the accuracy obtained via only EmotiW
2014 Challenge features.

4.4 Comparison of ELM with PLS classifier on baseline
and extracted features

We compare the performance of kernel ELMwith the partial
least squares regression based classifier used in [25], which
reports state-of-the-art results for EmotiW 2014 Challenge.
Similar to ELM, PLS enjoys the capabilities of fast learning
and accurate prediction, however, is not as popular as SVM.
We do not include SVM in our comparison, since it is already
compared to PLS on this dataset and was shown to give infe-
rior results [25]. For a full description of PLS regression, the
reader is referred to [42]. In [25], PLS regression is applied
to classification in one-versus-all setting. The class that gives
the highest regression score is taken as prediction.

We compare the two classifiers first on challenge baseline
features. The best validation set results of two methods, and
corresponding test set results of ELM are given in Table 6.
Note that the audio-only results given here with PLS are
higher than those reported in [25]. This is because we use
kernels, while in [25] the acoustic featureswere used directly.
Analyzing the scores on the baseline feature sets, we observe
an overall better performance with ELM, and the margin
increases with modality-fusion. To show that the validation
set scores are highly indicative of the test set performance,
we give the test set results of ELM on the right most columns
of Table 6. As discussed earlier, inner facial regions gener-
alize better than the whole face due to reduced sensitivity to
occlusions and registration errors.

For further comparison on extracted dense SIFT features,
we experiment on statistical functional based video represen-
tations. Using only mean and range statistics gives 39.84 and
41.19% validation set accuracy for PLS and ELM, respec-
tively. Note that ELM performance here is higher compared
to the best video-only result on baseline features. This might
be partly due to data purification. Finally, we compare the
two methods using the six Riemannian Kernels described in
Sect. 3.3.2. The best validation set performances are listed
in Table 7. In comparative experiments, we use the same
kernels for two methods, optimizing their hyper-parameters

Table 5 Class distribution of
additional emotional corpora.
Classes correspond to A(nger),
D(isgust), F(ear), H(appiness),
N(eutral), SA(dness), SU(rprise)

Corpus Content A D F H N SA SU #All Type

EMODB German 127 38 55 64 78 53 – 415 studio

DES Danish 85 – – 86 85 84 79 419 non-studio

eNTERFACE English 200 189 189 205 – 195 182 1170 non-studio

BUEMODB Turkish 121 – – 121 121 121 – 484 studio

All corpora are acted and the spoken content is the same for all subjects/emotion classes
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Table 6 Comparison of PLS and ELM performance on EmotiW 2014
baseline feature sets

Acc (%) Validation Test

Kernel Linear RBF RBF

Classifier PLS ELM PLS ELM ELM

Video (WF) 39.08 39.89 38.27 39.35 36.11

Video (IF) 37.74 39.08 39.08 39.89 39.07

Audio 35.25 35.77 34.46 35.77 37.84

Fusion (WF) 41.51 43.13 39.62 42.86 43.00

Fusion (IF) 40.16 42.32 40.43 44.20 44.23

IF inner face,WF whole face

Table 7 Comparison of validation set accuracies of PLS and ELM on
Riemannian Kernels for video representation

SVD Covariance Gaussian

Linear RBF Linear RBF Linear RBF

PLS 41.46 40.92 38.21 40.65 39.84 37.94

ELM 43.63 43.09 39.84 41.46 39.30 39.02

on the validation set. The PLS performance using dense
SIFT is slightly lower compared to those reported in [25],
which may be attributed to the number of PCA eigenvec-
tors prior to video representation. Similar to experiments on
baseline features,we observe better overall performancewith
ELM, giving higher than 43% accuracy onGrassmanian ker-
nels (SVD). When we probe the test set performance of the
best models (SVD representation with Linear Kernel), we
get accuracies of 40.29% for PLS and 43.23% for ELM,
respectively. This difference is not found to be statistically
significant with McNemar’s test [30]. While the results con-
firm the good performance of PLS as classifier, it is also clear
that the state-of-the-art performance of [25] is largely due to
using an ensemble of 24 visual systems, which complement
each other.

Lastly, we compare the performance of the two classi-
fiers on extracted LGBP-TOP features. We optimize the σ

parameter of the Gabor kernel by observing its effect on the
Gabor pictures, and set it empirically to 0.5. On the overall,
no optimization is done for other parameters of the Gabor
filters. Considering the massive dimensionality, filter and
feature selection have a high potential of improving gener-
alization. This is left for future work. Focusing on the inner
facial regions in LGBP-TOP did not provide a performance
increase as in baseline LBP-TOP features. We attribute this
to the added data purification step, which eliminates partially
occluded or badly aligned faces. For linear kernels, the best
validation set performances are 42.05 and 39.35% for ELM
and PLS, respectively. With RBF kernel, the validation per-
formances become 41.78% for ELM and 41.51% for PLS.

All our results are obtained on powerful feature sets with
good preprocessing. Subsequently, while the ELM classifier
usually reaches higher accuracies than the PLS classifier,
these differences were not significant. We have recently con-
trasted these classifiers on a new emotional speech corpus
(EmoChildRU), which is collected from 3 to 7years old
Russian children in naturalistic conditions [28]. The data are
annotated for three valence related affective classes: com-
fort, discomfort and neutral. Our results indicate that PLS
is highly sensitive to preprocessing and to feature repre-
sentation, whereas ELM consistently gives (in most cases
significantly) better results.

4.5 Multimodal fusion and test set results

We test the best performing modality-specific systems using
flat averaging (FA) and weighted fusion (WF) schemes. In
FA, we average the class-wise predictions to get a fused
score, whereas in WF, class-wise weights are used for each
sub-system. Using ELM with the baseline features, the best
performing single modality systems give 37.84% (audio full
set) and 39.07% (video innerface) accuracy on the valida-
tion set. Using the extracted features from purified images,
we observe 42.05% accuracy with LGBP-TOP and 43.63%
accuracy with dense SIFT (Linear Grassmanian kernel).

We first analyze FA fusion on the modality-specific ELMs
learned on the baseline features. Then we combine the best
modality-specific ELMs usingWF, where the optimal fusion
weights are searched over a random pool of fusion matrices.
This approach is inspired from the success of the top perform-
ing work in EmotiW 2013 [18]. For this, we randomly gener-
ate 50,000 fusion matrices for each alternative combination,
and normalize each matrix over the models. To avoid over-
fitting on the validation set, fusion weights are rounded to
three decimal digits. Since RBF kernels are observed to give
better performance in decision fusion, all combination exper-
iments are carried out with scores obtained fromRBF ELMs.

Validation and test set performances of multimodal deci-
sion fusion of ELMs learned on baseline feature sets are
provided in Table 8. We observe that using inner facial
regions in audiovisual fusion provides better generalization
than the full set of features. While multimodal fusion with
midface features provides the highest validation set accu-
racy, it does not yield a high score on the test set. This might
be attributed to over-fitting to the validation set, however
the hyper-parameters are not specifically optimized for this
system. The most probable reason of the high discrepancy
between validation and test set performances of systems is
partial occlusions and registration errors. The higher gen-
eralization performance of inner facial features is not only
due to the relevant information they contain, but also due to
resilience to occlusion and environmental noise.

123



J Multimodal User Interfaces (2016) 10:139–149 147

Table 8 Validation and test set
accuracies (%) for decision
fusion of modality-specific
kernel ELMs trained on baseline
feature sets

System Val Test

LBP-TOP (midface vertical) and audio SLCCA-LLD (k = 10) 47.17 38.33

LBP-TOP (midface vertical) and Audio all 44.47 38.08

LBP-TOP (inner face) and audio all 44.20 44.23

LBP-TOP (inner face) and audio SLCCA-LLD (k = 10) 43.13 43.98

LBP-TOP (wholeface) and audio all 42.86 43.00

Flat averaging scheme is used for score fusion
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Fig. 4 Test set confusion matrix of audio modality system. Classes
correspond to A(nger), D(isgust), F(ear), H(appiness), N(eutral),
SA(dness), SU(rprise)
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Fig. 5 Test set confusion matrix of video modality system. Classes
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The test set confusion matrices for systems obtained with
audio baseline features, video baseline features and their
fusion are given in Figs. 4, 5 and 6, respectively. The diagonal
elements indicate the recall of the corresponding classes. On
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Fig. 6 Test set confusion matrix of multimodal score fusion sys-
tem. Classes correspond to A(nger), D(isgust), F(ear), H(appiness),
N(eutral), SA(dness), SU(rprise)

the overall, we observe that fusion boosts the performance
of single modality systems. However, since the audio-based
system does not recognize Disgust, Happiness and Surprise
classes well (if at all), the fusion system shows a lower recall
in these classes compared to the video-based system. On the
other hand, recall performance of the audio-based system
outperforms the video-based system in the remaining four
classes. These results imply that a confidence based fusion
of modality-specific systems can advance the overall recog-
nition. Therefore, we use aweighted fusion scheme in further
experiments,whereweemployed combinations sub-systems.

Weighted score fusion of LBP-TOP (inner face), SIFT
SVD andAudioAll gave a validation set accuracy of 49.04%
and a test set accuracy of 46.44%. Inclusion of LGBP-TOP
in this scheme led to accuracies of 51.49 and 50.12%, on
the validation and the test set, respectively. It is worthy to
note that using a weighted fusion of only four sub-systems,
we reach the state-of-the-art test set performance obtained
by [25] that combines 25 sub-systems. We attribute the
attained state-of-the-art performance to three factors. First
is complementarity of base feature types and modalities.
We observed that including two new visual sub-systems
improved the accuracy. Second is the generalization power
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Table 9 Fusion weights for the best performing system

SIFT SVD LGBP-TOP LBP-TOP Audio

A 0.006 0.254 0.377 0.363

D 0.277 0.028 0.656 0.039

F 0.095 0.285 0.097 0.523

H 0.052 0.458 0.238 0.252

N 0.307 0.237 0.131 0.325

SA 0.398 0.303 0.215 0.084

SU 0.446 0.034 0.306 0.214

Classes correspond to A(nger), D(isgust), F(ear), H(appiness),
N(eutral), SA(dness), SU(rprise)
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Fig. 7 Test set confusion matrix of the best performing weighted
score fusion system. Classes correspond to A(nger), D(isgust), F(ear),
H(appiness), N(eutral), SA(dness), SU(rprise)

of ELM. On the overall, we observe very close validation
and test set performance of models trained with ELM. The
last is the weighted fusion strategy. Since the base models
differ in their confusion matrices, both class and model level
weighted fusion outperforms FA. Moreover, using random
weights instead of a meta classifier (e.g. a second level ELM)
reduces the risk of over-fitting. Fusion weights used in the
best systemandcorresponding confusionmatrix canbe found
in Table 9 and Fig. 7, respectively.

5 Conclusions and outlook

In this study, we introduce ELMs for audiovisual emo-
tion recognition in the wild. ELMs provide accurate results
with several orders of magnitude faster training compared to
SVMs andSLFNs. Typically, this leads tomore time for para-
meter search and optimization. We test facial feature group
selection, as well as recently proposed acoustic feature selec-
tion approaches for this problem.

We compared ELM with a PLS based classifier that is
used in the top system of EmotiW 2014, and obtained better
results with ELM. We achieve the best validation and test
set results with decision fusion of modality-specific ELM
models. While our results verify the importance of multi-
modal fusion and combination of diverse classifiers, they also
highlight the importance of the fusion strategy.

The tested systems performed very poorly on some of the
classes. In particular, it was very difficult to classify hap-
piness and surprise from audio, whereas fear and sadness
are difficult to classify from video. Disgust is difficult for
both modalities. This result shows that in-the-wild emotions
are much more difficult to recognize compared to controlled
conditions typically used in the literature.

Our tests with additional speech corpora to augment train-
ing did not contribute to accuracy. One possible cause for
the lack of improvement is the difference in the acquisi-
tion conditions of the corpora. Furthermore, acoustic feature
selection was not found to improve the performance. On the
other hand, in video modality using a semantically meaning-
ful subset of facial regions, it was possible to obtain better
recognition results than the full set, both in the development
and the test set.
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