
J Multimodal User Interfaces (2013) 7:171–182
DOI 10.1007/s12193-013-0120-5

ORIGINAL PAPER

The W3C multimodal architecture and interfaces standard

Deborah A. Dahl

Received: 30 November 2012 / Accepted: 22 March 2013 / Published online: 7 April 2013
© OpenInterface Association 2013

Abstract This paper describes the World Wide Web Con-
sortium’s (W3C) Multimodal Architecture and Interfaces
(MMI Architecture) standard, an architecture and commu-
nications protocol that enables a wide variety of indepen-
dent modalities to be integrated into multimodal applications.
By encapsulating the functionalities of modality components
and requiring all control information to go through the Inter-
action Manager, the MMI Architecture simplifies integrating
components from multiple sources.

Keywords Multimodal interaction · Spoken dialog
systems · Multimodal architectures · Extensible multi-modal
annotation (EMMA) · Multimodal systems

1 Overview

Computer-human interaction originally was based entirely
on computer-friendly and often difficult to use commands,
which had to be mastered by anyone who wanted to use
a computer. More natural interaction became possible with
the advent of graphical user interfaces with WYSIWYG
displays, which allowed users to use pointing gestures in
addition to typed commands. This is still the most common
computer-human interaction paradigm. But even in the ear-
liest days of computing [1], it was recognized that computer-
human interaction would be improved if the computer could
interact with humans in the ways that humans are used to
using when they interact with each other. People naturally
interact with each other using a combination of spoken lan-
guage, written language, gestures, and touch, but making nat-

D. A. Dahl (B)
Conversational Technologies, 1820 Gravers Road,
Plymouth Meeting, PA 19462, USA
e-mail: dahl@conversational-technologies.com

ural interaction possible between humans and computers has
proven to be much more difficult than expected. However,
as technologies such as speech recognition, natural language
understanding and gesture recognition become increasingly
capable, it is becoming much more feasible to build applica-
tions that support natural multimodal interaction through a
combination of human-friendly modalities.

2 Why a standard architecture?

While the component technologies of multimodal applica-
tions are very powerful, they can also be very sophisticated
and complex. This makes it very important to have ways of
orchestrating their interaction in systems that do not require
developers to master each individual modality technology.
Consider how difficult it would be to develop applications
if each developer, or even each organization, were required
to learn such technologies as speech recognition, handwrit-
ing recognition, face recognition and natural language under-
standing, all of which might be used in a single application.
In addition, with a standard architecture, experts in specific
technologies can develop standalone components that pro-
vide specific services such as speech recognition or face
recognition without having to also master multimodal appli-
cation development.

Not only is the set of possible modalities large, it is
also continually increasing. Displays, microphones, speak-
ers, cameras, GPS, and accelerometers are nearly always
included with current smartphones and tablets. In addition
to these common input modalities, the number of hardware
additions that can be plugged into devices is also continuing
to increase. Medical sensors for blood pressure, heart rate and
blood glucose levels are available, as well as environmental
sensors like temperature. Defining modality-specific ways of

123

172 J Multimodal User Interfaces (2013) 7:171–182

coupling together systems that incorporate several modalities
is clearing impractical. All this variety again points to a strong
need for a standard way of putting components together.

There is a large research literature on multimodal inter-
action, including technical work on integrating modalities,
for example, [2,3] as well as the human factors of multi-
modal interaction [4]. In addition, there is a very large lit-
erature on individual modalities. However, there have been
very few attempts to define an open, non-proprietary, multi-
modal architecture which can be used by any organization or
developer. One example is the Galaxy Communicator project
[3,5]; however that system was heavily focused on speech
interaction rather than multimodal interaction.

In order to provide an open architecture for multimodal
development, and to make the process of developing multi-
modal applications easier, the World Wide Web Consortium
(W3C) has defined a standard for multimodal applications—
the Multimodal Architecture and Interfaces specification [6],
based on the work of the W3C Multimodal Interaction Work-
ing Group. The goal of the W3C Multimodal Interaction
Architecture (MMI Architecture) is to provide a way to coor-
dinate multiple modalities in a standard way, with standard
methods of communication. This enables multimodal appli-
cations to be built by developers who are not necessarily
expert in every modality that the application uses.

A second advantage of a standard multimodal architecture
is that it promotes the development of an ecosystem where
companies with expertise in specific modalities can develop
reusable components for modalities in which they are knowl-
edgeable. These third-party components can subsequently
be plugged into full applications as components. Compa-
nies with multimodal application development expertise can
then take specific modality components as black boxes and
assemble them into applications.

It is important for a standard architecture to be as flexible
as possible, in order to accommodate new modalities and
new ways of interacting. To that end, important requirements
include support for local as well as distributed applications,
multi-device applications, and multi-user applications.

This architecture is independent of specific application
domains, but is particularly suited for distributed applications
that incorporate many modalities. As the number of devices
involved increases, it becomes increasingly important to have
a structured means of orchestrating their operation so that
the overall system is maintainable, extensible, and vendor-
independent.

3 Related work

While this work is focused on the overall integration of com-
ponents into multimodal systems, there is a great deal of

complementary work on such topics as platforms and script-
ing languages that support multimodal applications.

3.1 Platforms

Because multimodal interaction can take place in many dif-
ferent hardware and software environments, it is also impor-
tant for a multimodal architecture to be platform-neutral. The
most obvious platform is the World Wide Web, a distrib-
uted platform where a browser runs locally on a computer or
mobile device and where the application interacts with one
or more remote web servers. However, the web is not by any
means the only possible platform for multimodal interaction.
Standard desktop or laptop computer applications can also
benefit from multimodal interaction. Another important plat-
form is a home network, where devices such as televisions,
appliances, lights, and temperature control interact over a
Local Area Network. For example, the Digital Living Net-
work Alliance (www.dlna.org) has defined guidelines for
using media devices in home networks. Another emerging
multimodal platform is the automobile, where voice control
and touchscreens are available. In addition, the automobile
is also emerging as a multi-device platform. The hands and
eyes-busy nature of driving make the car a natural place for
multimodal interaction. Although originally automobile sys-
tems were all self-contained, in recent years it has become
possible for user devices to connect to in-car systems, most
notably the audio system, making the car also a multi-device
platform.

3.2 Scripting and interaction definition languages

The W3C Multimodal Architecture does not specify the sys-
tem’s behavior with respect to the user, but rather defines
system-internal behavior with respect to the underlying com-
munication among components. There are a number of script-
ing languages which have been designed to define system
behavior regarding the user, and as such are very comple-
mentary to the MMI Architecture. For example, SCXML
[7] is a high-level language for defining state-based systems
that implement specific applications, which could include an
interaction between a user and an intelligent agent. Similarly,
for voice applications, VoiceXML [8] is a widely-adopted
tool for specifying the flow of dialog in voice interactions.
Behavior Markup Language (BML) [9] is used to define the
behaviors of intelligent agents and the related Functional
Markup Language (FML) [10] is used to define what an
agent wants to achieve, in terms of actions, goals, and plans.
Another markup language, Perception Markup Language
(PML) [11] has been defined for representing perceived non-
verbal behaviors. Other markup languages include MIML
(Multimodal Interaction Markup Language) [12], a dialog

123

www.dlna.org

J Multimodal User Interfaces (2013) 7:171–182 173

description language for dialogs between humans and inter-
active systems.

Depending on the interaction and modalities of interest,
these languages or a combination of these languages could
be used to define the behavior of an MMI Architecture Inter-
action Manager (see Sect. 5.2 below for a discussion of the
Interaction Manager).

4 Components of a multimodal system

At a high level, multimodal systems are typically based on
architectures that include the following components:

1. Modality components for processing any of an open-
ended set of possible specific input modalities such as
speech, GUI input (pointing device), typed input, cam-
era input and electronic ink

2. Fusion components for integrating inputs from multiple
modalities that represent a unified user intent; for exam-
ple speech combined with a pointing gesture

3. Dialog or interaction managers that

(a) use the fused multimodal inputs to determine the
user’s intent

(b) take into account the user’s intent, the interaction con-
text, the task to be performed and any relevant system
information, determine the next step in the interaction

4. Fission components that determine how to best present
the interaction manager’s response to the user—for exam-
ple, whether to speak, display typed input, or display
graphics

5. Presentation components that present the system’s output
to the user using a combination of graphics, text, audio,
or other forms of output as appropriate to the application

5 Components of the standard

The W3C Multimodal Architecture focuses on Modality
Components (MC’s) for input and presentation and on the
Interaction Manager (IM) for coordinating the MC’s and user
interaction. Fusion and fission components can be conceptu-
alized as independent MC’s or as part of the IM. The MC’s
and the IM are together referred to as constituents.

Encapsulation is a central principle of the MMI Architec-
ture. That is, the internal workings of each constituent are not
visible to the other constituents. All communication is car-
ried out through standard messages, called lifecycle events,
which may carry application- or modality-specific informa-
tion as a payload. In addition, messages are only sent between
the IM and MC’s, never directly between MC’s. This prin-
ciple makes it possible for third-party modality components

to be developed independently of any one system. Figure 1
shows an example of the W3C MMI Architecture with an IM
and multiple MC’s. It is unlikely that any one system would
include all of the MC’s shown, but they are included to show
the variety of possible MC’s in a multimodal system.

5.1 Modality components

MC’s commonly encapsulate modality-specific input capa-
bilities such as speech recognition or handwriting recog-
nition, but they actually can have broader functions. For
example, MC’s can encapsulate multiple functionalities, but
present themselves to the IM as a single component. This
is called a complex modality component (discussed in more
detail below), and is useful for tightly coupled functionalities
such as coordinating text to speech output with an avatar’s
facial expressions and lip movements. In many cases an input
can also require processing by multiple MC’s before the
user’s intent is fully determined. For example, a speech recog-
nition MC could send its results back to the IM, which then
might in turn send the speech results to a natural language
processing engine. If, as is often the case, speech recognition
and natural language processing are tightly integrated, the
speech recognition and natural language functionalities can
be combined into a complex MC which communicates with
the IM as a single component.

MC’s in the MMI Architecture can also encapsulate
broader functionalities than intentional user inputs such as
speech and GUI actions. An example is the biometric MC’s in
Fig. 1. Identifying users through biometric properties for the
purposes of security and/or personalization is a natural part
of many multimodal applications. For this reason, it makes
sense to include biometrics such as speaker verification or
face recognition components in multimodal systems as MC’s.
Sensor inputs such as medical and environmental sensors and
geolocation devices are also possible components of multi-
modal applications, and fit well into the MMI Architecture
as MC’s. Finally, devices like TV’s and home appliances can
also function as MC’s in multimodal applications. Interesting
applications such as an integrated “home interface” could be
supported this way, enabling users to do things like ask for
the current temperature, have it displayed on the TV they’re
watching, and then seamlessly ask the home interface to raise
or lower the temperature. A similar application would be a
unified “car interface” that would let users control the audio
system, interact with the GPS, and find out how long it will
be before they need to buy gas by interacting with a single
IM.

5.2 Interaction manager

The IM controls the interaction between the user and the
system by taking into account the user’s input, the task to be

123

174 J Multimodal User Interfaces (2013) 7:171–182

Fig. 1 The IM and MC’s in the
W3C multimodal architecture

performed, the context of the interaction, and other data as
needed. The MMI Architecture does not specify any partic-
ular standard for implementing the IM, but an example of a
standard language that would be suitable for an IM is State
Chart Extensible Markup Language (SCXML) [7]. Exam-
ples of other options for implementing an IM are Javascript
for an IM running in a web browser or a suitable server-side
programming language for server-based IM’s.

5.3 Runtime framework

The Runtime Framework refers to all the infrastructure ser-
vices that are necessary for successful execution of a mul-
timodal application. For example, these include starting
modality components, handling communication, and log-
ging. The standard leaves the specifics of these functions to
be defined in a platform-specific way, although the standard
discusses an Event Transport Layer which is part of the Run-
time Framework. The Event Transport Layer includes one or
more transport mechanisms linking the IM to the various
MC’s. Various protocols can be used for event transport, but
the specification does place two requirements on the Event
Transport Layer—the events are required to be delivered reli-
ably and they are required to be delivered in the order they
were generated. Appendix F of the specification [6] describes
an Event Transport Layer based on HTTP in detail. The Run-
time Framework is also where functions such as discovery
and registration of modality components occur, as discussed
in [13].

5.4 Standard messages: the lifecycle events

The messages defined in the MMI Architecture are referred
to as lifecycle events. Most of the lifecycle events come in
request/response pairs. Most commonly the requests are sent
from the IM to an MC and the responses are returned from
the MC to the IM, but the request for a new context is sent by
an MC and a request for status can be sent in either direction.

The events generally fall into two categories. The first
is generic control events, such as starting and stopping
components and the corresponding acknowledgement of
these requests. This category includes the events New-
ContextRequest/Response, StartRequest/Response, Prepare
Request/Response, CancelRequest/Response, PauseRequest
/Response, Resume Request/Response, and StatusRequest
/Response.

The second category includes modality- or application-
specific events that are used to set parameters in a component
and report processing results. These are the ExtensionNo-
tification and DoneNotification events. The ExtensionNo-
tification and DoneNotification events are the only events
that convey user inputs to the IM. Clearly, the semantics of
user inputs can be very complex, especially in the case of
language input modalities such as speech or text input. In
order to provide a standard representation of the semantics
of user inputs, a companion standard to the MMI Archi-
tecture has been developed, Extensible Multimodal Annota-
tion (EMMA) [14]. EMMA defines a modality-independent
framework for representing the application-specific seman-

123

J Multimodal User Interfaces (2013) 7:171–182 175

Table 1 Lifecycle events in the MMI architecture

Name Function

Paired messages initiated by an MC

NewContextRequest Request to the IM to initiate a new context of interaction

NewContextResponse Response from the IM with a new context ID

Paired messages initiated by an IM

PrepareRequest Request to the MC to prepare to run, possibly including a URL pointing
to markup, such as a grammar or VoiceXML document that will be
required when the StartRequest is issued. This allows the MC to fetch
and compile markup, if necessary

PrepareResponse Response from the MC to a PrepareRequest. The MC is not required to
take any action other than acknowledging that it has received the Prepar-
eRequest, although it would be desirable to send back error information
if there are problems preparing

StartRequest Request to the MC to start processing.

StartResponse Response from the MC to the IM to acknowledge the StartRequest. The
MC is required to send this event in response to a StartRequest

CancelRequest The CancelRequest message is sent to stop processing in the MC. In
this case, the MC must stop processing and return a CancelResponse

CancelResponse Response from the MC to the IM to acknowledge the CancelRequest.

PauseRequest A PauseRequest is a request to the MC to pause processing.

PauseResponse MC’s return a PauseResponse once they have paused, or if they are
unable to pause, the message is sent when they determine that they will
be unable to pause

ResumeRequest ResumeRequest is a request to resume processing that was paused by a
previous PauseRequest. It can only be sent to a currently paused context

ResumeResponse MC’s return a ResumeResponse after receiving a ResumeRequest. The
Status field is “Success” if the implementation has succeeded in resum-
ing processing and “Failure” otherwise

ClearContextRequest A ClearContextRequest may be sent to an MC to indicate that the spec-
ified context is no longer active and that any resources associated with
it may be freed. MC’s are not required to take any particular action in
response to this command, but are required to return a ClearContextRe-
sponse

ClearContextResponse A response from the MC acknowledging the ClearContextRequest. Note
that once the IM has sent a ClearContextRequest to an MC, no more
events can be sent for that context

Paired messages that can be sent in either direction

StatusRequest The StatusRequest message and the corresponding StatusResponse pro-
vide keep-alive functionality. This message can be sent by either the IM
or an MC

StatusResponse Response to the StatusRequest message. If the request specifies a context
which is unknown to the MC, the MC’s behavior is undefined

Unpaired Messages

DoneNotification Sent from an MC to the IM to indicate completion of a task; contains
any data from the MC action, such as an EMMA message representing
user input. (EMMA is described in Sect. 8)

ExtensionNotification Sent in either direction to convey application-specific data, typically sent
from the MC to convey user inputs in EMMA format or report interme-
diate statuses. Typically sent from the IM to set modality-specific para-
meters such as speech recognition grammars, timeouts or confidence
thresholds. This is the point of extensibility for the lifecycle events. If
no other lifecycle event is suitable for a message between the IM and
MC’s, this message is used

tics of user inputs as well as additional metadata about the
inputs, and is discussed in more detail in Sect. 8 below.

Table 1 summarizes the lifecycle events and their func-
tions.

Although lifecycle events do not have to be represented
in a specific format, the specification describes an XML [15]
format. If the events are represented in XML, the specifica-
tion defines a required XML syntax in Appendix C.

123

176 J Multimodal User Interfaces (2013) 7:171–182

5.5 Fields of the lifecycle events

The lifecycle events make use of a set of common fields
used by most events, as well as event-specific fields that are
required by certain events.

Fields Common to Most Events

5.5.1 Context

A URI that is unique for the lifetime of the system. The Con-
text field identifies the interaction. All events relating to a
given interaction use the same Context URI. Events contain-
ing a different Context URI are interpreted as part of other,
unrelated, interactions. Unlike all other events, the NewCon-
textRequest event does not contain a Context field, since it
is sent before the context is initiated. The Context field is
optional for the StatusRequest/StatusResponse event. If it is
absent the request is interpreted as a request for the status of
the underlying server rather than a request for the status of a
particular context.

5.5.2 Source

A URI that is the address of the sender of the event. The
recipient of the event has to be able to send an event back
to the sender by using this value as the “Target” field of a
message.

5.5.3 Target

The Target is a URI that represents the address to which the
event will be delivered.

5.5.4 RequestID

The requestID is a unique identifier for a Request/Response
pair. Most lifecycle events come in Request/Response pairs
that share a common RequestID. For any such pair, the
RequestID in the Response event is required to match the
RequestID in the request event. The RequestID for such a
pair will be unique within the given Context.

5.5.5 Status

An enumeration of “Success” and “Failure”. The Response
event of a Request/Response pair uses this field to report
whether it succeeded in carrying out the request. Details are
provided in the StatusInfo field (below).

5.5.6 StatusInfo

This field is available in the Response events of a Request/
Response pair for use in providing additional, application-

specific, status information. The StatusInfo field is used for
providing detailed error information.

5.5.7 Data

This field contains arbitrary data. When a DoneNotification
or ExtensionNotification event containing user inputs is sent
from an MC to the IM, the data field contains the user input,
represented in EMMA if appropriate.

Event-specific Fields

5.5.8 Content

The PrepareRequest and StartRequest events include a Con-
tent field which contains inline content which the MC will
run. An example of inline content would be text marked up
with Speech Synthesis Markup Language (SSML) [16] for
rendering by a text-to-speech engine.

5.5.9 ContentURL

The PrepareRequest and StartRequest events include a Con-
tentURL field which contains a pointer to content which the
MC will run. An example of content that would be naturally
referred to with a ContentURL would be a relatively large
document that would be unwieldy if included inline in the
lifecycle event, such as a large speech recognition grammar.

Note that Content and ContentURL are mutually exclu-
sive. If both Content and ContentURL are empty the compo-
nent reverts to its default behavior. This is appropriate for a
non-scriptable component, such as a camera. Sending a cam-
era a StartRequest message would result in the camera taking
a picture, no scripting would be necessary.

5.5.10 Status

The StatusResponse message includes a Status field, which
is different from the Status field common to all Response
messages. While the common Status field is used by an MC
to report whether it succeeded in carrying out a Request,
and can take on the values of either “Success” or “Failure”,
the Status field of StatusResponse refers to the status of the
Context or of the constituent. This field can take on the values
“Alive” or “Dead”. The meaning of these values depends on
whether the “context” parameter is present. Specifically:

1. If the Context field is present

(a) If the specified context is still active and able to han-
dle additional lifecycle events, the sender of the Sta-
tusResponse message sets the value of this field to
“Alive”.

123

J Multimodal User Interfaces (2013) 7:171–182 177

(b) If the context has terminated or is otherwise unable
to process new lifecycle events, the sender sets the
Status to “Dead”.

2. If the Context field is not present, the Status refers to the
underlying server.

(a) If the sender is able to create new contexts, it sets the
Status to “Alive”,

(b) Otherwise, the Status is set to “Dead”.

6 Simple, complex, and nested components

Although all MC’s are black boxes from the point of view
of the rest of the system, based on their internal organization
they can be classified into one of three categories; simple,
complex or nested. A simple modality component provides
a single functionality and does not have any subcomponents
that communicate among themselves. For example, audio
capture, handwriting recognition, speech recognition, or face
identification from an image would all be examples of simple
modality components.

A complex MC includes functionality from one or more
simple components. For example an HTML page might
include functionality for capturing typed input as well as spo-
ken input. Implemented as a complex MC, the HTML page
would send messages to the IM for each user input, whether
spoken or written. The IM would send lifecycle events to the
HTML page appropriate for either spoken or written input.
EMMA results sent back to the IM would contain informa-
tion about the medium and mode of the input, so that the IM
can distinguish between spoken and written inputs.

A nested MC is similar to a complex MC in that it includes
internal MC’s. In addition, a nested MC essentially contains
its own internal IM that manages interaction among the inter-
nal MC’s. It can be thought of as an instantiation of the MMI
Architecture that presents itself as an MC to a higher-level
IM. An example of a nested MC would be a VoiceXML com-
ponent [8,17] used to provide voice services such as speech
recognition and text to speech while also handling dialog
management for form-filling tasks with its internal IM. These
three types of MC’s are discussed in detail in Appendix H of
the specification.

7 Defining modality components

Because the standard MMI Architecture is modality-
independent, many details of how a particular modality
component would be implemented are not defined by the
architecture.

This raises the question of how developers can know how
to use third-party components. Some components, such as

speech recognition, can have fairly complex API’s which
are very modality-specific. If there is an existing API for
a type of component, the developer can use that API and
map the modality-specific API calls to the MMI Architecture
lifecycle events1. In some cases there are also standard API’s
that can be used. For example, there are W3C standard API’s
for geolocation [18] and camera [19] information. There is no
standard API for speech recognition, although several have
been proposed, for example, [20–23] and more recently [24].
If there is not yet a standard API for the modality component,
it becomes especially important for the developer to describe
the API for other users of the component.

Most notably, the need for description applies to the
ExtensionNotification event where modality-specific and
application-specific information is conveyed. Suggestions
for the information to be included in defining modality com-
ponents is discussed in a W3C Note on “Best practices for
creating MMI Modality Components” [25].

This note includes the following eight guidelines for defin-
ing a modality component for use within the MMI Architec-
ture.

Guideline 1: Each modality component must implement
all of the MMI life-cycle events. This is a basic require-
ment for the component to be MMI Architecture-compliant.
Note that not all events make sense for all components. For
example, a speech recognition component may not be able to
pause once it has started processing. Nevertheless an MMI
Architecture-compliant speech recognition MC must be able
to respond to a PauseRequest event with a PauseResponse
event. In this case, the PauseResponse event might contain a
status message that informs the IM that it cannot pause.

Guideline 2: The definition of the component must iden-
tify other functions of the modality component that are
relevant to the interaction manager. That includes any func-
tions that can be controlled externally, such as starting, stop-
ping, pausing and setting parameters. As with any API, func-
tionality that is not exposed externally does not need to
be described. Functionality that requires events outside of
the standard events must be defined with ExtensionNotifi-
cation events. Most commonly, this additional functionality
involves ExtensionNotification events that are sent from the
IM to set parameters within the MC and ExtensionNotifica-
tion events that are sent from the MC to the IM to return
results or report intermediate statuses of the processing.

Guideline 3: If the component handles media for either
capture or processing, acceptable media formats must be
specified. For example, audio formats that a speech recog-
nizer accepts must be specified. A handwriting recogni-
tion component could specify, for example, that the input
it expects must be in the form of the InkML standard [26].

1 For example, the StartRequest event might be mapped to a “startLis-
tening” method used by a modality-specific API.

123

178 J Multimodal User Interfaces (2013) 7:171–182

Guideline 4: Specify protocols for use between the com-
ponent and the IM (e.g., SIP or HTTP) in the Event Trans-
port Layer. The architecture allows events to be transmitted
between the IM and the MC using any protocol that guaran-
tees reliable delivery in the order the events are sent. Con-
sequently, in defining a specific modality component, the
developer must specify which protocols can be used with the
component. HTTP is one common example, although other
protocols are possible. Alternatives include Session Initia-
tion Protocol (SIP), Server-sent Events [27], Web Sockets
[28] or local sockets over a LAN, for example.

Guideline 5: Specify supported human languages, e.g.,
English, German, Chinese and locale, if relevant. Some
modality components are language-specific. These include
speech recognition, text to speech, handwriting recognition
and natural language processing. Other components, such as
video capture, are not language-specific. If the component is
language-specific, the supported languages must be listed.

Guideline 6: Specify supporting languages required by
the component, if any. Some components make use of markup
languages. For example, a TTS component might use SSML
to describe the pronunciation of text sent to the component.
Similarly, grammars used by a speech recognition component
might be defined using the Speech Recognition Grammar
Specification (SRGS) [29] and the Semantic Interpretation
for Speech Recognition specification [30].

Guideline 7: MC’s sending data to the IM must use the
EMMA format where appropriate. The EMMA format was
designed to represent user inputs, particularly user inputs
with complex semantics. MC’s that generate representa-
tions with complex semantics include speech recognition,
handwriting recognition, or natural language processing, for
example. Simpler inputs, such as mouse clicks or selection of
a choice with radio buttons can be represented with EMMA,
(especially in applications where spoken and mouse input
might be integrated) but EMMA is not as important for sim-
ple inputs.

Guideline 8: Specify error codes and their meanings.
Error messages specific to the component should be doc-
umented as well. Standard errors, such as HTTP errors or
XML errors, do not need to be specified in the component
definition.

Examples of descriptions of three components (graphical
and speech recognition MC’s and an SCXML IM) can be
found in [31].

8 Representing and communicating the semantics
of user input (EMMA)

As briefly mentioned in Sect. 5.4 above, the EMMA spec-
ification was developed to represent the semantics of user
inputs. EMMA defines a modality-independent framework

Speech
<emma:interpretation medium=“acoustic” mode=“voice” id="int1">
 <origin>Boston</origin>
 <destination>Denver</destination>
 <date>11282012</date>
 </emma:interpretation>
GUI
<emma:interpretation medium=“tactile” mode=“gui” id="int1">
 <origin>Boston</origin>
 <destination>Denver</destination>
 <date>112812</date>
 </emma:interpretation>
Handwriting
<emma:interpretation medium=“tactile” mode=“ink” id="int1">
 <origin>Boston</origin>
 <destination>Denver</destination>
 <date>11282012</date>
 </emma:interpretation>

Fig. 2 Partial EMMA representations for speech, GUI, and typed input
for “I want to go from Boston to Denver on November 28, 2012

for representing the application-specific semantics of user
inputs as well as additional metadata about the inputs.
Because EMMA is modality-independent, the meaning of
an input is represented in the same way regardless of the
original input modality. Figure 2 shows partial EMMA rep-
resentations for the semantics of “I want to go from Boston to
Denver on November 28, 2012”. The semantics is the same,
whether the input was spoken, entered with a GUI interface,
or handwritten, so the application-specific semantics con-
tained in the <emma:interpretation> element is the same.
Only the medium and the mode (as highlighted) differ to
reflect the different modalities of input.

In addition, metadata such as confidence, timestamps and
alternative interpretations is also represented in the same way,
regardless of the input modality. When an MC represents its
results in EMMA, the DoneNotification or the Extension-
Notification lifecycle event Data fields contain the EMMA
results which are sent to the IM. An example of a DoneNoti-
fication event with an EMMA payload can be seen in Fig. 4.

9 Example: a personal assistant application

Figure 3 shows the IM and several MC’s for a personal assis-
tant application. This is a common type of spoken dialog
application that provides assistance to the user in performing
such tasks as making phone calls, sending text messages and
sending email. It can also provide useful information such as
news, weather, and sports scores. This example is essentially
a command and control application where the user makes a
request and the system carries it out. Dotted lines within the
IM show state transitions through the interaction. Solid lines
represent lifecycle events between the IM and the MC’s. In
order to simplify the diagram, not all lifecycle events involved
in an interaction are explicitly shown.

123

J Multimodal User Interfaces (2013) 7:171–182 179

Fig. 3 IM and MC’s for a
personal assistant application

The IM is shown as a state chart that begins by identi-
fying the user. The IM may also be responsible for starting
the MC’s that collect the user’s input (speech recognition,
typing, handwriting, and touch events), although this is not
shown in the diagram. The IM identifies the user by starting
a speaker identification MC with a StartRequest event. The
speaker identification component responds with a StartRe-
sponse event. If the MC is unable to start, it can send back
error messages or other status information in the StatusRe-
sponse, but if the MC is able to start, it begins its opera-
tion. When the MC is finished with its operation, it returns
the data (in this case an identification of a speaker) with a
DoneNotification event. In this example the MC responsible
for identifying the user is a speaker identification compo-
nent, but identification could just as well be done through
face recognition from a camera or through the use of a fin-
gerprint reader.

Figure 4 shows the full DoneNotification event in XML
format from the speaker identification MC, including the
EMMA data. The lifecycle event information includes
the source component, the target component, the context ID,
the requestID, and the status, as described in Sect. 5.4. The
EMMA result of the identification process is included in
the data field. The identification component has identified
the user as “Mary Smith” with a confidence of .8. After the
user has been identified, the application waits for requests
from the user.

At this point the user input MC’s are all running, and
like the IM, are waiting for events from the user. When the
user provides an input through speech, typing, handwriting
or tapping on the touchscreen, the MC that processes the
action sends an ExtensionNotification event to the IM with
the user’s input represented in EMMA. For example the user

<mmi:mmi xmlns:mmi="http://www.w3.org/2008/04/mmi-arch"
version="1.0" xmlns:emma="http://www.w3.org/2003/04/emma">
<mmi:doneNotification mmi:source="someURI"
mmi:target="someOtherURI" mmi:context="someURI"
mmi:status="success" mmi:requestID="request-1" >

<mmi:data>
<emma:emma version="1.0">
 <emma:interpretation
 id=“int1”
 emma:confidence=".80”
 emma:medium=“acoustic"
 emma:mode=“voice"
 emma:verbal="false"
 emma:function="identification">
 <person>12345</person>
 <name>Mary Smith</name>
 </emma:interpretation>
</emma:emma>
</mmi:data>
</mmi:doneNotification>

</mmi:mmi>

Fig. 4 DoneNotification event from a speaker identification MC

might say something like “What’s the weather going to be
like today?” and the speech recognition MC would send the
message to the IM with that meaning2. The IM analyzes the
request and determines how it should be serviced. In this case
it invokes a weather component to find out what the weather
will be like, presents the information to the user, and returns
to the wait state, where it awaits a new input from the user.

2 In this example, we assume that the speech recognition component
provides an interpretation of the input, in addition to the literal tokens of
input, to allow for the user to express this request in other words, such
as “Tell me about today’s weather”, or even “Will I need my umbrella?”
However, the architecture supports interpreting the user’s input with a
separate natural language understanding MC.

123

180 J Multimodal User Interfaces (2013) 7:171–182

10 Related issues and future directions

There are several areas where it would be useful to extend
the MMI Architecture to either provide additional important
functionality, or to improve interoperability among compo-
nents developed by different vendors.

10.1 Encapsulation and modality interaction

Although encapsulation is essential for making it possible to
easily add new modality functionality by incorporating com-
ponents from different vendors into a system, it does make
close interaction between related modalities more difficult,
especially when low latency is required. One good exam-
ple of this is coordination of text-to-speech (TTS) output
with graphical displays of human faces, where timing must
be very precise so that the speech and visual components
stay synchronized. The architecture provides for this case
with the concepts of nested and complex components that
allow closely related functionalities to be contained in a sin-
gle component; however, as nested and complex components
include more and more functionalities, we begin to lose the
advantages of encapsulation and modularity.

10.2 Communication protocols

The MMI Architecture does not define a required commu-
nications prototcol for transporting lifecycle events between
MC’s and IM’s. This enables it to be flexible and usable
for many different use cases. For web applications, HTTP is
often appropriate, but newer protocols such as web sockets
[32,28] and server-sent events [27] can also be used.

Appendix F of the specification documents in detail how
HTTP can be used as a communications protocol for an
MMI Architecture application. One configuration of IM’s
and MC’s where HTTP would be suitable is where the IM
resides on a web server and the MC’s are HTTP clients.
Because only clients initiate exchanges in HTTP, in order to
support the MMI Architecture, the server has to have some
means of sending events to the client. One way to achieve
this is to have the client MC poll the server for events by
sending an HTTP/GET request to the server to obtain any
IM-initiated lifecycle events. Events can be sent from the
client to the server with normal HTTP/POST requests.

10.3 Discovery and registration

The MMI Architecture specification describes clearly how
system components behave and interact, but it does not
address how components are discovered and made available
in the first place. For this reason, the Multimodal Interac-
tion Working Group has begun a work item on discovery and
registration [13] which specifies methods for dynamically

combining and controlling modalities through the use of a
registry based on user-experience data and modality states.
Although many multimodal applications can be supported
by interaction through fixed, known components, there are
a number of use cases for dynamically configured systems
where discovery is very important. Some of these are dis-
cussed in detail in [13], including smart homes, personalized
in-car experience, multiple users interacting in public spaces,
and interaction with health sensors.

10.4 Media

A number of MC’s make use of media such as audio, images,
or video. The MMI Architecture does not define how a com-
ponent obtains media or what media formats can be used.
Audio data, for example, could be sent to a server using mul-
tipart form data sent by HTTP/Post. Session Initiation Pro-
tocol (SIP) and Real Time Streaming Protocol (RTSP) are
other options. Web Real-Time Communications (WebRTC)
[33] is an emerging W3C standard that will also be useful for
transmitting media as it matures.

10.5 Streaming

Many user inputs can be sent in discrete messages that con-
tain the entire input, for example, when the mouse is clicked
or the “submit” button is pressed the complete user input is
conveyed in that message. On the other hand, some inputs
are continuous and can be sent for processing while the input
is being collected. For example, a speech input can be sent
as a complete audio file after the user has finished speaking
or it can be sent continuously while speech is occurring. In
most cases the user experience is improved if a continuous
input is streamed because latency is reduced. In addition,
for applications like dictation, the user experience is also
improved if the user can see the speech recognition results
incrementally, while he or she is still speaking. Intermedi-
ate results of processing streams can be returned as multi-
ple incremental ExtensionNotification events with EMMA
data fields. Although there is no standard yet for incremen-
tal EMMA results, a proposal is described in [34], using the
new attributes “emma:streamId” which identifies a stream,
“emma:streamSeqNr” indicating the current input’s posi-
tion in a stream, and “emma:streamProgress” to indicate the
beginning, middle and end of streams.

10.6 Implementations and evaluation

As part of the W3C standardization process, the MMI
Architecture standard was implemented by five organiza-
tions which submitted formal implementation reports. The
implementation reports are summarized in [35]. As exam-
ples of the kinds of applications that have been built on MMI

123

J Multimodal User Interfaces (2013) 7:171–182 181

Architecture implementations, Openstream has implemented
a number of types of applications, including financial ser-
vices, healthcare, and mobile workforce solutions [36]. A
research application of multimodal services for multimedia
is described in [37].

Outside of the implementations included in the formal
report, the specification has also been implemented by others,
for example [38]. An evaluation of the ability for implemen-
tations of multimodal components from different vendors to
interoperate was performed by a group consisting of repre-
sentatives from Openstream, France Telecom, and Deutsche
Telekom [31], who were able to successfully demonstrate
interoperability between a voice MC developed by Open-
stream, a graphical MC developed by Deutsche Telekom,
and an IM developed by France Telecom. The test applica-
tion was a multimodal math quiz.

Feedback on the standard is always welcome on the Mul-
timodal Interaction Working Group’s mailing list, multi-
modal@w3.org.

11 Summary

The W3C Multimodal Architecture and Interfaces specifica-
tion, along with the Extensible Multimodal Annotation spec-
ification, provides a generic, flexible and extensible standard
for integrating a broad variety of system components into
multimodal applications. Whether the application runs on a
traditional browser, on a mobile device, or in a home or a car,
the multimodal architecture provides the infrastructure for
a wide variety of innovative applications, accessed through
natural, multimodal interfaces.

Acknowledgments The W3C Multimodal Architecture and Inter-
faces and EMMA specifications represent the work of many individuals
who have participated in the Multimodal Interaction Working Group. In
particular, I would like to acknowledge the work of the following authors
of the MMI Architecture and EMMA specifications and related docu-
ments. Work of the following authors Kazuyuki Ashimura, Jim Barnett,
Paolo Baggia, Michael Bodell, Daniel C. Burnett, Jerry Carter, Michael
Johnston, Nagesh Kharidi, Ingmar Kliche, Jim Larson, Raj Tumuluri,
Brad Porter, Dave Raggett, T. V. Raman, B. Helena Rodriguez, Muthu-
selvam Selvaraj, Andrew Wahbe, Piotr Wiechno, Moshe Yudkowsky.
Special thanks go to Kazuyuki Ashimura, the W3C Team Contact for the
Multimodal Interaction Working Group, for his guidance through the
W3C process and to Jim Barnett, the Editor-in-Chief of the Multimodal
Architecture and Interfaces specification.

References

1. Turing A (1950) Computing machinery and intelligence. Mind
59:433–460

2. Johnston M, Bangalore S, Vasireddy G, Stent A, Ehlen P, Walker
M, Whittaker S, Maloor P (2001) MATCH: an architecture for
multimodal dialogue systems. In: Proceedings of the 40th annual
meeting on association for computational linguistics. Association
for, Computational Linguistics, Philadelphia, pp 376–383

3. Bayer S (2005) Building a standards and research community with
the galaxy communicator software infrastructure. In: Dahl DA (ed)
Practical spoken dialog systems, vol 26. TextSpeech and Language
Technology. Kluwer Academic Publishers, Dordrecht, pp 166–196

4. Oviatt SL (1999) Ten myths of multimodal interaction. Commun
ACM 42:74–81

5. Seneff S, Lau R, Polifroni J (1999) Organization, communication,
and control in the Galaxy-II Conversational System. In: Proceed-
ings of Eurospeech 1999, Budapest

6. Barnett J, Bodell M, Dahl DA, Kliche I, Larson J, Porter B, Raggett
D, Raman TV, Rodriguez BH, Selvaraj M, Tumuluri R, Wahbe A,
Wiechno P, Yudkowsky M (2012) Multimodal Architecture and
Interfaces. World Wide Web Consortium. http://www.w3.org/TR/
mmi-arch/. Accessed November 20 2012

7. Barnett J, Akolkar R, Auburn RJ, Bodell M, Burnett DC, Carter J,
McGlashan S, Lager T, Helbing M, Hosn R, Raman TV, Reifen-
rath K, Rosenthal Na (2012) State chart XML (SCXML): state
machine notation for control abstraction. World Wide Web Con-
sortium. http://www.w3.org/TR/scxml/. Accessed November 20
2012

8. McGlashan S, Burnett DC, Carter J, Danielsen P, Ferrans J, Hunt
A, Lucas B, Porter B, Rehor K, Tryphonas S (2004) Voice Exten-
sible Markup Language (VoiceXML 2.0). W3C. http://www.w3.
org/TR/voicexml20/. Accessed November 9 2012

9. Kopp S, Krenn B, Marsella S, Marshall A, Pelachaud C, Pirker H,
Thórisson KR, Vilhjálmsson H (2006) Towards a common frame-
work for multimodal generation: The behavior markup language.
In: International conference on intelligent virtual agents, Marina
del Rey, California

10. Heylen D, Kopp S, Marsella S, Pelachaud C, Vilhjalmsson H (2008)
The next step towards a functional markup language. Paper pre-
sented at the Proceeding of Intelligent Virtual Agents (IVA 2008),
Tokyo

11. Scherer S, Marsella S, Stratou G, Xu Y, Morbini F, Egan A,
Rizzo A, Morency L-P (2012) Perception markup language:
towards a standardized representation of perceived nonverbal
behaviors. In: Nakano Y, Neff M, Paiva A, Walker M (eds)
Intelligent virtual agents, vol 7502. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp 455–463. doi:10.1007/
978-3-642-33197-8_47

12. Araki M, Tachibana K (2006) Multimodal dialog description lan-
guage for Rapid system development. In: 7th SIGdial workshop on
discourse and dialogue, Sydney

13. Rodriguez BH, Wiechno P, Dahl DA, Ashimura K, Tumuluri R
(2012) Registration & discovery of multimodal modality compo-
nents in multimodal systems: use cases and requirements. World
Wide Web Consortium. http://www.w3.org/TR/mmi-discovery/.
Accessed November 26 2012

14. Johnston M, Baggia P, Burnett D, Carter J, Dahl DA, McCobb
G, Raggett D (2009) EMMA: extensible multimodal annotation
markup language. W3C. http://www.w3.org/TR/emma/. Accessed
November 9 2012

15. Bray T, Jean Paoli J, Sperberg-McQueen CM, Maler E, Yergeau
F (2004) Extensible Markup Language (XML) 1.0 (Third Edi-
tion). World Wide Web Consortium. http://www.w3.org/TR/2004/
REC-xml-20040204/. Accessed November 9 2012

16. Burnett DC, Walker MR, Hunt A (2004) W3C speech syn-
thesis markup language (SSML). W3C. http://www.w3.org/TR/
speech-synthesis/

17. Oshry M, Auburn RJ, Baggia P, Bodell M, Burke D, Burnett DC,
Candell E, Carter J, McGlashan S, Lee A, Porter B, Rehor K (2007)
Voice extensible markup language (VoiceXML) 2.1. http://www.
w3.org/TR/voicexml21/. Accessed November 9 2012

18. Popescu A (2012) Geolocation API specification. World Wide Web
Consortium. http://www.w3.org/TR/geolocation-API/. Accessed
November 27 2012

123

http://www.w3.org/TR/mmi-arch/
http://www.w3.org/TR/mmi-arch/
http://www.w3.org/TR/scxml/
http://www.w3.org/TR/voicexml20/
http://www.w3.org/TR/voicexml20/
http://dx.doi.org/10.1007/978-3-642-33197-8_47
http://dx.doi.org/10.1007/978-3-642-33197-8_47
http://www.w3.org/TR/mmi-discovery/
http://www.w3.org/TR/emma/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/voicexml21/
http://www.w3.org/TR/voicexml21/
http://www.w3.org/TR/geolocation-API/

182 J Multimodal User Interfaces (2013) 7:171–182

19. Kostiainen A, Oksanen I, Hazaël-Massieux D (2012) HTML media
capture. World Wide Web Consortium. http://www.w3.org/TR/
capture-api/. Accessed November 27 2012

20. Microsoft (2007) Microsoft speech API 5.3 (SAPI). http://msdn2.
microsoft.com/en-us/library/ms723627.aspx

21. Java Speech API (1998) Sun microsystems. http://java.sun.com/
products/java-media/speech/

22. SALT Forum (2002) Speech application language tags (SALT).
http://www.saltforum.org

23. IBM (2003) X+V 1.1. http://www-3.ibm.com/software/pervasive/
multimodal/x+v/11/spec.htm

24. Bodell M, Bringert B, Brown R, Burnett DC, Dahl DA,
Druta D, Ehlen P, Hemphill C, Johnston M, Pettay O, Sam-
path S, Schröder M, Shires G, Tumuluri R, Young M (2011)
HTML speech incubator group final report. World Wide
Web Consortium. http://www.w3.org/2005/Incubator/htmlspeech/
XGR-htmlspeech-20111206/ . Accessed November 27 2012

25. Kliche I, Dahl DA, Larson JA, Rodriguez BH, Selvaraj M
(2011) Best practices for creating MMI modality compo-
nents. World Wide Web Consortium. http://www.w3.org/TR/2011/
NOTE-mmi-mcbp-20110301/. Accessed November 20 2012

26. Watt SM, Underhill T, Chee Y-M, Franke K, Froumentin M,
Madhvanath S, Magaña J-A, Pakosz G, Russell G, Selvaraj M,
Seni G, Tremblay C, Yaeger L (2011) Ink markup language
(InkML). World Wide Web Consortium. http://www.w3.org/TR/
InkML. Accessed November 27 2012

27. Hickson I (2012) Server-sent Events. World Wide Web Consor-
tium. http://www.w3.org/TR/eventsource/. Accessed November
20 2012

28. Hickson I (2012) The WebSocket API. The World Wide Web Con-
sortium. http://www.w3.org/TR/websockets/. Accessed Novem-
ber 20 2012

29. Hunt A, McGlashan S (2004) W3C speech recognition
grammar specification (SRGS). W3C. http://www.w3.org/TR/
speech-grammar/. Accessed November 9 2012

30. Van Tichelen L, Burke D (2007) Semantic Interpreta-
tion for Speech Recognition. W3C. http://www.w3.org/TR/
semantic-interpretation/. Accessed November 9 2012

31. Kliche I, Kharidi N, Wiechno P (2012) MMI interoperabil-
ity test report. World Wide Web Consortium. http://www.w3.
org/TR/2012/NOTE-mmi-interop-20120124/. Accessed Novem-
ber 27 2012

32. Fette I, Melnikov A (2011) RFC 6455: The WebSocket protocol.
Internet engineering task force. http://tools.ietf.org/html/rfc6455.
Accessed November 20 2012

33. Bergkvist A, Burnett DC, Jennings C, Narayanan A (2012)
WebRTC 1.0: real-time communication between browsers. World
Wide Web Consortium. http://www.w3.org/TR/webrtc/. Accessed
November 28 2012

34. Johnston M, Dahl DA, Kliche I, Baggia P, Burnett DC, Burkhardt
F, Ashimura K (2009) Use cases for possible future EMMA
features. World Wide Web Consortium. http://www.w3.org/TR/
emma-usecases/

35. Wiechno P, Kharidi N, Kliche I, Rodriguez BH, Schnelle-
Walka D, Dahl DA, Ashimura K (2012) Multimodal archi-
tecture and interfaces 1.0 implementation report. World
Wide Web Consortium. http://www.w3.org/2002/mmi/2012/
mmi-arch-ir/. Accessed November 27 2012

36. Openstream I (2013) Solutions. http://www.openstream.com/
solutions.htm. Accessed March 15 2013

37. Rodriguez BH, Moissianc J-C, Demeure I (2010) Multimodal
instantiation of assistance services. In: iiWAS ’10 proceedings of
the 12th international conference on information integration and
web-based applications & services Paris, ACM, France, pp 934–
937

38. Pous M, Ceccaroni L (2010) Multimodal interaction in distrib-
uted and ubiquitous computing. In: Fifth international conference
on internet and web applications and services (ICIW), Barcelona,
Spain

123

http://www.w3.org/TR/capture-api/
http://www.w3.org/TR/capture-api/
http://msdn2.microsoft.com/en-us/library/ms723627.aspx
http://msdn2.microsoft.com/en-us/library/ms723627.aspx
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://www.saltforum.org
http://www-3.ibm.com/software/pervasive/multimodal/x+v/11/spec.htm
http://www-3.ibm.com/software/pervasive/multimodal/x+v/11/spec.htm
http://www.w3.org/2005/Incubator/htmlspeech/XGR-htmlspeech-20111206/
http://www.w3.org/2005/Incubator/htmlspeech/XGR-htmlspeech-20111206/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/
http://www.w3.org/TR/2011/NOTE-mmi-mcbp-20110301/
http://www.w3.org/TR/InkML
http://www.w3.org/TR/InkML
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/semantic-interpretation/
http://www.w3.org/TR/semantic-interpretation/
http://www.w3.org/TR/2012/NOTE-mmi-interop-20120124/
http://www.w3.org/TR/2012/NOTE-mmi-interop-20120124/
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/emma-usecases/
http://www.w3.org/TR/emma-usecases/
http://www.w3.org/2002/mmi/2012/mmi-arch-ir/
http://www.w3.org/2002/mmi/2012/mmi-arch-ir/
http://www.openstream.com/solutions.htm
http://www.openstream.com/solutions.htm

	The W3C multimodal architecture and interfaces standard
	Abstract
	1 Overview
	2 Why a standard architecture?
	3 Related work
	3.1 Platforms
	3.2 Scripting and interaction definition languages

	4 Components of a multimodal system
	5 Components of the standard
	5.1 Modality components
	5.2 Interaction manager
	5.3 Runtime framework
	5.4 Standard messages: the lifecycle events
	5.5 Fields of the lifecycle events
	5.5.1 Context
	5.5.2 Source
	5.5.3 Target
	5.5.4 RequestID
	5.5.5 Status
	5.5.6 StatusInfo
	5.5.7 Data
	5.5.8 Content
	5.5.9 ContentURL
	5.5.10 Status

	6 Simple, complex, and nested components
	7 Defining modality components
	8 Representing and communicating the semantics of user input (EMMA)
	9 Example: a personal assistant application
	10 Related issues and future directions
	10.1 Encapsulation and modality interaction
	10.2 Communication protocols
	10.3 Discovery and registration
	10.4 Media
	10.5 Streaming
	10.6 Implementations and evaluation

	11 Summary
	Acknowledgments
	References

