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Abstract “Elckerlyc” is a BML Realizer for generating
multimodal verbal and nonverbal behavior for Virtual Hu-
mans (VHs). The main characteristics of Elckerlyc are that
(1) it is designed specifically for continuous interaction with
tight temporal coordination between the behavior of a VH
and its interaction partner; (2) it provides a mix between the
precise temporal and spatial control offered by procedural
animation and the physical realism of physical simulation;
and (3) it is designed to be highly modular and extensible,
implementing the architecture proposed in SAIBA.

Keywords BML Realizer - Virtual Humans - Embodied
conversational agents - Multimodal behavior generation -
Physical simulation - Procedural animation - Coordinated
interaction - Mixed dynamics

1 Introduction

As Virtual Humans (VHs) are finding their way into a broad
range of applications such as training and tutoring, virtual
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worlds, (serious) games and various genres of entertainment,
interest in flexible behavior markup languages and realizers
for the specification and real-time generation of high-quality
and subtle multimodal behavior has grown.

This paper presents “Elckerlyc”’, a BML Realizer for gen-
erating multimodal verbal and nonverbal behavior for VHs.!
A BML Realizer takes a specification of the intended be-
havior (speech, gaze, gestures, etc.) of a VH—written in the
Behavior Markup Language (BML) [9]—and executes this
behavior through the VH. Elckerlyc builds upon several ear-
lier projects with VHs that were carried out at the Human
Media Interaction lab. During those projects, the need for a
number of specific novel characteristics became clear, that
were not available in the animation engines that we used.
Using the experience gained in the earlier projects, we devel-
oped Elckerlyc from the ground up as a state of the art BML
Realizer. Four applications have been the most instrumental
in this respect: the virtual presenter, the interactive dancer,
the reactive virtual trainer, and the virtual orchestra conduc-
tor, all described in detail elsewhere [12]. We also built upon
our earlier work with behavior specification—most notably
MultiModalSync [20] and Gestyle [13].

1.1 Continuous interaction

Elckerlyc implements novel techniques to support animation
of real-time continuous interaction. The design of VHs often
focuses on the combination of speech with gestures in con-
versational settings. They tend to be developed using a turn-
based interaction paradigm in which the user and the system

l“Elckerlyc” is the protagonist of a Dutch morality play with the same
name, written at the end of the Middle Ages. The name translates as
“Everyman”; the protagonist represents every person, as they make the
journey towards the end of their life.
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take turns to talk. If the interaction capabilities of VHs are
to become more human-like and VHs are to function in so-
cial settings, their design should shift from this turn-based
paradigm to one of continuous interaction in which all part-
ners perceive each other, express themselves, and coordi-
nate their behavior to each other, continually and in parallel
[12, 17]. This requires the realizer to be capable of immedi-
ate adaptation—in content and in timing—to the dynamics
of the environment and the user. Especially the responsive
adaptation of the timing of behavior that is being realized
requires specific capabilities in Elckerlyc.

1.2 Naturalness and control

Elckerlyc makes use of motion captured motion, procedural
animation® and physical simulation to steer the movement
of the VH. Physical simulation provides physically realis-
tic motion and (physical) interaction with the environment.
In van Welbergen et al. [21] we argue that physical realism
is one of the aspects of natural motion. Physical controllers
can robustly retain or achieve desired movement states (joint
rotation, center of mass position, etc.) under the influence of
external perturbation. This robustness comes with a disad-
vantage: precise timing and limb positioning using physical
controllers is an open problem [21]. Procedural animation
offers precise timing and limb positioning and can make use
of many motion parameters. However, it is hard to incorpo-
rate movement details such as those found in recorded mo-
tion into the mathematical formulas that steer procedural an-
imation. Furthermore, to maintain physical realism, it has to
be explicitly authored in the procedural model for all possi-
ble parameter instances. Motion (capture) editing techniques
retain the naturalness and detail of recorded motion. How-
ever, these techniques produce natural motion only when the
modifications are small, and the amount of required record-
ings grows exponentially with the number of motion para-
meters used. We refer the reader to van Welbergen et al. [21]
for a thorough discussion on the naturalness and control of-
fered by different animation techniques.

Elckerlyc offers a mix between, on the one hand, the pre-
cise temporal and spatial control offered by kinematic an-
imation techniques such as motion capture, keyframe ani-
mation and procedural animation, and, on the other hand,
the physical realism of physical simulation. Elckerlyc can
steer a VH using kinematic animation and physical simula-
tion. These two paradigms can be used in parallel on dif-
ferent body parts, and the assignment of body parts to one
of the paradigms can be modified on the fly. We model the
force transference from body parts that are kinematically an-
imated to the physically simulated part of the body, increas-

2We adapt the animation classification of van Welbergen et al. [21],
procedural animation always refers to kinematic procedural motion in
this paper.
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ing the perceived physical realism and physical coherence
of the resulting motion. The possibility to specify anima-
tion both kinematically and physically also allows one to
select the paradigm that requires the least authoring effort
for each required animation. Physical interaction with the
environment, for instance balancing, are hard to author pro-
cedurally, but relatively easy to author using physical con-
trollers in a physically simulated environment. Gestures, on
the other hand, need to adhere to strict timing and spatial
constraints and typically make use of many control parame-
ters. They are therefore better defined procedurally [21].

1.3 Abstraction, modularity and extensibility

VH platforms such as Elckerlyc are used by a multi-disci-
plinary research community—consisting of computer scien-
tists, (computational) linguists, psychologists, and others—
interested in studying multimodal human behavior in
human—-human and human-machine interaction. Using quick
prototyping of gestures, facial expressions and body move-
ments, they build VHs that display human-like behavior.
This multi-disciplinary community has a very wide range
of requirements with respect to the level of abstraction pro-
vided by, e.g., Elckerlyc. Some users need access to its func-
tionality only in terms of the possible behaviors that the VH
can display, abstracting away from the details of underlying
animations. Others need to exercise detailed control over the
exact form of the behaviors that they want to study.

To achieve such a separation of concerns, the authors
have at a very early stage joined the SAIBA (Situation,
Agent, Intention, Behavior, Animation) initiative, and in
particular the development of the emerging Behavior
Markup Language standard (BML) [9, 23]. The SAIBA ini-
tiative provides, among other things, a view on the architec-
tural issues of building a fully functional VH with different
layers of abstraction. Within this context, BML is a markup
language that allows one to specify the different behaviors
that a VH should execute (such as speech, gestures, poses,
and gaze), together with their synchronization. Elckerlyc has
been designed as a highly modular and extensible system
that provides, at the same time, high level access to abstract
behaviors through the use of BML, and, for those who need
it, low level access to the exact execution, scheduling and
timing of the behaviors.

1.4 Example application

Below we describe our virtual conductor [14]. This exam-
ple will be referred to throughout the paper when explaining
aspects of the Elckerlyc BML realizer. Although it was orig-
inally built when Elckerlyc had not yet been developed, the
core elements of the virtual conductor have found their way
into Elckerlyc. Video material showing elements described
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in the running example can be found on the Elckerlyc show-

case?

Running Example 1 (The virtual conductor)

We have built the interactive virtual conductor, a VH that
can interactively conduct an ensemble of human musicians.
It chooses, schedules, and performs the right conducting
movements for a given piece of music. The right hand is al-
most always indicating the beat; the left hand is often loosely
hanging down, but is also used to make additional gestures
such as entrance cues. While conducting, audio processing
is used to perceive the music being performed. When the mu-
sicians go too fast or too slow, the conductor will change the
timing of its planned beat gestures to lead them back to the
right tempo. The conductor can add gestures on the fly while
playing (e.g. “play louder” when the music is too soft), or
stop the piece when the music is not good enough.

Of course, any VH needs to be able to plan multi-modal
behavior, and to extend or change the planned behavior
based on its perceptions. In conversations, people also sub-
tly adapt their timing to each other [12]. Currently, we are
developing a research application that will be very close to
the virtual conductor with respect to these timing changes:
the reactive virtual trainer. The virtual (fitness) trainer will
perform an exercise together with a human user in a cer-
tain tempo. Since the user will not necessarily perform the
exercise with robotic precision, the virtual trainer needs to
be able to adapt the timing of its behavior (the movements
of the exercise as well as accompanying explanations and
motivational utterances) to the timing with which the user
performs the exercise.

2 Related work
2.1 Continuous interaction

Continuous interaction needs flexible planning and behavior
synchronization and anticipation, not only to internal modal-
ities but also to the environment and participants in the inter-
action. Thorisson [17] describes an interactive cartoon char-
acter engaging in an information exchange with the user. In
their system, perception and behavior generation are parallel
and ongoing all the time, and behavior plans can be modified
last-moment in response to new perceptions and decisions.
Loyall et al. [10] describe a system that allows the author-
ing of highly interactive motion and demonstrate their ap-
proach in an interactive game with a personality-rich charac-
ter. The behavior of this character is even more tightly cou-
pled to changes in the environment (a bouncing ball, moving

3http://hmi.ewi.utwente.nl/showcases/Elckerlyc.

mouse, etc.), also with respect to the exact timing. Contin-
uous changes and the unpredictability of this environment
require flexible animation planning and execution processes.
This is achieved by animating their character using a flexible
mechanisms that can interrupt keyframe animation segments
and fluently concatenates them.

Like Loyall et al. [10] we offer synchronization to the
anticipation of user behavior (e.g. what is the tempo that
the musicians are playing in). This is not just relevant for
games or for a virtual conductor, but also necessary for gen-
eral conversational capabilities of a VH [12, 17]. We imple-
ment more complex behavior realization than Loyall et al.
[10], adding a modality for speech and physically specified
animation and allowing internal synchronization between
modalities.

2.2 BML realization

The Behavior Markup Language (BML) provides a gen-
eral, Realizer-independent description of multimodal behav-
ior that can be used to control a virtual human. BML expres-
sions (see Fig. 1 for a short example) describe the occur-
rence of certain types of behavior (facial expressions, ges-
tures, speech, and other types) as well as the relative timing
of the involved actions [9].

Elckerlyc is a new BML realizer. Recently several other
BML realizers have been developed [1, 4, 16], and existing
frameworks for multimodal behavior generation are being
modified to support BML [3, 8]. These realizers are used
either in turn-based interaction applications [3, 8, 16] or off-
line, for instance in the reproduction of annotated behav-
ior of real humans [4]. Since these realizers are not specifi-
cally designed for continuous interaction they do not support
re-timing and re-planning of behaviors that are already in
the play queue. Animation is specified by parameterizable
keyframes and end effector movement trajectories [3, 4],
procedural controllers that support emotional parameteriza-
tion [3], keyframe animation created by artists [16] or using
biomechanical models of human movement [8, 16].

We add physical simulation as another animation para-
digm and allow all paradigms to be used together, both in
parallel and sequentially. Our focus is not solely on cre-
ating animation using one of these paradigms, but also on

<bml>
<gaze id="gazel" target="AUDIENCE"/>
<speech start="gazel:ready" id="speechl">
<text>Welcome <sync id="s"/>everybody!</text>

</speech>
<gesture id="beatl" hand="LEFT"

type="BEAT" start="speechl:sl"/>
</bml>

Fig. 1 A short example of a BML script, specifying a speech text, and
a gesture aligned to the speech
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designing a realizer that can make use of—and combine—
animation generated by each of them.

2.3 Mixed dynamics

Mixed dynamics combines the precision of kinematic ani-
mation (including procedural animation) on certain selected
body parts, with the naturalness of physical simulation on
the remaining body parts, in a physically coherent man-
ner. It was pioneered by Isaacs and Cohen [5]. Mixed dy-
namics uses inverse dynamics to determine joint torques on
kinematically steered body parts. These torques are trans-
ferred to the physically steered body parts. In addition to
being affected by joint torques from kinematic joints that
are connected to physical body parts, the physical body is
affected by gravity, collision impulses, friction forces and
joint torques from the physical controllers that steer it. Isaacs
and Cohen [5] use a custom designed physics simulator to
achieve this. Our mixed dynamics algorithm builds on their
ideas, and extends them by using efficient iterative tech-
niques to calculate in real-time the torques exerted by the
kinematically steered joints and by providing easy integra-
tion with existing real-time physics simulators. However,
unlike Isaacs and Cohen’s [5] system, we currently require
the physical simulation (if active) to act on only one sub-
tree of the skeleton, which must include the root joint. We
refer the interested reader to van Welbergen et al. [21] for
an extensive overview of real-time animation techniques for
mixed dynamics and physical simulation and van Welbergen
et al. [22] for a thorough comparison of those methods with
ours.

Other hybrid physical simulation/kinematic systems have
been designed to switch between full-body kinematic ani-
mation and full-body physical simulation and vice versa, de-
pending on the current situations’ needs (see [21], Sect. 5.2.4
for an overview). Rather than doing full body switches, we
contribute a hybrid method that allows switching to a dif-
ferent mix of physically and kinematically steered joints in
real-time.

3 Architecture

We base our architecture on the SAIBA Framework [9],
which contains a three-stage process: communicative in-
tent planning, multimodal behavior planning, resulting in
a BML stream, and behavior realization of this stream. El-
ckerlyc encompasses the realization stage.

Running Example 2 (The virtual conductor)

In the virtual conductor system, the intent planning focuses
on the musical interaction: if the musicians play too soft,
signal them to play louder; if the musicians play very bad,

@ Springer

stop the piece; if they are too slow, try to correct their tim-
ing; etcetera. The behavior planning uses a many-to-many
mapping from intent to behaviors: given a communicative
intent, it selects one of the possible behaviors (gesture, body
movement, head movement) to express this intent.

Figure 2 shows our global architecture, and indicates its
relation to the overall SAIBA framework. The main infor-
mation flow goes from the SAIBA Behavior Planning mod-
ule to the Realizer, in the form of a BML stream. A feed-
back loop communicates backwards from the Realizer to the
SAIBA Behavior Planner. The Realizer notifies the SAIBA
Behavior Planner when a behavior is successfully executed
and warns it if a particular behavior cannot (or: no longer)
be executed. The latter typically occurs when unexpected
events occur that prohibit successful realization or, in Elck-
erlyc, when predictions of user behavior are revised drasti-
cally (see Sect. 5.6). The SAIBA Behavior Planner will have
to deal with situations where the original plan is no longer
feasible, possibly changing its intent, and at least sending an
updated BML stream to the Realizer.

We chose to split the realization stage into two parts:
Scheduling and Playing. In the scheduling part, synchro-
nization of the behaviors within and between modalities is
determined, and the different behaviors are distributed over
appropriate Engines (e.g. Speech Engine, Animation En-
gine). Each Engine subsequently executes the behaviors for
a single output channel (for example: joint rotation for the
Animation Engine, sound and local vertex displacements in
the face for the Speech Engine). Currently we have imple-
mented an Engine for animation and one for speech with
lip synchronization; an Engine for playing other facial ani-
mations is in development. The Animation Engine executes
all body animation. It automatically combines physical sim-
ulation with kinematic animation. We assume that there are
no dependencies between the behavior executed by different
the Engines other than the time synchronizations maintained
by the Peg Board.

3.1 Continuous interaction

Elckerlyc has been designed specifically for continuous in-
teraction, in which the behavior of the VH is adapted con-
tinually to the behavior of the interaction partner.

Running Example 3 (The virtual conductor)

In the continuous reactive and anticipatory interaction be-
tween conductor and ensemble, the behavior plan that was
initially constructed from the score needs to be adapted all
the time. Some changes merely require re-timing, e.g. in or-
der to provide tempo feedback to the ensemble, or can be
solved simply by adding an extra behavior: add an apprecia-
tive nod or smile; conduct two-handed when the ensemble is
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not paying attention. Other changes are larger and require
substantial re-planning. An example of the latter is when the
conductor stops in the middle of the piece, because the en-
semble completely messed up the music. In this paper we
focus on the timing adaptation of ongoing behavior, since
that requires specific capabilities in the realizer.

As Running Example 3 suggests, some changes to
planned behavior only concern the timing, and should not
lead to completely rebuilding the animation plan. Small
adaptations of the timing of planned behavior are not spe-
cific to conductors, but also occur in other interactions. El-
ckerlyc offers detailed temporal control over the execution
of planned behavior.

To achieve this detailed temporal control, we introduced
Time Pegs and Anticipators. The behavior of our VH is spec-
ified in a stream of BML elements (called behaviors). Syn-
chronization of the behaviors to each other is done through
BML constraints that link synchronization points in one be-
havior (start, end, stroke, etc; see also Fig. 5) to synchroniza-
tion points in another behavior. We maintain a list of Time
Pegs—symbolically linked to those synchronization points
that are constrained to be on the same time—on the Peg
Board, together with the current expectation of their actual
execution time (which may change at a later time). Interac-
tion with the world—and conversation partner—is achieved
through Anticipators. An Anticipator instantiates synchro-
nization points that can be used in the BML stream to con-
strain the timing of behaviors. It uses perceptions of events
in the real world to update the corresponding Time Pegs, by
extrapolating the perceptions into predictions of the timing
of future events.

Running Example 4 (The virtual conductor)

For the virtual conductor, an Anticipator has been imple-
mented that predicts the tempo with which the musicians
play the music (using audio processing algorithms described
elsewhere [14)). It provides Time Pegs to Elckerlyc that rep-
resent the predicted beats. The BML stream for the con-
ductor specifies the appropriate conducting gestures for a
piece of music, and their timing. When the musicians play
too slow, the conductor would like to increase the tempo.
A subtle technique to achieve this is to conduct in the same
tempo as the musicians are playing, but slightly ahead of
them, so they constantly have the feeling of being ‘too late’.
This is done by aligning the conducting gestures to the Time
Pegs for the predictions of the Anticipator, but slightly ahead
of them (see also Fig. 3).

We have implemented an Anticipator that can predict the
tempo of playing music in real-time. For smooth turn-taking
purposes, we would like to have an Anticipator that can pre-
dict relevant positions to take the turn from user behavior

@ Springer

<bml id="bmll">
<gesture id="conductl" hand="BOTH"
type="LEXICALIZED" lexeme="3-beat"/>
<constraint id="cl">
<synchronize ref="conductl:start">
<sync ref="conductingAnticipator:beatl-0.05"/>
</synchronize>
<synchronize ref="conductl:beat2">
<sync ref="conductingAnticipator:beat2-0.05"/>
</synchronize>
</constraint>
</bml>

Fig. 3 Example script which uses a conducting anticipator. Two syn-
chronization points in the conductl behavior (conductl:start and con-
ductl:beat2) are synchronized to desired conducting beats provided by
the Conducting Anticipator

observed through sensors. Designing these kind of Antici-
pators is challenging, no off-the-shelf systems are available.
To demonstrate and test Elckerlyc’s continuous interaction
capabilities, we have implemented a few simple Anticipa-
tors. The Metronome Anticipator, as demonstrated in the
webstart, ‘predicts’ beats of a metronome. The metronome
tempo can be adjusted in the user interface while the behav-
ior (linked to its TimePegs) is playing, modifying the timing
of this linked behavior in real-time. A Spacebar Anticipator
was created for specifying behavior that reacts immidiatly
to a spacebar press. Unlike the previously mentioned antic-
ipators, the spacebar anticipator does not provide event pre-
diction, but simply sets the time of a Time Peg to the time of
a space bar press or release.

3.2 Modularity and extensibility

As in other Realizers [4, 16], modularity and extensibility
were explicit requirements in the design of Elckerlyc. We
have separated the sometimes complex task of finding the
constraints between behaviors described in the BML stream
from the actual scheduling of the behaviors. The BML
Farser is responsible for identifying the constraints between
BML behaviors, the Scheduler solves these constraints and
defines Time Pegs based upon them.* The Scheduler then
sends the behaviors to the Engine appropriate for that type of
behavior. Each Engine consists of a Planner and a Player for
a set of BML behavior types. The Scheduler does not need to
know about the inner working of an Engine (other than that
its Planner implement the Planner interface), it only knows
what Engine was registered for certain behaviors. This al-
lows us to easily exchange the Scheduler in order to exper-
iment with different scheduling algorithms. It also allows

4The Scheduler does not introduce a novel constraint solver, but for
now uses the existing Smartbody scheduling algorithm described in
Sect. 5.
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us to add or replace Engines easily. We detail our behavior
scheduling setup in Sect. 5.

We separate the animation process from the rendering
process. The Animation Engine generates motion in the
form of joint rotations for each animation frame, that can
then be applied to a VH that is rendered in any renderer
(in a similar manner as in Thiebaux et al. [16] and Heloir
and Kipp [4]). Our mixed dynamics algorithm was designed
specifically as a plugin for any existing physics simulator.

Elckerlyc can be used as a black box that converts BML
into multi-modal behavior for a VH.? If required however,
direct access to the Scheduler, Planners, Engines, Plans and
Players is also available.

4 The Animation Player

One of the Engines introduced in the previous section is
the Animation Engine, consisting of an Animation Planner,
that creates an Animation Plan, and an Animation Player
(Fig. 4) responsible for executing it. The plan contains de-
scriptions of both physical and procedural motions. Our
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Fig. 4 Animation Player

SThis functionality can be tested by running the webstart version of
Elckerlyc from the web site mentioned earlier.

Animation Player implements and combines several exist-
ing state-of-the-art techniques for procedural animation and
physical simulation. We introduced the mixed dynamics de-
scribed earlier [22] in Elckerlyc, to execute the mix of phys-
ically and kinematically specified motions simultaneously
in a physically coherent manner. In addition, we imple-
mented smooth and automatic switching between physical
and kinematic steering (or vice-versa) on parts of the VH’s
body whenever this particular mix changes. The end result
is an integrated animation of the VH which still allows one
to adapt the precise timing by adjusting the Time Pegs de-
scribed in Sect. 3.1.

4.1 The organization of motion

We organize motion in motion units.® A motion unit has a
predefined semantic function (for instance: a three-beat con-
ducting gesture, a walk cycle) and acts on a selected set of
joints. A set of parameters can be used to adapt the motion
unit (for instance: amplitude for the conducting motion unit,
or desired pelvis height and joint stiffness for a physical bal-
ancing motion unit). Motion units contain one or more mo-
tion phases, separated by keys. Each key is assigned a prede-
fined canonical time value 0 < o; < 1 (o; = O refers to the
start of the motion, «; = 1 to its end) that indicates where
it is located within the motion unit. Typically a key refers
to the (relative) time of a BML synchronization point within
the motion unit (see Fig. 5).

Given the current set of parameter values and a canonical
time 0 < o < 1, a motion unit can be executed, typically by
rotating some joints of the VH. We employ a time warping
technique to set up the mapping from ‘real’ time to o (see
Sect. 4.4).

4.1.1 Procedural motion units

Procedural motion units rotate joints over time as specified
by mathematical expressions that take o as well as a vec-

8 6 8 & & o

Start Ready Stroke Relax End

Stroke-start Stroke-end

Pre-stroke Hold Post-stroke Hold

Fig. 5 Standard BML synchronization points (picture from http://
wiki.mindmakers.org/projects:bml:main)

SMotion structures with a similar function and granularity as our mo-
tion unit have been called gestures [3, 13], controllers [16], local motor
programs [8], actions [11], or motion spaces [21].
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tor a € N" as parameters. These expressions can be used to
directly steer joint rotation, to position the root or to posi-
tion the wrists and ankles using analytical inverse kinemat-
ics [19]. In Sect. 5.4 we describe how the values of a are
derived from the BML specification of a behavior.

We support the specification of wrist/ankle positions as
continuous mathematical formulas in both global (world)
and local (shoulder) coordinate systems. For example, the
expression

<EndEffector local="false" target="r_wrist"
translation="0; (1-alpha) *starty+alpha*endy;
0.3"/>

describes how the global position of the right wrist should
trace a vertical path, with start and end y position parameters
as specified.

Joint rotations can be specified as continuous mathemati-
cal functions of « and a, or as global or local rotation values
defined procedurally (as a function of a) at key times (in a
similar manner as in [3] and [4]).

The parameter values a can be changed in real-time,
changing the motion shape or timing. All mathematical ex-
pressions are evaluated using the Java Math Expression
Parser.” Custom function macros can be designed. We de-
fined such macros for Hermite splines, TCB splines [7] and
Perlin noise. An example XML-specification of a procedural
motion unit can be found at the showcase.’

Our design—allowing arbitrary mathematical formulas
and parameter sets to be used for motion specification—
is more flexible than traditional procedural animation mod-
els that define motion in terms of splines or other prede-
fined motion formulas and use fixed parameter sets [2—4].
Since our design is compatible with these traditional meth-
ods, we are able to make use of existing procedural anima-
tions. We have semi-automatically converted several motion
units from Greta [3] into our XML description for proce-
dural animation. Motion capture animation is also incorpo-
rated as a procedural motion unit.

Custom programmed procedural motion units. While our
generic procedural motion definition in XML is very flex-
ible, it is sometimes more convenient to author procedural
motion units by programming them directly. By doing this,
the motion author gains direct access to functionality within
the Animation Player. This functionality includes the predic-
tion of a pose at a given time (see Sect. 4.1.3) and provision
of the start pose of a motion unit, which makes it very easy
to author a motion unit with a flexible start and/or end pose.
Biologically inspired gaze and pointing motion units from
our previous work [20] were directly converted into such
specialized motion units.

7Singular Systems, http://sourceforge.net/projects/jep/.
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4.1.2 Physical motion units

Physical motion units are executed by physical controllers.
Physical controllers use techniques from control theory
to steer the VH’s ‘muscles’ in real-time using Newtonian
physics, taking friction, gravity, and collisions into account.
The input to such a controller is the desired value of the
VH’s state, for example desired joint rotations or the de-
sired position of the VH’s center of mass. The output is a
torque applied to one or more joints. To a certain extent,
such controllers can cope with and recover from external
perturbations.

We have implemented several balancing controllers that
offer different trade-offs between balancing stability and
movement naturalness [22]. Our pose controllers are simple
proportional derivative controllers that loosely keep body
parts in their desired position, while still being effected by
forces acting on the body.

4.1.3 Transition motion units

Transition motion units are used to create a transition be-
tween other motion unit types. They interpolate between the
final state (position and velocity) of one motion unit and the
predicted initial state of another motion unit. Transition mo-
tion units are specified solely by their start and end time and
the set of joints they act upon. At animation time, the start
pose is taken from the current joint configuration of the VH
at the moment that the transition motion unit starts. The end
pose is determined by the Animation Predictor. The Anima-
tion Predictor uses a copy of the animation plan containing
only the predictable motion units of the original plan. Pre-
dictable motion units are those motion units that determin-
istically define the pose they set at any given time (for now,
only procedural motion units).

We have designed a transition motion unit based upon
a slerp transition on each joint and one that creates a C?
continuous rotation curve between joint rotations [6].

4.2 Mixed dynamics

In many situations, different positive features of procedural
motion and physical simulation are needed simultaneously,
but acting on different body parts. To achieve this, we dy-
namically assign a body structure to our VH that is divided
in a physically steered part and zero or more kinematically
steered parts. Each part is a tree-structure of joints, con-
nected by rigid bodies. In our current implementation, the
physical body part must contain the root joint (or be com-
pletely empty). See Fig. 6 for an example set of such body
structures.

Running Example 5 (The virtual conductor)
The conducting gesture of the right hand clearly needs the
tight temporal control that is best achieved with procedural
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Fig. 6 Left: a body divided into kinematic parts K that steer the arms
and head and a dynamic physical part P that steers the lower body and
trunk. Several variations of K and P are used in the conductor, this
figure shows three of them

motion. On the other hand, the balanced pose, and the left
arm hanging loosely down in gravity, are best left to the re-
alism of physical simulation. The two will necessarily affect
each other: the often quite vigorous movements of a con-
ducting motion should have a perceivable impact on the dy-
namics of the rest of the VH (see also the movies on the
showcase).?

In our Animation Player (see Fig. 4), motion is executed
by motion units which are specified either kinematically
or physically. The motion can be adapted in real-time by
changing the parameters and timing of a kinematic motion
unit or the desired state of a physical motion unit, respec-
tively.

Kinematic motion directly rotates selected joints in the
VH. The joint rotations, angular velocities and accelerations
of the kinematically steered body parts result in a torque.
This torque is calculated using inverse dynamics and applied
to the physical body.

The physical controllers in turn apply joint torques that
aim at reducing the discrepancy between the desired physi-
cal state of the physically steered body part and its current
physical state (see Sect. 4.1.2).

Finally, a physics simulator® is used to calculate the ac-
tual resulting rotations of the physically steered joints. We
refer the interested reader to van Welbergen et al. [22] for
the implementation details of our mixed dynamics method.

Running Example 6 (The virtual conductor)

For the current gesture repertoire of the virtual conduc-
tor, we need exactly the three body configurations shown
in Fig. 6: The left-most is used when the VH stands in a

8We use the Open Dynamics Engine: http://www.ode.org, but any other
real-time physics simulator could be used.

balanced pose and makes gestures simultaneously with both
hands; the middle one is used for making gestures with the
right hand only (letting the left hand hang loosely down
in simulated gravity using a physical controller); the right-
most one is needed when the conductor is not gesturing
at all.

4.3 Switching physical representation

As can be seen from Running Examples 5 and 6, the spe-
cific configuration of kinematically steered and physically
steered joints that is active at a certain moment may need to
change when the VH performs different behavior. A switch
from kinematical to physical control on some body part K is
implemented by augmenting the set of physically controlled
parts P with the rigid body representation of K and apply-
ing the current joint velocity and rotation to the matching
joints in the new physical representation. Before the switch,
our mixed dynamics approach applied a torque calculated
from the movement and position of the joints in K to P.
Augmenting P with an articulated set of rigid bodies with
joint velocities and rotations that are the same as the joint
velocities and rotations in K will obviously result in a simi-
lar torque on P. Therefore such a switch results in a smooth
transition.

A switch from the physical to kinematic control removes
the physical representation of the body part from the phys-
ical body of the VH and inserts a new kinematic part K. If
the movement on K directly after the switch is similar to the
movement in its former physical representation, no sudden
forces occur on the new physical body. To achieve this, the
kinematic motion unit steering K must smoothly connect to
the former physical motion. A simple way to achieve this
is by specifying a transition motion unit in BML to connect
the physical motion to the kinematic motion. Our Hermite
quaternion spline transition motion unit generates a C> con-
tinuous curve between the end configuration of the joint in
the physical body and the start configuration of the kine-
matic motion that is to be executed on the joint [6]. This
curve approximates a rotation path with minimal total angu-
lar acceleration from one joint rotation to another, and satis-
fies the start and end angular velocity constraints prescribed
by the physical configuration at the time of the switch and
the start configuration of the next kinematic motion unit. Al-
ternatively, one can design a transition motion unit that en-
sures smooth end effector (hand) movement [8] or make use
of procedural motion units with a flexible start state [3, 8] to
ensure a smooth transition.

4.4 Motion execution

The Animation Plan Player takes an animation plan contain-
ing instantiations of motion units, called timed motion units.
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At any specific point in time, it takes the following steps to
animate the VH.

(1) The currently active timed motion units are deter-
mined. The keys of the timed motion units are linked to the
Time Pegs, as specified in the BML. Synchronization be-
tween keys in different timed motion units is achieved by
linking them to the same Time Peg. Each timed motion unit
defines a function f;,; (o) = ¢ that maps its canonical time «
to time #. The active timed motion units are the timed motion
units for which f,,; (0) <t < fii (1).

Some behaviors (e.g. gaze, posture) allow only one ac-
tive instance at a time. We support this by assigning the
same replacement group to all motion units corresponding
to such behaviors. Within each replacement group, the ac-
tive timed motion unit is defined to be the timed motion unit
for which f,,;(0) <t < fni(1) and f,;,; (0) has the largest
value. If multiple timed motion units within the same re-
placement group share the same value for f,,; (0), the timed
motion unit with the smallest f;,,; (1) is selected as the active
timed motion unit for the replacement group.

(2) Determine which physical body configuration should
be assigned. We infer the continuously changing mix of
kinematically and physically steered joints from the active
procedural and physical timed motion units. Each physi-
cal motion unit specifies on what joints it acts. The se-
lected physical body configuration is the smallest physical
body configuration that contains all joints steered by all ac-
tive timed physical motion units. For example, the behavior
planner for the virtual conductor can specify in BML the
following behaviors for the left arm: a physical motion unit
for ten seconds, that lets the arm hang down, followed by
a procedural motion unit to make a certain expressive con-
ducting gesture for one second, and finally again a physical
motion unit to let the arm hang down again. To realize this
sequence, Elckerlyc automatically executes a switch of the
affected joints from physical steering to kinematic steering
and back again.

(3) The active procedural motion units are then executed
at o = fr;l.l (t). Most timed motion units calculate fn;il (1)
using a simple linear timewarping scheme [24]. Others use
a more complex warping scheme, for instance one to create
a biomechanically inspired bell shaped velocity profile in
a pointing gesture [20]. Providing mechanisms to combine
procedural motion action on the same joint is future work
(see also Sect. 6).

(4) The physical simulation is performed as a last step.
The generated procedural animation is combined with the
active timed physical motion units, using the method de-
scribed in Sect. 4.2 (see also Fig. 4). If different physi-
cal controllers act upon the same joint, the sum of their
torques is applied to that joint, thus combining their objec-
tives.

@ Springer

5 Scheduling

In the Scheduling stage (see Fig. 2), multimodal behavior
described in a BML stream is converted into Plans that are
to be executed by Players in different Engines, as already
indicated in Sect. 3.2.

5.1 Behavior description

The multimodal behavior that is to be executed by a Planner
is described in a BML stream. In addition to supporting stan-
dard BML behaviors and the BML synchronization mecha-
nisms, we have defined extra behaviors that specify custom
procedural motion units, transition motion units and physi-
cal controllers. We had to widen the interpretation of BML’s
synchronization mechanism in order to allow the specifica-
tion of synchronization to time predictions of an Anticipator
(see Fig. 3). These extensions are documented on our BML
Twente (BMLT) specification.”

5.2 The planners

Each Planner is required to implement functionality to:

1. Add a BML behavior to its Plan.

2. Remove a BML behavior from its Plan.

3. Resolve unknown time constraints on a behavior, given
certain known time constraints.

4. Check what (if any) behaviors in the Plan are currently
invalid.

Note that a Planner can be queried for time constraints on
behavior without adding it to the plan. Potentially, this will
allow us to set up more complex schedulers at a later stage
that can try out multiple constraint configurations on each
behavior. The validity check is typically used to check if
a valid plan is retained after an Anticipator moves certain
Time Pegs. All implemented Planners check if the order of
the Time Pegs of each behavior is still correct (for exam-
ple: if their start is still earlier than their end). Each Planner
can also add validity checks specific to its output modal-
ity. These checks are discussed in the section on the specific
Planner.

5.3 Scheduling behavior

The Scheduler resolves the timing of behaviors, so that their
execution adheres to the time constraints specified in the
BML. Rather than solving for absolute time stamps for each
behavior, the Scheduler assigns each time constraint to a
Time Peg and assigns a first prediction of its absolute time. If
needed (see Sect. 5.6), these Time Pegs can then be slightly

9http://wiki.mindmakers.org/projects:bml:bmlt.
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shifted in time, thus moving the absolute timing of the con-
straint, while keeping inter-behavior synchronization con-
sistent.

The Scheduler has access to several Planners (e.g. Speech
Planner, Animation Planner, see also Fig. 2) with which
it communicates only through their abstract interface (see
Sect. 5.2). It knows for each behavior type which Planner
handles it.

Our current scheduling algorithm is based on the Smart-
Body Scheduler [16]. The behaviors are processed in BML
order. The timing of the first behavior is constrained only by
its absolute time constraints and by constraints imposed by
Anticipators. Subsequent behaviors are timed so that they
adhere to time constraints imposed by the already processed
behaviors. Our Parser lists all constraints on each behavior.
Some of these constraints are resolved by already processed
behaviors, but others act on subsequent behaviors in the
BML stream and are yet unknown. Our current scheduler
delegates resolving these unknown time constraints directly
to the Planner of the behavior it is currently processing.
Subsequently, the behavior on which all time time con-
straints are now resolved is added to its Plan.

5.4 Planning animation

The Animation Planner is responsible for selecting motion
units based on their BML specification and for inserting
them as timed motion units in the animation plan. This plan
will then be played by the Animation Player described in
Sect. 4. The Planner makes use of the Gesture Binding to
select motion units. The Gesture Binding is an XML speci-
fication describing how a BML behavior is bound to a spe-
cific motion unit, possibly constrained by parameters of the
BML behavior, and maps parameters in BML to parameters
in the motion unit (see Fig. 7). This allows us to bind a new
BML behavior to a motion unit without changing Elckerlyc
itself and to easily exchange the exact realization of a be-
havior (by binding it to a different motion unit). Currently,
a BML behavior specification is bound to at most one mo-
tion unit.

Running Example 7 (The virtual conductor)

Figure 7 shows the BML fragment used to achieve a head
nod, and how it is bound to the appropriate procedural head
nod animation using the Gesture Binding.

The Animation Planner assists the Scheduler by resolv-
ing the execution time of unknown Time Pegs for a motion
unit, given certain known time constraints on that motion
unit (see Fig. 8). For each procedural motion unit a pre-
ferred duration is specified within the definition of the mo-
tion unit itself. Time constraints and requested motion times

BML specification of a head nod
<bml id="bmll">
="nod1"|repeat5="3"”a:tian:"ROTATION“"rotatinn="NOD“P>

Gesture hinding
<gesftusgbinding>
<MotfienUni
<copstraints>

<cpnstraint ngmes"action"” value="ROTATION"|
<cpnstraint ngmes"rotation" value="NOD'
</cpnstraints>
<pafametermap>
<pdrameter srd="amount"” dst="a"/>
<parameter srcW'repeats}-<dspd ")/ >
</pakametermap>
<pardqmeterdefaults
<pajrameterdefaylt hame="a" value="0.5"}
<pakameterdefgult name="r" Falue="1"
</parafjpeterdefagults>
<Motionnit type="ProcAnimgtion" fileMnod.xml "}
</MotionUNitSpel>

"head"|

<MotionUnitSped T% ‘head

ams%"actinn" value="ROTATICN"
amg="rotation" wvalue="SHAKE"/>

<constraint
</constraints
<parametermap

<parameter src

<parameter sfc
</parametermap>
<MotionUnit tjypes"ProcAnimation" file="shake.xml(/>
</MotionUnitSpec>

lamount™ dst="a"/>
repeats” dst="r"/>

<MotionUnitSpqc type="gesture">
raints
craint [namg¢="hand" value="RIGHT"/>
straint[namg="type" value="LEXICALIZED"/>
<constraint| namg="lexeme" value="conduct-3-beat,
</constraintps>
<MotionUnit [typef"ProcAnimation" file="3-beatRH{xml"/>
</MotionUnitgpec>

>

</gesturebindiing>

s

Pfocedural motion unit defined in[nod.xml|
<ProcAnimatipn prefDuration="1.0">

<Rotation fargef="wvc4"
J$rsin(alpha*2*pi*r);0;0"/>
sf="skullbase"
W*sin(alpha*2*pi*r);0;0"/>

<Parameter id
</ProcAnimation>

Fig. 7 Gesture Binding fragment binding the <head> element to the
nod motion unit. Both the nod and shake motion units execute behav-
iors of type “head”. They both satisfy the constraint action = “ROTA-
TION”, but only the nod motion unit satisfies the constraint rotation =
“NOD” and is therefore selected to execute the head nod. The Gesture
Binding maps the repeats parameter value in the BML behavior to the
value of parameter r specified in the procedural motion unit. The value
of parameter a is not defined in the BML head behavior, therefore the
default value of a, as defined in the Gesture Binding, is used in the
procedural animation

are linked to the keys of a motion unit. If only one time con-
straint is specified on the motion unit, the requested mo-
tion times are resolved in such a way that the specified time
constraint is satisfied and the duration of the motion unit is
its preferred duration. If two or more time constraints are
set on a motion unit, uniform scaling is applied to the mo-
tion phases between constrained keys. The timing of start
and end keys, if not constrained, is set to maintain the aver-
age stretch or skew (as compared to the preferred duration)
caused by the specified time constraints. Note that if exactly
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requested 7

time constraints, ‘ [ J
motion timing

motion unit
preferred timing

timed b
motion unit a

b_|
|

| 4 ]

Fig. 8 The Animation Planner is asked to resolve the start time of a
behavior with phases a, b, ¢ and d, given 3 constraints on its timing.
Phase d is stretched as prescribed by the two rightmost constraints.
Uniform scaling is applied to phases b and c to satisfy the two leftmost
constraints. Phase a is slightly stretched to maintain the average stretch
resulting from the satisfaction of the time constraints on the behavior

two time constraints act upon the motion unit, the above
strategy is equivalent to the uniform scaling used in Smart-
Body [16]. The current stretching/skewing strategy does not
have a biological basis.

Validity checks on behaviors in the Animation Player are
Timed Motion Unit specific. For a procedural animation, the
minimum and maximum duration are specified, and the va-
lidity check fails if the behavior is stretched or skewed be-
yond these specified limits.

5.5 Planning speech

We execute speech using Microsoft SAPL!? Lip synchro-

nization is done by controlling morph targets on the face of
the VH. The Speech Planner provides the Scheduler with in-
formation on the timing of speech fragments, including the
duration of the fragment and the relative start time and du-
ration of words and phonemes. Currently we do not support
stretching or skewing of speech. In our current implemen-
tation, speech behaviors are marked as invalid if the Time
Pegs constraining them enforce a stretch or skew.

5.6 Replanning

The Anticipator notifies the Scheduler whenever its predic-
tions change, and updates the Time Pegs. Many of such up-
dates are minor and do not require a change in the Anima-
tion Plan or other Plans. Since the keys of timed motion units
and timing of speech fragments is symbolically linked to the
Time Pegs, the timing update is handled automatically. More
significant prediction updates might require re-planning of
behavior on several modalities. To check if such an update
is needed, the Scheduler asks each Planner if its current plan
is still valid. The Scheduler then omits the behaviors that are
no longer valid and notifies the SAIBA Behavior Planner us-
ing the BML feedback mechanism. It will then be up to the
SAIBA Behavior Planner to update the behavior plan (using
BML), if desired.

1Ohttp://www.microsoft.com/speech/.
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6 Discussion and future work

We presented Elckerlyc, a modular and extensible BML Re-
alizer designed specifically for continuous interaction. It of-
fers an adjustable trade-off between the control offered by
procedural animation and the naturalness enhancements of-
fered by physical simulation. We showed how these capa-
bilities work in practice in our interactive virtual conductor
using a running example.

We have assumed that our Engines can operate indepen-
dently from each other. In practice, some links between En-
gines might be required, sacrifying some independence for
performance or time synchronization reasons. This is a com-
mon trade-off in the design of Virtual Human platforms [18].
Currently all our Engines execute their plans timed by the
same global clock. To achieve lip sync, the Speech Engine
constructs the visemes that are inserted in the face plan of a
preliminary version of our Face Engine. We plan to combine
these visemes with other facial movement in the Face En-
gine. The timing of our off-the-shell text to speech system
can drift significantly from the the global clock. One im-
plementation of our Speech Engine uses the text to speech
system via an intermediate audio file and enforces time con-
straints by skipping forward and backward in the audio file
on significant time drifts (more than 70 ms). This introduces
some sound artifacts and still suffers from minor timing dif-
ferences between speech and lipsync. The Peg Board and
Time Pegs are the generic mechanism for synchronization
between Engines in Elckerlyc. We plan to achieve finer syn-
chrony and better speech quality by allowing the Speech En-
gine to run at its own timing and communicate the drift of
this timing in relation to the global clock to the other En-
gines using Time Pegs. Such a design requires only minimal
dependencies between Engines (the Speech Engine needs
access to the Face Engine to insert visemes in its plan)
and makes elegant use of Elckerlycs generic synchroniza-
tion mechanism: the Time Pegs are used to communicate
synchronization constraints between Engines.

An Elckerlyc demo application (as Java webstart) and
several demonstration movies and BML scripts can be found
on our showcase.> We also present our plans for future de-
velopments there. Here we present a few of the most impor-
tant ones.

An important topic for future work is conflict resolution.
Several behaviors might request the use of the same ani-
mation modality, for example the right arm or head. We
currently do not resolve such conflicting modality needs
within Elckerlyc, although a simple custom conflict solver
is used in the SAIBA Behavior Planner of the virtual con-
ductor application. Conflict resolution requires resource al-
location (e.g. select the left arm for a gesture if the right
arm is doing something else) and resource combination (for
instance: combine a gaze with a nod). Resource allocation
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could be achieved in Elckerlyc by taking into account the
currently used resources when selecting a motion unit from
the Gesture Binding. A motion unit can store information on
how it might be combined with other motion units [11]. For
example, a nod motion should be additively added on top
of other head movements [16] and a manipulatory gesture
should constrain hand position [4], but might allow elbow
movements. The Animation Planner could construct (pos-
sibly hierarchical) combinatory motion units that solve re-
source conflicts [16]. This way, the Animation Plan only
contains non-conflicting motion units. Alternatively, the An-
imation Player could use a final phase that combines con-
flicting motion units [4]. We give an overview of motion
combination techniques for both physical and kinematic mo-
tions in van Welbergen et al. [21].

The Scheduler can be improved to select what behaviors
to stretch and skew in such a way as to yield the most natural
multimodal behavior (given the time constraints in the BML
description), rather than selecting behaviors to be stretched
and skewed based on where they are located (ordered) in
the BML stream, as our (and SmartBody’s) current sched-
uler does. We present some ideas on how to approach this
in Nijholt et al. [12]. Within the behaviors we currently use
simple linear skewing and stretching. To provide more flexi-
bility we plan to provide formalisms to describe motion unit
and motion phase specific stretching/skewing strategies.

Physical simulation in our system is currently limited to
one subtree of physical joints of the VH’s body, which must
contain the root joint. So far, this has not proven to be a re-
striction in our VH applications. We plan to provide mech-
anisms to allow a physical joint to be connected to a kine-
matic parent joint or to a (moving) object in the environment
by making use of kinematic constraint mechanisms provided
by the physical simulator. This would allow us to use a kine-
matic root joint and could perhaps help us build a system in
which kinematic and physical body can be interleaved more
freely. More importantly, this allows interesting interactions
with the environment, for example: constrain hand position
to a handle to help balancing while riding the bus.

Currently the Gesture Binding provides a one to one map-
ping from a BML behavior to a motion unit. We plan to al-
low one to many mapping at a later stage. This could be
used to select the best motion unit on the basis of available
modalities at its execution time (left hand, right hand) or on
the basis of its time constraints (select the motion unit with
the shortest preferred duration if fast execution is required)
or just to select a random motion unit for e.g. a beat gesture.

Finally, we are currently looking to use Elckerlyc to con-
trol a robot head [15] by introducing an alternative Anima-
tion Engine.
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