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Abstract
Small heat shock proteins (sHSPs) are widespread in every kingdom of life, being indispensable for protein quality control
networks. Alongside canonical chaperone functions, sHSPs seem to have been a very plastic scaffold for acquiring multiple
related functions across evolution. This review aims to summarize what is known about sHSPs functioning in the Bacteria
Kingdom.
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From discovery to common features

The first discovered member of the small heat shock protein
family was α-crystallin, which has been known for more than
a century to be the major structural protein of the vertebrate
eye lens (Mӧrner 1894). Many years later, a well-established
family of α-crystallins was found to be related to Drosophila
melanogaster small heat shock proteins (abbreviated as
sHSPs), which justified including them in a common classifi-
cation group of sHSPs (Ingolia and Craig 1982). This, togeth-
er with the heat shock response-focused research boom of
these years, has led to broad investigations on small heat
shock proteins.

Although sHSPs sequence conservation is rather limited,
especially in contrast to other heat shock proteins, they started
to be identified by homology to α-crystallins and the fruit fly
sHSPs (Key et al. 1981; Russnak et al. 1983; Booth et al.
1988; Nerland et al. 1988; Verbon et al. 1992; Lee et al.
1992). As the number of identified sHSPs has been growing,
their polypeptides were found to be typically subdivided into
an α-crystallin domain, the most homologous region in their
sequence and a much less conserved flanking N- and C-
termini (Van Montfort et al. 2001). At the same time, multiple
sHSPs were shown to form large dynamic complexes (Arrigo

and Welch 1987; Behlke et al. 1991) and, later, their dissoci-
ation to be regulated by temperature changes (Fu and Chang
2004). Accompanying structural studies has shown that
sHSPs are especially rich in β-structures (Li and Spector
1974; Merck et al. 1993), finally leading to the first resolved
bacterial sHSP structure (Kim et al. 1998a, b). It was later
found that the β-sandwich fold is a common, highly con-
served feature of all sHSPs.

In addition to structural studies, a great deal of effort was
put into determining the functional traits of sHSPs. Initial
studies on α-crystallins focused on the medical contexts, es-
pecially prevention of cataract formation (Roy and Spector
1976) and later on roles in tumor cell growth (Gaestel et al.
1989) and cell differentiation (Stahl et al. 1992). Concerning
the presence of sHSPs in organisms from every kingdom of
life, it appeared challenging to elucidate their common func-
tions (Schlesinger 1986) suggested by their striking fold con-
servation. sHSPs were often found to be highly overexpressed
at heat stress—conferring thermotolerance to some organisms
(Loomis and Wheeler 1982; Berger and Woodward 1983)—
but showing no feasible phenotype when disrupted in others
(Susek and Lindquist 1989; Praekelt and Meacock 1990). It
took detailed biochemical studies to demonstrate that sHSPs
act as molecular chaperones both in animals (Jakob et al.
1993; Wang and Spector 1995), plants (Lee et al. 1995) and
bacteria (Chang et al. 1996; Thomas and Baneyx 1998).

From the evolutionary point of view, small HSPs divergence
across all kingdoms of life seems to have been drivenwith great
plasticity towards acquiring different functions (De Jong et al.
1993; Carra et al. 2017). There is a clear tendency to increase
the number of sHSP-coding genes with increasing organism
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complexity, which accompanies an increased diversity of per-
formed functions. Bacteria, considered to be the least complex
organisms, usually express only one or two sHSPs (Haslbeck
et al. 2005) that can still perform several functions in the bac-
terial cell. To date, the most important reported bacterial sHSPs
functions are (i) molecular chaperone function, which can be
subdivided into two distinct modes of action, transient interac-
tions with unfolding polypeptides at mild proteotoxic stress and
high-affinity interactions observed at massive aggregation
events; (ii) protection of cell membrane components and mem-
brane integrity; and (iii) a handful of more specific functions
dedicated to survival in adverse environments.

Chaperone activity: stable interactions

The best studied chaperone activity of sHSPs is preventing
formation of large amorphous aggregates, which seems to be
evolutionarily the oldest and most important sHSPs function
for bacteria. To perform it, sHSPs intercept unfolding inter-
mediates and co-assemble in so-called sHSPs-substrate as-
semblies that serve as the safe storage for polypeptides before
refolding. This section will focus on formation, architecture,
and refolding of substrates from sHSPs-substrate assemblies.

In 1996, after multiple evidence appeared of eukaryotic
sHSPs being molecular chaperones (Jakob et al. 1993; Boyle
and Takemoto 1994; Singh et al. 1995; Wang and Spector
1995; Raman et al. 1995), Hsp16.3 from Mycobacterium
tuberculosis was shown to suppress citrate synthase (CS) ther-
mal aggregation, although it could not protect CS activity nor
refold it afterwards (Chang et al. 1996). The same year
Escherichia coli IbpA & IbpB, previously described as inclu-
sion body associated proteins (Allen et al. 1992), were found to
co-localize with the aggregated protein fraction in heat shock
conditions (Laskowska et al. 1996). Later, they were also
shown to confer thermotolerance and to stabilize aggregated
proteins for further refolding (Thomas and Baneyx 1998;
Veinger et al. 1998). These observations, taken together with
sequence homology to eukaryotic sHSPs, gave a solid proof for
considering bacterial sHSPs as molecular chaperones.

sHSPs chaperone activity is exerted by stabilization of
structurally damaged proteins for subsequent refolding by
the Hsp70-Hsp100 bi-chaperone system. It is achieved by
sHSPs binding to partially unfolded polypeptides in stress
conditions and by driving their aggregation towards charac-
teristic complexes called sHSPs-substrate assemblies. sHSPs
showing this activity are often called aggregases, which might
be misleading as sHSP-substrate assemblies and the assembly
process itself differ from amorphous aggregates and aggrega-
tion. To date, the direct molecular mechanism of the assembly
formation process remains elusive except in several details. It
is known that substrate binding, executed by the N-terminus
and α-crystalline domain (Fu et al. 2005; Tomoyasu et al.

2010; Fu et al. 2013b; Fu and Chang 2006), is preceded by
sHSPs oligomers dissociation into smaller species—
preferably dimers (Fu and Chang 2004)—that are postulated
to be the active species in this process. It is typically observed
also for nonbacterial sHSPs (Haslbeck and Vierling 2015).

Efficient polypeptides sequestering in assemblies requires
the presence of stoichiometric amounts of sHSPs—at least
in vitro (Friedrich et al. 2004; Fu and Chang 2004; Jiao et al.
2005). In vivo sHSP genes are commonly found to undergo
massive expression upregulation in stress conditions. It is more
pronounced than upregulation of any other chaperone as judged
by cellular protein content and transcription profiling
(Richmond et al. 1999; Münchbach et al. 1999; Lee et al.
1998)—presumably providing enough sHSPs for efficient
in vivo substrate sequestering. On the other hand, little is known
of the substrates trapped by bacterial sHSPs. It can only be
deduced from studies on yeast sHSPs, that these are stored in
near-native conformation (Ungelenk et al. 2016), which is prob-
ably one of the factors facilitating further disaggregation and
refolding. Speaking of assemblies architecture, substrate mole-
cules are postulated to be held in the core of the assembly with
only a limited number of sHSPs and shielded from the environ-
ment by the sHSPs outer shell (Żwirowski et al. 2017); howev-
er, there are no direct structural data on this subject.

The ability of sHSPs to stabilize unfolded polypeptides
provoked obvious concerns about the later fate of trapped
polypeptides. In 1998, Veigner and colleagues showed that
E. coli IbpB, when present during malate dehydrogenase ther-
mal aggregation, improves further disaggregation by dedicat-
ed chaperones (Veinger et al. 1998). This finding, which was
also established for eukaryotic sHSPs (Lee et al. 1997), has led
to the integration of sHSPs as a part of chaperone network. It
became clear that bacterial (and other) sHSPs modulate pro-
tein aggregation in order to hold unfolded polypeptides in a
refolding competent state (Matuszewska et al. 2005;
Ratajczak et al. 2009). In 2017, Żwirowski et al. proposed
the mechanism of extraction and refolding of misfolded poly-
peptides from sHSPs-substrate assemblies. They have shown
that specifically Hsp70 chaperone binds to the assemblies to
outcompete sHSPs, which allows for single polypeptides ex-
traction by recruited Hsp100 disaggregase. The authors sug-
gested a lack of direct interaction between Hsp70 and sHSPs
being removed from assemblies—just affinity competition for
unfolded polypeptides trapped in assemblies. Additionally,
several experiments were performed with yeast proteins, sug-
gesting a common described mechanism (Żwirowski et al.
2017).

To date, themajority of studies linking sHSPs action in protein
aggregation and their interference with disaggregating chaper-
ones were carried out in the E. coli system, where 2 sHSPs—
IbpA and IbpB—cooperate with each other. Interestingly, IbpA,
when present during substrate aggregation, is enough to generate
assemblies with the substrate but also inhibits its further
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disaggregation. This inhibition is lost in the presence of IbpB
alongside IbpA. However, IbpB alone has a much less pro-
nounced effect on disaggregation, being barely able to generate
assemblies with unfolding substrate (Ratajczak et al. 2009;
Matuszewska et al. 2005; Thomas and Baneyx 1998).
Recently, IbpB activity was shown to interfere with IbpA canon-
ical substrate binding, which results in easier sHSPs removal
from assemblies and effective disaggregation (Obuchowski
et al. 2019).

An alternative example of 2 sHSPs bacterial system comes
from Deinococcus radiodurans, where sHSPs act separately.
One of them, Hsp20.2, is very effective in assembly generation
when in the presence of an aggregating substrate, and the other,
Hsp17.7, is capable of sustaining substrate activity (or postpon-
ing activity loss) in otherwise denaturing conditions (Bepperling
et al. 2012). This activity protection is achieved by transient
interactions with the substrate, which will be discussed as a
stand-alone phenomenon in the next section. Overall, both
E. coli andD. radiodurans systems seem rather atypical as most
bacteria express only one sHSP (Haslbeck et al. 2005). The best
studied single sHSP is Hsp16.3 from M. tuberculosis that was
used for functional studies showing typical assembly forming
chaperone activity (Chang et al. 1996), surface hydrophobicity
changes (Yang et al. 1999), and oligomers dissociation (Fu and
Chang 2004) upon heat treatment. Intensive studies on Hsp16.3
have also revealed its non-chaperone functions that will be de-
scribed in another section.

Chaperone activity: transient interactions

Another important, yet less studied, example of sHSPs chap-
erone activity is their ability to protect enzymes from inacti-
vation or postpone their activity loss upon mild denaturing
conditions. It is exerted via transient, cyclic interactions (in
contrast to stable assembly generation-driving interactions)
with hydrophobic regions of slightly damaged protein sub-
strates, somehow directing them back to a native fold. This
section will focus on several bacterial sHSPs that were shown
to act in this mode of chaperone activity.

From the mechanistic point of view, it is highly elusive
how bacterial sHSPs protect enzyme activity; however, it
can be deduced from several studies on vertebrate sHSPs.
These have been shown to weakly and transiently interact
with misfolded intermediates—forming dynamic high molec-
ular weight assemblies (Kulig and Ecroyd 2012). Target sub-
strate hydrophobicity and stability largely determines if sHSPs
would tightly interact with the substrate, stabilizing it for fur-
ther refolding or transiently binding and release. As the
misfolding intermediate is subsequently bound and released,
it is secured from aggregation and can fold into the native
structure (Kulig and Ecroyd 2012; Hatters et al. 2001).

In bacteria, an enzyme activity protection assay was initially
applied forM. tuberculosisHsp16.3. Although the assay showed
chaperone activity towards citrate synthase asmonitored by static
light scattering, the authors could not observe any protection of
citrate synthase activity (Chang et al. 1996). On the other hand,
E. coli IbpA and IbpB turned out to be more successful in this
type of experiment. Together, they were shown to protect lucif-
erase from thermal inactivation (althoughweakly) (Matuszewska
et al. 2005) and both separately and together—to protect several
other enzymes from oxidative and freeze-thaw inactivation
(Kitagawa et al. 2002). Interestingly, the authors claim IbpB to
be more effective than IbpA in enzyme activity protection
(Kitagawa et al. 2002), which is consistent with later reported
in vivo IbpB ability to protect metabolic enzymes activities dur-
ing heat stress (Fu et al. 2013a). In contrast, IbpAwas shown to
be much more potent than IbpB in forming stable assemblies
with aggregating polypeptides. This suggests a diversity in their
activities although they cooperate when acting as mixed com-
plexes (Ratajczak et al. 2009; Matuszewska et al. 2005;
Hochberg et al. 2018; Obuchowski et al. 2019). Finally, it seems
that cooperation is not a key feature for this type of sHSPs activ-
ity. Here is an example fromD. radiodurans, whichHsp17.7was
shown to effectively protect CS from thermal inactivation in
contrast to its paralogHsp20.2 that can neither protect CS activity
nor cooperate with Hsp17.7 (Bepperling et al. 2012).

Leaving aside the cooperation issues, it seems that the ability
to form assemblies with aggregating substrates and protect en-
zyme activity are somehow in opposition. This is supported by
research on single sHSPs: M. tuberculosis Hsp16.3 that is only
able to form assemblies (Chang et al. 1996) and—in contrast—
its close relative sHsp18 from Mycobacterium leprae, which
effectively protects restriction enzymes from thermal inactiva-
tion, however was not assayed for generating stable complexes/
assemblies with aggregating substrate (Lini et al. 2008).

Chaperone activity: conclusion

Although sHSPs-dependent enzyme protection and sHSPs-
substrate complex formation were already shown in the very first
publication attributing sHSPs with chaperone activity (Jakob
et al. 1993), these modes of action are rarely assayed when
new bacterial sHSP appears. The most exploited assay in this
field (and technically the easiest) is in vitro aggregation
protectionmonitored via static light scattering. It does not directly
indicate whether prevention of sample scattering increase is
achieved by protecting a substrate’s native fold or by scavenging
unfolded polypeptides within soluble assemblies. Therefore, it
does not allow discrimination of sHSPs chaperone activity
modes. The same concern may apply to widely exploited exper-
iments on in vivo aggregation, where the amount of cellular
insoluble (aggregated) protein is compared between strains.
Here again, one could ask if aggregates volume is lower due to
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sHSPs-dependent substrate activity (fold)maintenance or by pro-
viding a more potent substrate for effective disaggregation
(sHSPs-substrate assemblies instead of amorphous aggregates).

From the “end user” point of view, however, it is the final
outcome that matters, e.g., reduced aggregation/aggregates
volume. Thus, we can see two different strategies to achieve
that. It can only be speculated that the path of aggregation
modification may be more effective in counteracting severe
proteotoxic stress when unfolding events occur frequently and
rapidly among a larger pool of polypeptides. In contrast, the
activity protection path might be favorable under less severe
conditions, when only a smaller pool of less stable substrates
is exposed to the risk of unfolding.

Finally, there is an evidence for the third option. Klein and
colleagues (Klein et al. 2001) have shown that IbpA, a single
sHSP from the marine bacterium Vibrio harveyi, complexes
in vivo with aggregated protein fraction similarly to most typical
sHSPs. However, one of their experiments suggests that the ag-
gregated protein fraction (containing IbpA) is highly stable dur-
ing cell recovery. This in turn could suggest a dilution of IbpA-
detoxified, stable aggregate species (IbpA-substrate assemblies?)
by cell divisions as a mechanism of aggregates handling in
V. harveyi; however, this would require further research to prove.

Membrane-focused chaperone

Among chaperone-focused research, accompanying localization
studies have shown several bacterial sHSPs to locate in cell mem-
branes (Lee et al. 1992; Laskowska et al. 1996; Otani et al. 2005).
This feature was further exploited in several different bacteria spe-
cies, giving rise to the concept of sHSPs as lipochaperones (Maitre
et al. 2014). This sectionwill attempt to summarize what is known
about sHSPs-membranes relationship.

Starting from the work of Horvath and colleagues, who iden-
tified hsp17 as a “fluidity gene” in Synechocystis PCC 6803
(Horvath et al. 1998), it was shown that several sHSPs are capa-
ble of reducing membranes fluidity in permissive or heat stress
conditions and in the presence of organic solvents (Torok et al.
2001; Capozzi et al. 2011). To perform this task, sHSPs associate
with membranes not as higher-order oligomers, but rather in the
form of dissociated species (Zhang et al. 2005; Maitre et al.
2012), which are also active substrate-binding forms concerning
canonical chaperone activity. Subsequently, Maitre and col-
leagues proposed a combined model of chaperone and
lipochaperone Oenococcus oeni Lo18 activities that summed
up extensive studies in this field (Maitre et al. 2014). However,
no further molecular details of Lo18 lipochaperone sHSPs activ-
ity are available.

Moving from general to more specific lipochaperone activ-
ity, an ability of cyanobacteria sHSPs to maintain thylakoid
membrane integrity and their canonical chaperone activity
towards phycocyanins (Nakamoto and Honma 2006) were

integrated and analyzed in the context of resistance to UVB-
induced damage (Balogi et al. 2008) and oxidative stress
(Sakthivel et al. 2009) in Synechocystis. Presented data strong-
ly highlight the importance of HspA, cyanobacterial sHSP, for
preserving photosynthetic thylakoid functions—both through
maintaining general thylakoid membrane integrity
(lipochaperone) and by specific protection of phycobilisomes
and PSII complexes from inactivation (dedicated chaperone).

Chaperone for special tasks

Small HSPs are featured with the least conserved sequences
among all chaperone families, which allowed great evolutionary
plasticity towards acquiring new functions. This is especially
evident in multiple sHSPs-expressing organisms like plants or
animals, where many sHSPs perform other than general chaper-
one functions. In bacteria, it is less evident (or less investigated),
although there are several 'case studies' that demonstrate specific,
dedicated chaperone-target interactions or other non-chaperone
sHSP function. This section is an attempt to briefly summarize
bacterial sHSPs activities that are separate from the already
discussed canonical chaperone activities.

An example of specific sHSP function was found in
Agrobacterium tumefaciens. HspL, one of the four sHSPs
expressed in this bacterium, was found to be important for
A. tumefaciens virulence towards plant cells, e.g., transferring
its DNA into plant cells in order to take over plant metabolism.
HspL, but no other A. tumefaciens sHSP, effectively protects
VirB8 protein (Tsai et al. 2012) that is an essential assembly
factor for type IV secretion system responsible for DNA in-
jection into plant cells (Baron and Cellulaire 2006). VirB8
protein is conserved across evolution (Baron and Cellulaire
2006); therefore, a follow-up study, concerning the VirB8-
dependent mammal pathogen, appeared. Brucella suis, a fac-
ultative intracellular bacterial pathogen of mammals, also uses
the IV secretion system for virulence particle delivery to the
host cells. Unlike in A. tumefaciens, it was shown that B. suis
IbpA is not required for virulence (Berta et al. 2014). The
second B. suis sHSP (also annotated as IbpA) was not ana-
lyzed based on signif icantly lower homology to
A. tumefaciens HspL (Berta et al. 2014). Considering these
data, it seems that the relationship of VirB8 to HspL found
in A. tumefaciens is rather limited to a narrow species group.

As sHSPs are responsible for protecting proteostasis on the
molecular level, they may also play a more general role in some
of the strategies for survival in a hostile environment. One of
these strategies is a biofilm formation that is a three-dimensional,
complex structure formed of bacteria settled in an extracellular
matrix. Biofilms are more resistant to various stresses (antibi-
otics, heavymetal ions, oxidation) than free-living bacterial cells,
enhancing their ability to survive (Flemming et al. 2016). In
E. coli, it was shown that IbpA and IbpB indirectly influence
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biofilm formation, delaying its establishing when absent. In
ΔibpAB strains, cells are affected by endogenous oxidative
stress, which results in overproduction of indole, that in turn
inhibits formation of the biofilm (Kuczyńska-Wiśnik et al. 2010).

Another strategy for survival in adverse environments, where
sHSPs may interfere, is cyst formation. In opposition to biofilm,
amicrobial cyst is a resting/dormant stage, dedicated to passively
survive harsh conditions. Azotobacter vinelandii is a free-living
soil bacterium whose sHSP, Hsp20, was shown to be essential
for cyst desiccation resistance. Consistent with the function,
hsp20 gene in A. vinelandii is under the control of RpoS sigma
factor (Cocotl-Yañez et al. 2014) that governs expression of
many genes crucial for bacterial survival in adverse environ-
ments. This is however atypical for sHSPs as most of them in
related bacterial species are under the control of RpoH
paralogs—master regulators of the heat shock response in these
species (Tilly et al. 1986).

The most complete story in terms of sHSPs-affected survival
in adverse environments comes from M. tuberculosis. Its
Hsp16.3 sHSP is associatedwith dormancy and stationary phase,
where it was shown to be expressed the most. Hsp16.3 expres-
sion results in lower cell susceptibility to autolysis at the cost of
slower growth rate (Yuan et al. 1996). Hsp16.3 was also shown
to be instrumental in cell wall thickening that provides additional
protection during dormancy (Cunningham and Spreadbury
1998). Similarly to the growth on media, research conducted in
pathogen-host systems has also shown that Hsp16.3 plays a role
in slowing the growth of M. tuberculosis during infection (Hu
et al. 2006)—being important for TB-characteristic infection la-
tency. Hsp16.3 is also highly induced upon entry into macro-
phages and is crucial for both pathogen survival and virulence
in the host organism (Yuan et al. 2002; Hu et al. 2006).

Concluding remarks

Bacterial sHSPs as a group are very plastic in approaching pro-
tein misfolding, aggregation, and other issues. There seems to be
much specialization in their activities, though. Despite abilities
to perform completely different tasks, sHSPs unite in adverse
environment conditions survival, providing proteostasis protec-
tion, virulence, or other, sometimes elusive advantages. Most of
these impacts and functions were found to rely on direct, stabi-
lizing contacts with other proteins, membranes, and complexes,
indicating the functional origin of sHSPs as chaperones.
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