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Abstract
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by
generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs).
Among the HSPs, special attention has been devoted to themutations affecting the function of theαB-crystallin (HSPB5), a small
heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress
recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health
and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian
muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and
cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal
and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally,
pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.
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Introduction

Organisms, to reduce their susceptibility to various stress con-
ditions such as environmental, metabolic, or pathophysiolog-
ical stress, have developed a first line of defense, of which
taking part are a class of proteins called heat shock proteins
(HSPs). Based on their approximate molecular mass, there
have been identified five major and broadly conserved fami-
lies such as HSPH (Hsp110s), HSPC (Hsp90s), HSPA
(Hsp70s), HSPD (Hsp60s), DNAJ (Hsp40s), and small heat
shock proteins (sHsps) (Richter et al. 2010).

The human family of sHsps contains ten members (HSPB1
to HSPB10), which are characterized by proteins of molecular

mass ranging from 16.8 to 28.3 kDa (Kappé et al. 2003).
Some are ubiquitously expressed (i.e., HSPB1, HSPB5,
HSPB6, HSPB8) while others are only expressed in specific
tissues, even in the absence of a stress (Garrido et al. 2012;
Richter et al. 2010).

It is generally accepted that sHsps are a class of ATP-
independent chaperones able to trap misfolded proteins
through a so-called Bholdase^ activity and therefore avoiding
aggregation. A cooperation with ATP-dependent chaperones,
such as HSPD1 (Hsp60), HSP1A (Hsp70), and HSPC1
(Hsp90) is then required to bind unfolded or improperly
folded proteins and promote either refolding using their
Bfoldase^ activity or the proteolytic elimination of the altered
proteins (Carra et al. 2017; Mymrikov et al. 2011).

Among sHsps, the most prominent and also well-studied
member of the family is the HSPB5 (human αB-crystallin), a
protein playing a critical role in the modulation of several
cellular processes related to survival and stress recovery, such
as protein degradation, cytoskeletal stabilization, and apopto-
sis (Bakthisaran et al. 2015; Thornell and Aquilina 2015).
Highlighting its importance in maintaining cellular function,
either overexpression or deleterious mutations in HSPB5 are
found in a number of known disorders (Cornford et al. 2000;
Del Bigio et al. 2011; Fichna et al. 2016; Forrest et al. 2011;
Inagaki et al. 2006; Liu et al. 2006; Pilotto et al. 2006; Reilich
et al. 2010; Sacconi et al. 2012; Selcen and Engel 2003; Vicart
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et al. 1998).Moreover, differently frommost sHsps, which are
presumably not directly regulating or involved in diseases,
mutations in the HSPB5 sequence are now recognized as
causative of skeletal and cardiac myopathies (Del Bigio
et al. 2011; Fichna et al. 2016; Forrest et al. 2011; Inagaki
et al. 2006; Pilotto et al. 2006; Reilich et al. 2010; Sacconi
et al. 2012; Selcen and Engel 2003; Vicart et al. 1998) (Fig. 1).

For a long time, HSPB5 was considered as a lens-specific
protein, where it plays an important role in maintaining the
lens transparency (Dubin et al. 1990). This idea became ob-
solete when this protein was detected in muscle, heart, brain,
and kidney as well as in extracellular fluids where it exhibits
pleiotropic roles in several cellular processes (Bhat and
Nagineni 1989; Gangalum et al. 2011; Rothbard et al. 2012;
Thornell and Aquilina 2015).

HSPB5 is generally considered an intracellular protein;
however, it has been detected at low level in extracellular
fluids where it has been shown to bind inflammatory mole-
cules and platelets (Enomoto et al. 2009; Gangalum et al.
2011; Rothbard et al. 2012). Since HSPB5 does not possess
a signal sequence to be secreted through the normal secretory
pathway, it might be released upon cell death or, as already
demonstrated in human cells, via exosomes under specific
stress conditions (Gangalum et al. 2011).

Because of the emerging role in general health and disease
conditions, the main objective of this mini-review is to pro-
vide a brief account of the role of HSPB5 in human muscle
pathophysiology. Here, we report the current status of the
regulation and localization of HSPB5 in skeletal and cardiac
tissue, making also a critical summary of all human HSPB5
mutations known to be strictly associated to specific skeletal
and cardiac diseases, such as desmin-related myopathies
(DRM) and dilated (DCM) and restrictive (RCM) cardiomy-
opathy (Brodehl et al. 2017; Inagaki et al. 2006; Vicart et al.
1998).

Finally, it will point to putative strategies for HSPB5-based
therapy to prevent or treat these forms of muscular disorders.

The small heat shock protein αB-crystallin (HSPB5)

The human HSPB5 gene maps to 11q23.1 genome region and
comprises three exons spanning 3.2 kb. It encodes a 175-
aminoacid protein with a molecular mass of ~ 20 kDa
(Dubin et al. 1990). As a monomeric subunit, HSPB5 is a
protein organized in three regions: a conserved central do-
main, called Bα-crystallin domain (ACD),^ comprising resi-
dues 60–150, the flanking N-terminal region (NTR) and the
C-terminal region (CTR) (Delbecq and Klevit 2013; Kappé
et al. 2003; Kriehuber et al. 2010) (Fig. 1). Three-dimension-
ally, the ACD domain exhibits a β–sheet sandwich composed
of eight anti-parallel strands connected by an inter-domain
loop. A careful analysis of isolated ACDs, demonstrates that
these form dimers that represent the basic Bbuilding blocks^ of

higher-order oligomers (Bagnéris et al. 2009; Baranova et al.
2011; Laganowsky et al. 2010). In particular, the dimer inter-
face is formed by antiparallel alignment of the β6/β7 strands
of the ACD. Structural information regarding the CTR do-
main highlights the presence of a three-residue isoleucine-pro-
line-isoleucine/valine (IXI/V) motif that is typically found in
many other sHsps. The intermolecular interaction between C-
terminal IXI/V motif of one dimeric unit and the β4/β8
groove in an ACD of another dimer defines the secondary
structure of an oligomer, called Bhexameric block,^ which is
composed of three HSPB5 dimers (Delbecq et al. 2015).
Finally, the NTR domain is the most divergent region among
sHsps both in length and sequence (Kim et al. 1998).
Although the interaction between NTR and/or with ACD is
poorly defined, it is clear that the NTR is largely responsible
for the assembly of higher-order HSPB5 oligomers and their
dynamic distribution. Indeed, a model of a 24-mer with tetra-
hedral symmetry can be generated through extensive contacts
between NTRs (Braun et al. 2011; Jehle et al. 2011). To date,
the aforementioned structural model represents a considerable
advancement in our understanding of HSPB5 architecture.
However, a 24-mer represents only ~ 5% of the oligomeric
population of HSPB5 that exists (Baldwin et al. 2011).

In common with all sHsps, HSPB5 shares the property to
form large (molecular masses ranging from 50 to about
800 kDa), polydisperse (oligomers contain variable number
of subunits), and structurally heterogeneous oligomers that
undergo dynamic subunit exchange. The ability of HSPB5
to form different homo- and hetero-oligomers is modulated
through addition or subtraction of subunits and seems to be
tightly correlated with the regulation of its chaperone activity
(Braun et al. 2011; Haslbeck et al. 2015; Zantema et al. 1992).
Thus, not only the amount of HSPB5 per se but also the
presence of specific types of oligomers is important and indic-
ative for the states of cells and tissues.

Data on diverse interactions of sHsps with cellular proteins
have been recently summarized (Arrigo 2013; Arrigo and
Gibert 2014). These data indicate that human sHsps could
bind either types of non-native protein Bsubstrate^ to stabilize
the cell proteome or a sub-fraction of all substrates, called
Bclient,^ that is already bound under physiological conditions
and where its binding and release give the cell the opportunity
to regulate a specific cellular process (Arrigo 2013; Arrigo and
Gibert 2014). Typical example for such client interactions is
represented by procaspase-3, which is bound by HSPB1 and
HSPB5 independently of general stress conditions. Only the
phosphorylation of HSPB1 triggers the release of procaspase-
3 and thus its activation and induction of apoptosis (WF et al.
2012; Voss et al. 2007). Further examples for clients are p53
and Bax for HSPB5, where binding inhibits their translocation
to the mitochondria during apoptosis (Arrigo 2013; Arrigo
and Gibert 2014). Besides the two above described modes of
interaction, a third intracellular interaction is represented from
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the binding of co-chaperones that helps to target some sHsps
or sHsp-substrate complex to other specific functional com-
plexes (Arrigo 2013). The most prominent example for a co-
chaperone of sHsps is Bag3, which binds to HSPB8 linking it
to the Hsp70/ubiquitin ligation/proteasome machinery and the
macroautophagy machinery (Gamerdinger et al. 2011).
Additional data related to possible interaction of sHsps with
cellular proteins can be found elsewhere (Arrigo 2013;
Mymrikov et al. 2017).

To date, it remains unclear how sHsps might distinguish
among different protein targets (i.e., substrate, client, or other
sHsps). Evenworse, the binding sites of sHsps that are involved
in protein-target interactions have not been completely defined
yet (Arrigo and Gibert 2013). Studies utilizing different strate-
gies have identified short segment in the N-terminal sequence
(Sharma et al. 1998), within ACD (Ghosh et al. 2005), and a
part of ACD domain of HSPB5 (called Bmini-αB-cristallin^)
(Banerjee et al. 2015; Bhattacharyya et al. 2006), as well as in
the C-terminal sequence (Treweek et al. 2010). Therefore, the
emerging picture is that multiple binding sites throughout the
molecule act together, presumably in a different manner for
different substrate/client proteins.

Nevertheless, it is consolidated the idea that higher-order
HSPB5 oligomers, where the potential substrate-binding sites
are engaged in inter-subunit interactions, are likely to repre-
sent dormant storage forms, where smaller oligomers expos-
ing hydrophobic patches might contribute, together with dis-
sociated HSPB5 Bbuilding blocks,^ to the pool of Bbinding-
competent^ species. The transition of HSPB5 from a low- to a
high-affinity state presumably occurs through a remodeling of
the ensemble composition by adjusting the dissociation/
association rates of building blocks, determining the oligomer
equilibrium according to the specific needs of the cell.
Conditions that destabilize the oligomeric state can lead to
an enhanced rate of dissociation of subunits, would raise

populations of oligomers with higher binding capacity and
thus increase the chaperone activity.

Serine phosphorylation in HSPB5, as well as in other hu-
man sHsps, is reported to shift the distribution of higher-order
oligomers toward smaller species (often tetramers and
hexamers) (Hayes et al. 2009; Peschek et al. 2013; Rogalla
et al. 1999). Such predominance of these species upon phos-
phorylation is based on the localization of the phosphorylation
sites in NTR and is in accordance with the hierarchical assem-
bly of the oligomers (Peschek et al. 2013). Indeed, as already
highlighted by Peschek and colleagues (122), NTR contrib-
utes decisively to the assembly and dynamic of oligomers and
act as tunable conformation sensor in regulating HSPB5
activity.

The HSPB5 has three phosphorylation sites (serines 19, 45,
and 59) (Fig. 1). The MAPKAPK2/3 kinases are responsible
for the phosphorylation of S59 while p42/p44 MAPKinase
phosphorylates S45 (Ito et al. 1997; Kato et al. 1998). The
specific kinase of S19 is still unknown. Nevertheless, both
unphosphorylated and phosphorylated forms of HSPB5 are
reported to be equally effective in preventing in vitro assembly
of glial fibrillary acidic protein (GFAP) and vimentin through
their chaperone activity (Nicholl and Quinlan 1994). In fact,
during physiological or pathological stress, both HSPB5 con-
tent and phosphorylation can be modulated (Adhikari et al.
2011; Fittipaldi et al. 2015; Morrison et al. 2003; Morrison
et al. 2004; Reddy et al. 2015).

Depending on the type and/or duration of various stimuli,
the fraction of phosphorylated HSPB5 ranges between 10 and
27% (Eaton et al. 2001; Ito et al. 1997). Different studies
demonstrate that the phosphorylation of HSPB5 shows a dual
role that leads to both beneficial or deleterious outcomes de-
pending on the extent and duration of the stress and subse-
quent degree of phosphorylation: a phosphorylation at an ini-
tial stage of a stress is usually reversible and provides a

Fig. 1 Full-length monomer structure of human HSPB5 protein. Gray
box: N-Terminal Region (residues 1–68); light box: C-Terminal Region
(residues 151–175); Striped box: highly conserved IXI/V sequence (res-
idues 159–161); black box: alpha-crystallin domain (residues 69–150); P:
phosphorylated serine residues. Positions of point mutations that are
known to be responsible of specific muscle disorders (i.e., desmin-

related myopathies, dilated, and restrictive cardiomyopathy) are indicated
by thunderbolt. HSPB5 assembles into dimers through ACD-ACD inter-
actions (building block). Higher-order oligomers are initially formed
through CTR-ACD interactions (hexameric block) while the poorly de-
fined NTR-ACD interactions drive the assembly of the final oligomer
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beneficial outcome, while a prolonged stress can induce an
irreversible phosphorylation which may lead to a deleterious
outcome (Bakthisaran et al. 2015).

It is known that all aforementioned serine residues can be
found phosphorylated after various stimuli (Ito et al. 1997), but
only a few studies have reported their contemporary involve-
ment in muscle tissues (den Engelsman et al. 2005; Li et al.
2011; Reddy et al. 2015). To date, most of the available data
are related to HSPB5 expression and/or activation at Ser59
(Adhikari et al. 2011; Aggeli et al. 2008; Beltran Valls et al.
2015; Fittipaldi et al. 2015; Ivanov et al. 2008; Neppl et al.
2014; Pereira et al. 2015). Further details about the phosphor-
ylation of HSPB5 in various physiological or pathological con-
ditions can be found elsewhere (Bakthisaran et al. 2015).

Though phosphorylation might be the preferred regulation
mechanism for human sHsps, several other post-translational
modifications such as the deamidation (Gupta and Srivastava
2004), glycation (Satish Kumar et al. 2004), oxidation (Chalova
et al. 2014; Chen et al. 2001), thiolation (Eaton et al. 2002), and
the attachment of methylglyoxal (Oya-Ito et al. 2006) have
been described to influence chaperone activity.

HSPB5 and skeletal muscle

An important aspect of muscle differentiation is the generation
of multinucleated muscle fibers through fusion of mononucle-
ated myoblasts. This process is orchestrated by many factors,
including several members of the sHsp family, such as HSPB5
(Bucley and Konigsberg 1974).

The level of HSPB5 is elevated up to tenfold during skel-
etal muscle differentiation, suggesting a key role of the protein
in the myogenic process. Indeed, the HSPB5 gene contains a
skeletal-muscle preferred enhancer (− 427 to − 259), which
includes at least four cis-acting regulatory elements (αBE-1,
αBE-2, αBE-3, and MRF) (Dubin et al. 1990; Gopal-
Srivastava and Piatigorsky 1993). It can modulate MyoD ac-
tivity leading to delayed muscle differentiation (Golenhofen
et al. 1999), as well as to protect skeletal muscle satellite cells,
through an anti-apoptotic effect, during physiological or path-
ological changes associated with skeletal muscle regeneration
and/or injury (Adhikari et al. 2011; Dimauro et al. 2014;
Mercatelli et al. 2010). Moreover, experimental data have
shown the presence of muscle abnormalities determined by
the loss of HSPB5 function, hence confirming an important
role of this protein during myogenesis (Brady et al. 2001).

HSPB5 is also highly expressed in slow and fast fibers of
adult skeletal muscle where it is associated with actin micro-
filaments at level of Z-bands (Inagaki et al. 2006). Many
different lines of evidence suggest that this sHsp protects
mammalian skeletal muscle from heat, oxidative, and me-
chanical stresses produced during middle age and senescence
or by physical activity (Dimauro et al. 2016a; Doran et al.
2007; Fittipaldi et al. 2014).

In particular, it has been demonstrated that the alteration of
any of the three major components (i.e., microfilaments, mi-
crotubules, and intermediate filaments) results in a specific
activation of p38MAPK and MAPKAP kinases 2 and 3 and
the phosphorylation of HSPB5 (Launay et al. 2006). Our
group also demonstrated that a reversible redox unbalance,
which represents one of the main stimuli under different cir-
cumstances, induces HSPB5 expression through a JNK-
mediated transcriptional mechanism in myogenic mammalian
cells (Fittipaldi et al. 2015). The increased level of HSPB5 and
its phosphorylation determine, on the one hand, its transloca-
tion to the myofilaments where it binds titin, desmin,
vimentin, nebulette, and the inactive precursor of caspase 3,
leading to the stabilization of the myofilament and to the in-
hibition of apoptosis (Adhikari et al. 2011; Webster 2003); on
the other hand, it enhances NFκB activity, which translocates
into the nucleus inducing the expression of genes involved in
various biological events such as growth, differentiation, and
cell death (Adhikari et al. 2011; Karin and Lin 2002; Perkins
and Gilmore 2006) (Fig. 2).

Moreover, HSPB5 appears to have a role in regulation of
apoptosis in mammalian cells during heat shock, oxidative
stress, and ischemia. This protein is able to prevent apoptosis
by several mechanisms such as the inhibition of RAS-initiated
RAF/MEK/ERK signaling pathway (Li et al. 2005), or down-
stream, blocking the BAX, and Bcl-2 translocation from the
cytoplasm to the mitochondria (Mao et al. 2004), as well as
interacting with p53 to retain it in the cytoplasm (Liu et al.
2007), or inhibiting autocatalytic maturation of caspase-3
(Kamradt et al. 2001).

A recent finding has established that HSPB5 is necessary
for mammalian skeletal muscle homeostasis via modulation of
Argonaute 2 (Ago2) activity (Neppl et al. 2014), a protein
with endonuclease activity. It belongs to the central core of
an RNA-induced silencing complex (RISC), which is capable
of repressing the translation of mRNA into protein via a vari-
ety of mechanisms such as removal of the 5–7-
methylguanylate cap (m7G), deadenylation of the 3′-poly(A)
tail, and miRNA site-directed endonuclease cleavage of the
mRNA (Bartel 2004; Djuranovic et al. 2011). This result in-
dicates that HSPB5 functions as a positive allosteric regulator
of Ago2/RISC. In fact, the absence of HSPB5 results in an
imbalance of the hypertrophy-atrophy axis toward atrophy
with an excessive miRNA loading into Ago2/RISC (Neppl
et al. 2014) (Fig. 2).

HSPB5 and cardiac muscle

Early expression of some sHsps, including HSPB5, has been
reported during the developmental phases of mammalian heart
(Lutsch et al. 1997). The amount of this protein in heart
reaches up to 3–5% of the total soluble protein. In the embryo,
the expression of HSPB5 starts during the gastrulation stage,
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initially restricted to somites; it expands to the entire myo-
tome, as well as heart and other tissues as development pro-
ceeds (Lutsch et al. 1997).

To date, the role of this sHsp in cardiogenesis is still unclear,
although a HSPB5-KO mouse model shows a slightly dystro-
phic phenotype without alteration in cardiac development,

morphology, or function (Morrison et al. 2004). Experimental
data showed that HSPB5 depletion may compromise the cor-
rect folding of nascent myosin and thereby contribute to altered
myofibrillogenesis (Smith et al. 2014).

Differently from skeletal muscle, the expression of HSPB5
in cardiac tissue requires an additional enhancer such as αB-

Fig. 2 Schematic representation of HSPB5 pathways present in skeletal
and cardiac muscle tissue. Several stimuli such as heat shock, reactive
oxygen species, ischemia, and osmotic and reticulum endoplasmic stress,
lead to sustained activation of pathways, especially p38MAPK-
MAPKAPK2, which result in progressive phosphorylation of HSPB5 at
serine 59. HSPB5 is proposed to function at different levels of interrelated
cellular pathways. HSPB5 can interfere with the mitochondrial pathway
of apoptosis at various steps. In particular, it interacts with Bax and Bcl2
inhibiting their translocation into mitochondria, as well as with
cytochrome-c preventing cytochrome-c-mediated interaction of Apaf-1
with procaspase-9 to form apoptosome. HSPB5 suppresses apoptosis also
by binding to the pro-caspase 12 and pro-caspase-3 and preventing its
maturation into the proteolytically active enzyme. HSPB5 interacts with
IKKβ and enhances its kinase activity, which leads to phosphorylation
and subsequent degradation of IκBα, a negative regulator of NFκB, fa-
cilitating the nuclear translocation of the transcription factor. Moreover, in
unfavorable conditions such as redox unbalance and reticulum endoplas-
mic stress, a series of pathways are activated to induce the transcriptional
activation of HSPB5 as well as its interaction with actin filaments.

HSPB5 participates to homeostasis of skeletal muscle via modulation of
Ago2, a potent endonuclease belonging to the central core of RISC com-
plex, as well as at post-translational level; it controls all steps of the
protein life cycle such as folding, aggregation, refolding, and degradation.
Black lines indicate activation; red lines indicate inhibition; dash lines
represent the translocation into the nucleus. Ago2, argonaute 2, RISC
catalytic component; AP1, AP-1 promoter site; ARE, AU-rich elements;
ATF6, activating transcription factor 6; Bax, Bcl-2-associated X protein;
Bcl2, B-cell lymphoma 2; Bip/GRP78, binding immunoglobulin protein;
HSPB5, αB-crystallin; CytC, cytochrome c; c-jun, Jun proto-oncogene,
AP-1 transcription factor subunit; IRE1, endoplasmic reticulum to nucle-
us signaling 1; IKKB, inhibitor of nuclear factor kappa-B kinase subunit
beta; IκBα, NF-kappa-B inhibitor alpha; Keap-1, Kelch-like ECH-asso-
ciated protein 1;MEKK3, mitogen-activated protein kinase kinase kinase
3; MEKK6, mitogen-activated protein kinase kinase kinase 6; Nrf-2, nu-
clear factor, erythroid 2 like 2; p38MAPK, mitogen-activated protein ki-
nase; MAPKAPK2, MAP kinase-activated protein kinase 2; NFκB, nu-
clear factor kappa B; RISC complex, RNA-induced silencing complex;
XBP1, X-box binding protein 1; UPR, unfolded protein response
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E4, containing a control sequence 5′-GGAATCTTCC-3′ that
resembles a reverse CArG box [5′-CC(A/T)6GG-3′], that is
also found in other genes expressed in the heart (Gopal-
Srivastava and Piatigorsky 1993). The intracellular localiza-
tion of HSPB5 in cardiomyocytes has some very unusual
characteristics. Rather than in the Z-disc, data from
immunoelectron microscopy has shown that this sHsp local-
izes in a narrow region of the I-band under both normal and
stress conditions. HSPB5 seems associated with cardiac titin
in the N2B region and desmin filaments in order to either
stabilize the conformation of these various filaments or to
effectively prevent their tendency to form aggregates
(Golenhofen et al. 2002; Morrison et al. 2004). It might be
possible that HSPB5 translocates to the Z-line at an early
phase, while a prolonged, irreversible damaging stress leads
to extreme stretching of myofibrils and concomitant extension
of HSPB5 localization to the I-bands (Golenhofen et al. 1999).

The interaction between cytoskeletal structures and HSPB5
in situ is fairly weak under normal condition; indeed, this
protein is released into the water-soluble fraction upon heart
homogenization (Longoni et al. 1990). However, a short peri-
od of ischemia in the heart can induce the redistribution of
HSPB5 in the cell homogenate: the protein aggregates with
the insoluble elements of the cells (Chiesi et al. 1990). Thus,
during this stress, the affinity of this sHsp for some structural
elements of the cell increases. This association seems to be
dependent on the phosphorylation of both Ser45 and Ser59,
since inhibition of their phosphorylation inhibits almost
completely the interaction between this sHsp and the cardiac
myofibrillar structures (Singh et al. 2007).

Similarly to skeletal muscle, the activation of p38MAPK
via MKK3/MKK6 pathways under different stress conditions
(i.e., ischemia, heat stress, oxidative stress) stimulates the
MAP-activated protein kinase-2 (MAPKAPK2), which in
turn phosphorylates HSPB5 at Ser59 residue (Kato et al.
1998; Maulik et al. 1996). However, in response to ischemia,
HSPB5 is also phosphorylated on Ser45 by the ERK pathway
(Morrison et al. 2003), but to date, it is accepted that Ser59 is
selectively responsible for mediating the cytoprotection in
cardiomyocytes (Hoover et al. 2000; Morrison et al. 2003)
(Fig. 2).

Few reports also suggest that HSPB5 induction in
cardiomyocytes of mammalians is an adaptive response to
Endoplasmic Reticulum (ER) stress (Mitra et al. 2013).
Under non-stress condition, Bip/glucose regulated protein 78
(GRP78/Bip), a master regulator of the Unfolded Protein
Response (UPR), interacts with other ER resident proteins like
PERK, ATF6, and IRE1 (Groenendyk et al. 2010). Upon ER
stress and accumulation of misfolded proteins in the ER,
GRP78/Bip dissociates from such protein aggregates to acti-
vate IRE1 and ATF6 dependent pathways (Groenendyk et al.
2010). IRE1 activation is responsible for the splicing of XBP1
mRNA to yield XBP1s splice variants, a potent transcription

factor, which upregulates the expression of HSPB5 and other
genes involved in ER associated degradation (ERAD)
(Groenendyk et al. 2010). The ATF6 dependent pathway is
activated when Bip/GRP78 dissociates from ATF6, which
then translocate to the Golgi and is cleaved by S1P and S2P
proteases. This process yields the release of the N-ATF6 tran-
scription factor, that moves to the nucleus to activate HSPB5
and other UPR target genes (Ganguly et al. 2014; Groenendyk
et al. 2010; Mitra et al. 2013) (Fig. 2).

HSPB5 and human muscle cristallinopathies

As the HSPB5 protein is known to play a role in the remod-
eling of the cytoskeleton during development and cell differ-
entiation (as well as after stress stimuli), it is not surprising that
several degenerative disorders of skeletal and cardiac muscle
such as DRM, DCM, and RCM cardiomyopathy, are caused
by mutations of the HSPB5 gene. In 2011, Houck and col-
leagues (Landsbury et al. 2011) demonstrated how three spe-
cific sequences of HSPB5 contributed to Bsubstrate type^
interaction between HSPB5 oligomers with desmin filaments
to prevent their self-association and the formation of filament-
filament aggregates. As a consequence of myopathy-
associated HSPB5 mutations (e.g., R120G), the secondary,
tertiary, as well as quaternary structures and chaperone activity
of these molecules are compromised. This condition enhances
the subunit dynamics driving the dissociation of monomers or
dimers (Michiel et al. 2009) to mislead the oligomer equilib-
rium toward an excess of assemblies with dramatically in-
creased substrate affinity and results in the formation of these
abnormal aggregates featuring DRM (Bova et al. 1999). In
fact, analysis of patient muscle biopsies showed morphologi-
cal changes derived from disintegration of the sarcomeric Z
disc and myofibrils, followed by abnormal ectopic accumula-
tion of multiple proteins involved in the structure of the Z disc.

To date, the limited number of patients analyzed and the
absence of studies with periodic follow-up that are able to
exclude the late onset of other possible features, make it dif-
ficult to delineate a well-defined clinical and morphological
phenotype for each mutated form of the protein.

Future studies should take into account the aforementioned
issue and should provide detailed analysis of the different
pathophysiological properties of each individual mutant allele
with distinct phenotype in order to develop targeted therapeu-
tic interventions.

Desmin-related myopathy

The desmin-related myopathy represents a subgroup of myo-
fibrillar myopathy where myopathic manifestations of disease
are causedmainly bymutations in desmin or HSPB5 (Dalakas
et al. 2003).
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The first description of a family with multisystemic in-
volvement associated with a HSPB5 mutation (R120G) dates
back to 1998 (Vicart et al. 1998) (Fig. 1). Vicart and col-
leagues (1998) (Liu et al. 2006) identified an arginine-to-
glycine missense mutation at amino acid position 120 in
HSPB5 implicated in the causation of DRM, an autosomal
dominant myopathy characterized by weakness of the proxi-
mal and distal limb muscles and signs of cardiomyopathy and
cataracts. This phenotype could be the consequence of an
altered interaction between R120G HSPB5 and desmin due
to changes in the molecular chaperone activity and/or to the
tertiary structure of the HSPB5. Moreover, the pathogenic
mutant tends to aggregate and forms toxic protein deposits
containing desmin, amyloid oligomers, and fibrils (Sanbe
et al. 2004).

Subsequently, two novel mutations (Q151X and
464delCT) that lead to DRM have been identified in the ter-
minal part of the HSPB5 coding sequence (Selcen and Engel
2003). Both heterozygous truncating mutations showed sym-
metrical proximal and distal muscle weakness starting in
adulthood, accompanied by muscle atrophy as well as respi-
ratory involvement (Fig. 1).

In 2011, Forrest and colleagues (Forrest et al. 2011) identi-
fied a novel truncating HSPB5 mutation (S115fs129X) asso-
ciated with autosomal recessive (AR) fatal hypertonic muscu-
lar dystrophy characterized by progressive limb and axial mus-
cle stiffness, severe respiratory insufficiency, and death in in-
fancy. Subjects affected by this form of myofibrillar myopathy
are homozygous for a c.343delT (p.Ser115ProfsX14) mutation
in exon 3 of the HSPB5 gene leading to a truncated protein of
127 amino acids (Fig. 1). The onset of symptoms occurs in the
first few months of life (≈ 4 months), with evidence of muscle
fiber necrosis at a structural level and phagocytosis with in-
tense staining of desmin, myotilin, p62, and HSPB5.

The same year, Del Bigio and colleagues (Del Bigio et al.
2011) identified a similar fatal AR infantile hypertonic mus-
cular dystrophy in Canadian aboriginals showing the patho-
logical features of myofibrillar myopathy. All subjects affect-
ed were homozygous for the c.60C deletion mutation that
predicts a Ser to Ala change at codon 21 and a stop codon
after 23 missense residues (p.Ser21AlafsX24). The truncated
HSPB5 gene produces a protein of 44 amino acids (Fig. 1).

Sacconi et al. (Sacconi et al. 2012), and a few years later
Fichna et al. (Fichna et al. 2016), reported patients with clin-
ical diagnosis of DRM associated with novel autosomal dom-
inant (AD) HSPB5 mutations (D109H and D109A). Codon
109 is located in exon 3 of the gene (Fig. 1) and encodes an
amino acid involved in the dimerization of the HSPB5 protein.
In particular, the mutated proteins show modifications of hy-
drogen and ionic bonds responsible of interactions with resi-
dues from the same monomer as well as residues on the adja-
cent monomers. Therefore, both mutated proteins showed
several unfolded β-sheets resulting in lower stability of the

oligomer structure. In fact, the number of residues participat-
ing inβ-sheets, which form the core of HSPB5, diminished by
4% for D109H and > 10% for D109A. These AD mutations
induce not only classical symptoms involving skeletal muscle
present in all patients with other HSPB5 mutations, such as
myopathy, distal weakness, dysphonia, and dysphagia, but
also cardiomyopathy and lens cataracts (Fichna et al. 2016;
Sacconi et al. 2012).

Dilated cardiomyopathy

In addition to being involved in DRM, HSPB5mutations have
been identified in DCM. This disease is characterized by car-
diac enlargement accompanied by systolic dysfunction, often
manifested with congestive heart failure (Richardson et al.
1996). First Inagaki et al. (Inagaki et al. 2006) and then
Pilotto et al. (Pipkin et al. 2003) reported subjects with late
onset DCM pathology and occurrence of symptoms after the
fourth decade that were heterozygous for HSPB5 mutations.
They found two different AD missense mutations in exon 3:
(1) Arg157His (R157H), due to a codon change 157 (CGC to
CAC) replacing arginine with histidine; and (2) Gly154Ser
(G154S), due to codon change 154 (GGC to AGC) replacing
glycine with serine (Fig. 1). Both mutations showed different
functional alteration from DRM-associated mutation. In par-
ticular, these HSPB5 mutations reduced the binding of the
protein to the cardiac-specific N2B domain, but not to I26/
I27 domain of titin/connectin expressed in both skeletal and
cardiac muscle. Moreover, mutant proteins did not generate
any aggregates. Since HSPB5 has been found translocated to a
narrow region of I band during different stresses, it may sug-
gest a protective role of the protein (Golenhofen et al. 2002).
Therefore, the impaired localization of HSPB5 into the I-band
region of cardiac muscle may predispose early progression to
heart failure under stress condition. However, Pilotto and col-
leagues found in their case report study (G154S) a minimal
increase of serum CPK, suggesting a potentially subclinical
muscle involvement. Interestingly, a few year later, Reilich
and colleagues (Reilich et al. 2010) reported the same
HSPB5 mutation G154S in an old male patient showing a
mild distal vacuolar myopathy with protein aggregates with-
out associated cardiomyopathy, respiratory failure, and
cataracts.

Restrictive cardiomyopathies (RCM)

It is a rare heart disease caused by genetic or nongenetic fac-
tors. During the last decade, RCM-associated mutations were
identified in different genes (Arbustini et al. 2006; Brodehl
et al. 2016; Wu et al. 2015) including HSPB5 (Brodehl et al.
2017). Particularly, Brodehl and colleagues were the first to
report a HSPB5 missense mutation (D109G) in two German
patients, which was associated with severe RCM and skeletal
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myopathy (Brodehl et al. 2017). The first diagnosis of RCM
was received at the age of 19 and 28 years, respectively. It is
known that the formation of two ionic bridges between D109
and R120 are essential for the stabilization of HSPB5 dimers,
the Bbuilding block^ of the oligomeric forms of HSPB5.
Therefore, this mutation compromises the protein function
leading to muscle crystallinopathies.

The morphological analysis of myocardial tissue showed
Z-band structure partially disappeared with cytoplasmic pro-
tein aggregates positive for HSPB5 and desmin.

Therapeutic approaches

Protein misfolding and its pathogenic consequences have be-
come an important issue over the last two decades. Indeed, it
was estimated that protein misfolding could be involved in up
to half of all human diseases (Bradbury 2003). Cellular mo-
lecular chaperones, including HSPs, are proteins that selec-
tively recognize and bind non-native protein via non-
covalent interactions, thus inhibiting irreversible aggregation
of those proteins (Welch 2003).

Based on current knowledge, the pathogenic mechanism of
all known HSPB5 mutations can be summarized in two ways:
(1) limited ability to prevent aggregation of various proteins
via dominant-negative effect on the chaperone function of
oligomeric HSPB5 complex with other partners (including
other HSP family members) and (2) the structural instability
and propensity to aggregate of the mutated HSPB5 itself that
results in a classical Bloss of function^ of the gene product.

To date, a possible theraputic approaches in HSPB5
mutation-related muscle diseases could be (1) restoring the
HSPB5 functions through the enhanced expression of the cor-
responding wild-type protein; (2) inducing other sHsps such
as HSPB1, HSPB6, and HSPB8, already known to be impor-
tant in stabilizing the cytoskeleton and preserving contractile
function, as well as to be normally present as a complex with
HSPB5 in muscle tissues (Pipkin et al. 2003); and (3) improv-
ing the protein quality control (PQC) system (through HSPs)
or enhancing both primary mechanisms for removing
misfolded proteins from the cell, called Bubiquitin-proteasome
system^ (UPS) and Bautophagy,^ inhibiting the aggregate for-
mation and thereby the accumulation of toxic deposits (Singh
et al. 2010; Tyedmers et al. 2010).

Although no treatment is currently available for disorders
related to HSPB5 mutations, studies from cellular and animal
models have highlighted the possible effectiveness of different
therapeutic options highlighted below.

HSPs as therapeutic compounds

Based on the premise that chaperones are protective from some
of the deleterious effects of muscle disorders, many attempts
have been made to increase their expression to induce

endogenous chaperone genes by using chemical compounds.
In particular, it was found in R120G-Transgenic (Tg) mice that
the induction of HSPB1 and HSPB8 was a powerful inhibitor
of amyloid oligomer and aggresomal formation (Sanbe et al.
2009). Particularly, Sanbe et al. (Sanbe et al. 2009) demonstrat-
ed that the treatment with geranylgeranylacetone (GGA), an
inducer of HSPB1 and HSPB8, reduced the formation of amy-
loid oligomers as well as of insoluble aggregates in R120G-Tg
mice. At a clinical level, this approach results in a reduction in
heart size, inhibition of interstitial fibrosis, and recovery of car-
diac function as well as improved survival (Sanbe et al. 2009).
Although other chemical inducers of HSPs have been isolated
(Ahmed et al. 2012), most of them have not been tested in these
types of diseases. Moreover, particular care should be taken in
the case of DMR caused by HSPB5 mutants, to avoid inducing
the endogenous mutated (R120G) gene using, for instance, glu-
cocorticoids (N’edellec et al. 2002).

These results imply that enhancing the induction of small
HSPs could be beneficial in the treatment of crystallinopathies.
Therefore, a plausible therapeutic option could be to administer
pharmacological inducers of HSP response and/or possibly by
directly delivering HSPB1 to human muscles using viral
vectors.

Redox balance approach

Production of aggregates in muscle fibers, mitochondrial
mislocalization induced by defects in Z-line structure, as well
as the inability of HSPB5 to bind the redox-active Cu2+ may
also generate more reactive oxygen species with a consequent
increase of oxidative damage (Ahmad et al. 2008; Janu’e et al.
2007). In R120G-Tg mice, the inhibition of xanthine oxidase
with oxypurinol restores mitochondrial function (Maloyan
et al. 2009). However, cardiac contractile function and com-
pliance do not improve (Maloyan et al. 2009). Other promis-
ing results had also been obtained by Banerjee-Mustafi et al.
(Banerjee Mustafi et al. 2014). They found that in DRM, the
thioredoxin system was altered at multiple levels (i.e., expres-
sion, activity, and regulation). This antioxidant system plays
an important role in protein folding by reducing disulfide
bond–oxidized cysteines and thereby could affect other pro-
teins interacting with the mutant R120G and, subsequently,
change their aggregation propensity. In vivo and in vitro ex-
periments combined inhibition of TrxR1 and measurement of
aggregate development in two different contexts, one being in
hearts of R120G-Tg mice and the other in H9c2 myoblasts
transfected with R120G, demonstrated that TrxR1 activity im-
pacts aggregate growth. Therefore, it is tempting to speculate
that augmentation of TrxR1 activity could be a potential ther-
apeutic avenue for modifying disease onset and progression.
Recently, two cellular studies on myoblasts seem to show that
antioxidant or pro-autophagic compounds (i.e., NAC, trolox,
pp 242) could reduce aggregation, linking antioxidant activity,
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and/or PQC system with modulation of protein aggregates
(Cabet et al. 2015; Segard et al. 2013). Although additional
studies are needed to test the efficacy of these compounds in
existing animal models, the antioxidant treatment appears
promising for counterbalancing the negative effects of accu-
mulation of abnormal proteins and damaged mitochondria.

Improvement of proteasome and autophagy systems

The use of R120G-Tg mice indicates that PQC network be-
comes inadequate during the progression of DRM, perhaps
because the amount of aggregates overloads PQC (Li et al.
2011; McLendon and Robbins 2011).

Under physiological conditions, PQC network is carried
out by several classes of chaperones (i.e., holdases and
foldases), which serve as sensors of misfolded proteins/
aggregates and attempt either to repair or, when correct fold-
ing is not possible, to target abnormal proteins to disposal
machinery, in a timely fashion (Balchin et al. 2016; Esser
et al. 2004; Haslbeck et al. 2005). In particular, the role of
most sHsps, including HSPB5, seems to be of an adaptor
binding both the unfolded protein and being part of complexes
involving poly-ubiquitylation (Barbash and Diehl 2008; Lin
et al. 2006).

To date, no pharmacological inducer of the UPS are
known, but autophagy constitutes a rescue system that is stim-
ulated when UPS function is impaired (Ravikumar et al.
2010). In fact, R120G-Tg mice show more than twofold in-
crease in muscle autophagic activity (Tannous et al. 2008).
Increased level of basal autophagy in these mice decreases
cardiac hypertrophy and intracellular aggregates that prolong
survival (Bhuiyan et al. 2013). Therefore, another possible
strategy might be to further stimulate autophagy using one
among numerous compounds already described in the litera-
ture (e.g., AMPK, cyclosporine A, rapamycin) (Pauly et al.
2012; Rubinsztein et al. 2012).

Interestingly, McLendon and colleagues (McLendon et al.
2014) suggested, as a therapeutic strategy, the inhibition of a
specific histone deacetylases (HDACs), the cytoplasmic
HDAC6, able to affect cytoskeletal dynamics through
deacetylation of α-tubulin and cortactin (Li et al. 2013).
Since it is known that acetylated tubulin stabilizes microtu-
bules and augments assembly of autophagic cargo along mi-
crotubules increasing autophagic degradation (Geeraert et al.
2010), the authors demonstrated that inhibiting HDAC6, and
thus tubulin deacetylation, there was reduced aggregate for-
mation and attenuated cardiac dysfunction of mutant R120G-
Tg mice in vivo. Therefore, this protection is due in part to
increased autophagy clearance of toxic protein accumulation
induced by HSPB5 myopathy-mutants.

Over the years, physical activity has been shown to prevent
and/or support conventional treatment of several pathological
conditions through the induction of adaptive mechanisms at

systemic or a tissue-specific level (Warburton et al. 2006).
Regular participation to physical activity has been demonstrat-
ed to improve the homeostasis of macromolecules (i.e., DNA
and proteins) involved in the physiological or pathological
stress; the resulting beneficial effects were in terms of
delaying the onset and progression of several diseases and
aging-related biomarkers (Beltran Valls et al. 2014; Beltran
Valls et al. 2015; Brunelli et al. 2012; Ceci et al. 2014;
Cumming et al. 2014; Dimauro et al. 2016b; Dimauro and
Sgura 2017; Pittaluga et al. 2015; Warburton et al. 2006).
Moreover, evidences from animal and human studies demon-
strated that acute or chronic exercise could represent a potent
HSPs inducer in several human tissues (Dimauro et al. 2016a;
Fittipaldi et al. 2014). The exercise-induced changes in HSPs
seem to have multiple cytoprotective effects on mitochondria,
sarcoplasmic reticulum and cytoskeleton components
(Bornman et al. 1998; Sammut and Harrison 2003; Tupling
et al. 2004), inhibitory effects on apoptosis (Gabai and
Sherman 2002), as well as a role in the maintenance of enzy-
matic activity, insulin sensitivity, and glucose transport
(Chung et al. 2008; Melkani et al. 2006).

Although published data clearly support a role for exercise-
induced modulation of HSPB5 in the prevention of diseases
caused by protein misfolding (Reddy and Reddy 2015), there
are still no interventional studies in humans affected by DRM.
Results obtained in mouse models show that long-term vol-
untary exercise reduces pre-amyloid toxic oligomer accumu-
lation with a concomitant increase in lifespan (Maloyan et al.
2007). In particular, R120G-Tg mice housed in cages with
running wheels exhibit a significant reduction in beta-
amyloid oligomers with a concomitant increase in lifespan
(Maloyan et al. 2007). After 22 weeks of exercise, amyloid
oligomer levels were already 47% lower than in unexercised
R120G-Tg mice, and after 6 months of voluntary exercise,
R120G-Tg animals exhibited a 100% survival beyond the
time point when all unexercised mice had died. Similar effect
were observed by Bhuiyan et al. (Bhuiyan et al. 2013); they
found that 50% of exercised R120G-Tg mice were alive by
7 months, while all sedentary control mice were already dead
from heart failure. This percentage achieved 100% survival in
R120G-Tg mice overexpressing Atg7, a non canonical E1-
like enzyme necessary for autophagosome formation that rec-
ognizes two distantly related ubiquitin-like proteins, ATG8
and ATG12 (Komatsu et al. 2005).

To date, the molecular effectors of exercise are still un-
known but the aforementioned studies suggest that both the
modulation of apoptotic and autophagy pathways induced by
regular exercise, reduce heart failure symptoms and rescuing
the R120G-Tg mice from premature death (Bhuiyan et al.
2013; Maloyan et al. 2007). However, it cannot be excluded
that the observed survival benefit results from an additive
effect of multiple pathways induced by voluntary physical
exercise such as induction of other HSPs.
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Conclusion

To date, the number of reports that describe the role of HSPB5
in mammalian muscle tissue is increasing exponentially.
Particularly, as sHsp is important not only during skeletal
and cardiac development but also in the differentiated tissues,
where it ensures the proper functioning of different cellular
processes and the structural integrity of both muscle tissues
either under normal or in stress conditions.

Indeed, from the discussion on the pathogenic mechanisms
related to almost all mutant HSPB5-related myopathies (i.e.,
DRM, DCM, and RCM), it is clear that a loss of function of
HSPB5 polypeptide chain due to specific gene mutations de-
termines morphological changes in skeletal and cardiac mus-
cles resulting from disintegration of the sarcomeric Z disc and
myofibrils, with formation of structured aggregates being
highly toxic for the cells.

To date, thanks to the use of in vitro and in vivo models, a
large amount of data on functional aspects of HSPB5 is avail-
able. Nonetheless, several issues on regulatory mechanisms of
this protein remain still unresolved. Therefore, it is imperative
to plan further studies to improve our knowledge about sHsp
and to develop new preventative and/or therapeutic ap-
proaches for those specific physiological and pathological
conditions where the correct functioning of HSPB5 seems to
be decisive.
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