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Regulation of gene expression by NFAT transcription
factors in hibernating ground squirrels is dependent
on the cellular environment
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Abstract Calcineurin is a calmodulin-stimulated phospha-
tase that regulates the nuclear translocation of nuclear factor
of activated T cell (NFAT) c1-4 through dephosphorylation.
We believe that this mechanism plays various roles in the
remodeling and maintenance of Ictidomys tridecemlineatus
skeletal muscle. During hibernation, bouts of torpor and
arousal take place, and squirrels do not lose muscle mass
despite being inactive. Protein expression of Ca2+ signaling
proteins were studied using immunoblotting. A DNA-protein
interaction ELISA technique was created to test the binding of
NFATs in the nucleus to DNA probes containing the NFAT
response element under environmental conditions reflective of
those during hibernation. Calcineurin protein levels increased
by 3.08-fold during torpor (compared to euthermic control),
whereas calpain1 levels also rose by 3.66-fold during torpor.
Calmodulin levels were elevated upon entering torpor.
NFATc4 binding to DNA showed a 1.4-fold increase during
torpor, and we found that this binding was further enhanced
when 600 nM of Ca2+ was supplemented. We also found that
decreasing the temperature of ELISAs resulted in progressive
decreases in the binding of NFATs c1, c3, and c4 to DNA. In
summary, calmodulin and calpain1 appear to activate calcine-
urin and NFATc4 during torpor. NFAT binding to target pro-
moters is affected by intranuclear [Ca2+] and environmental
temperatures. Therefore, Ca2+ signaling and temperature

changes play key roles in regulation of the NFAT-calcineurin
pathway in skeletal muscle of hibernating 13-lined ground
squirrels over the torpor-arousal cycle, and they may contrib-
ute to the avoidance of disuse-induced muscle atrophy that
occurs naturally in these animals.
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Introduction

The 13-lined ground squirrel (Ictidomys tridecemlineatus)
survives the cold winters in the prairies of North America by
hibernating underground. In order to cope with extreme envi-
ronmental stressors such as frigid temperatures and a lack of
access to food, this animal has developed various survival
mechanisms. During hibernation, these animals undergo cy-
cles of torpor and arousal. During torpor, many of the above-
mentioned survival mechanisms are activated, including met-
abolic rate depression (often to 2–4 % of normal conditions)
and a decline in body temperature (Tb) to just 0–5 °C com-
pared to a Tb of 35 to 38 °C when the animal is active and
awake (Frerichs and Hallenbeck 1998; Storey 2010; Storey
and Storey 2004; Wang and Lee 1996). During this process
of metabolic rate depression within torpor, most physiological
functions are reduced; respiration rates (approximately 2.5 %
of euthermia), organ perfusion (<10 % of euthermia), and
neuron firing are such examples (Storey and Storey 2004;
McArthur and Milsom 1991; Buck and Barnes 2000). These
long periods of torpor (often 1–2 weeks or more) are inter-
spersed with short periods where metabolic rate and Tb return
to euthermic values; this process is known as arousal. These
cycles of torpor and arousal can save these hibernators as
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much as 88 % of the ATP required to otherwise sustain
euthermic physiological conditions during the winter (Wang
and Lee 1996).

The present study investigates how the skeletal muscle of
13-lined ground squirrels adapts on a molecular level to main-
tain function at low Tb to support long-term torpor. One issue
affecting skeletal muscle during hibernation is the potential for
disuse-induced muscle wasting, which occurs commonly after
long periods of inactivity and results in reduced muscle mass,
strength, and relative amount of slow oxidative muscle
(Malatesta et al. 2009; Choi et al. 2009; Rourke et al. 2004;
Bassel-Duby and Olson 2006). What makes hibernating mam-
mals, specifically the thirteen-lined ground squirrel, interesting
as a model to study muscle biology is that they demonstrate a
lack of skeletal muscle atrophy despite prolonged periods of
mechanical unloading that occur over long periods of hiberna-
tion (Cotton and Harlow 2015; Gao et al. 2012; Xu et al. 2013).
Therefore, these animals have a natural ability to resist muscle
wasting, which humans do not possess, and this makes hiber-
nators fascinating as models to further our understanding of
muscle preservation and regeneration mechanisms.

The present study focuses on the role and regulation of the
nuclear factor of activated T cells (NFAT) family of transcrip-
tion factors in I. tridecemlineatus, as they have been implicat-
ed as key regulators of skeletal muscle hypertrophy
(Schiaffino et al. 2007; Hudson et al. 2014; Delling et al.
2000; Armand et al. 2008; Zhang and Storey 2015). The
NFAT family contains five members named NFAT1-5 or
NFATc1-4 and NFAT5, with NFATc1-4 being regulated pri-
marily by calcineurin (Rao et al. 1997). Calcineurin is a
calmodulin-stimulated protein phosphatase that regulates
NFATs through dephosphorylation, thereby activating and
allowing NFATs to translocate to the nucleus and regulate
gene transcription (Rusnak and Mertz 2000). Calmodulin is
a ubiquitously expressed calcium (Ca2+)-binding protein that
is involved in a variety of signaling pathways that are Ca2+-
dependent. It contains four EF-hand motifs, each of which
binds a Ca2+ ion (Kretsinger 1987). Calmodulin regulates cal-
cineurin by binding to the regulatory domain of the calcine-
urin A subunit when it is exposed, due to conformational
changes caused by activation of the calcineurin B subunit,
when there is an increase in intracellular Ca2+ levels (Yang
and Klee 2000; Klee et al. 1979). When calcineurin B binds to
Ca2+ ions, a conformational change occurs in its C-terminal
autoinhibitory domain. The Ca2+-dependent cysteine protease
- calpain, specifically calpain1/calpain-μ, cleaves the
autoinhibitory domain, thus activating calcineurin (Burkard
2005; Lee et al. 2014; Shioda et al. 2006). Therefore, both
calmodulin and calpain1 are important regulators of the
NFAT-calcineurin pathway (Fig. 1).

Since activation of the NFAT-calcineurin pathway ultimate-
ly leads to increased binding of NFAT transcription factors to
its target promoters, we used a DNA-protein interaction-

enzyme-linked immunosorbent assay (DPI-ELISA) to quanti-
tatively assess the binding of NFATs to its consensus binding
sequence. This technique has been used previously to analyze
transcription factor binding activity to DNA because of its sim-
plicity and robustness (Brand et al. 2010, 2013; Jagelská et al.
2002). Given the extreme environmental stressors confronting
13-lined ground squirrels during hibernation, we suspected that
environmental factors such as temperature could potentially
affect the binding ability of NFATs and potentially other tran-
scription factors, to DNA. Recent literature has begun to show
that gene expression could be affected by temperature, but no
study has directly investigated the temperature dependence of
transcription factor binding to DNA (Novák et al. 2015; Chen
et al. 2015; Swindell et al. 2007; Riehle et al. 2003). Most of
these studies use DNAmicroarrays to study the global changes
in gene expression when temperature stress is induced on an
organism (Swindell et al. 2007; Riehle et al. 2003). However,
although this approach identifies targets that may be involved
in stress-response, it does not directly elucidate mechanisms
such as transcription factor binding affinity. In addition to the
ground squirrel’s ability to thermoregulate during torpor-
arousal cycles, they also show enhanced capabilities to
maintaine intracellular Ca2+ and urea concentrations in com-
parison with non-hibernating animals under the same tempera-
ture stress (Chilian and Tollefson 1976; Kristofferson 1963;
Wang and Zhou 1999; Wang et al. 1999, 2002; Liu et al.
1991). Therefore, we adapted our DPI-ELISA protocol in order
to run these environmental ELISAs that allow us to characterize
the effects of temperature and different cellular metabolites
such as Ca2+, and urea on transcription factor-DNA binding.

We sought to identify the role of Ca2+ signaling factors such
as calmodulin, calpain1, and calcineurin on NFAT transcrip-
tional regulation in the skeletal muscle of 13-lined ground
squirrels. To do this, we quantified relative protein levels via
immunoblotting and utilized the DPI-ELISA technique to mea-
sure changes in transcription factor binding to an oligonucleo-
tide containing the NFAT response element. We predicted that
the NFAT-calcineurin pathway would be activated through up-
regulation of Ca2+ signaling proteins during torpor. The sec-
ondary objective of this study was to identify the impact of
environmental conditions on NFAT transcription factor binding
to target genes. We tested this theory using a modified, envi-
ronmental DPI-ELISA that allowed us to adjust the temperature
and concentration of metabolites within the assay.

Materials and methods

Animal ethics statement and experimental conditions

Thirteen-lined ground squirrels (I. tridecemlineatus), which
weighed 150–300 g, were wild-captured by the United
States Department of Agriculture (USDA)-licensed trappers
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(TLS Research, Bloomingdale, IL). Animals were then
transported to the Animal Hibernation Facility at the
National Institute of Neurological Disorders and Stroke
(NINDS, Bethesda, MD), where all experiments were con-
ducted by the laboratory of Dr. J.M. Hallenbeck as previously
described (McMullen and Hallenbeck 2010). All animal pro-
cedures were approved by the Animal Care and Use
Committee of the National Institute of Neurological
Disorders and Stroke (NIH; animal protocol no. ASP 1223–
05). Male and female ground squirrels were sampled equally
in the study with a mixture of genders in each experimental
condition, and all the animals were between 1–3 years of age,
although the exact age of the animals is unknown since ani-
mals were wild-captured. At NINDS, the animals were housed
individually in cages in a holding room with a constant ambi-
ent temperature of 21 °C under a 12-h light:12-h dark cycle.
The animals were fitted with a sterile programmable temper-
ature transponder (IPTT-300; Bio Medic Data Systems)
injected subcutaneously in the intrascapular area while the
squirrels were anesthetized with 5 % isofluorane. The animals
were fed water and standard rodent chow ad libitum until they
gained sufficient lipid stores to enter hibernation.

To enable a natural transition into torpor, the animals were
transferred to constant darkness in an environmental chamber
at 4–5 °C at the end of October. To not disturb the torpid
squirrels, a red safe light (3–5 lux) was used when entering
the chamber, and a heavy dark curtain was used to shield the
shelves containing the cages and block the light and sound
resulting from opening and closing the door to the environ-
mental chamber. Body temperature (Tb), time elapsed, and
respiration rates were monitored and used to determine the
stage of torpor-arousal cycle. All the animals had been

through torpor-arousal bouts prior to sampling. Four different
animals were euthanized, and tissue samples were collected at
six different sampling points: (1) EC designates euthermic in
the cold room. These squirrels had a stable Tb of 37 °C for at
least 3 days and were capable of entering torpor, but had not
re-entered hibernation in the past 72 h. These euthermic ani-
mals displayed slow-wave sleep characteristics that were ob-
served in all the sampling animals, and thus were chosen as
the reference group to eliminate compounding variables of
environmental light, temperature, feeding, in addition to
time/season. (2) EN designates entrance into hibernation; en-
trance into the torpor-arousal cycle is characterized by falling
Tb with sampling occurring between 31 and 18 °C. (3) ET
designates early torpor; squirrels had entered torpor with a
stable Tb at 5–8 °C for ~24 h. (4) LT designates late torpor;
animals maintained a Tb at 5–8 °C for >5 days. (5) EA desig-
nates early arousal; animals with a Tb rising to at least ~12 °C
with increasing respiration to at least 60 breaths/min after
torpor, (6) LA designates late arousal; animals with increased
respiration rate and Tb of 28–32 °C. A diagram of these torpor-
arousal cycle stages is shown in a recent review written by
Tessier and Storey (Tessier and Storey 2016).

Total protein extract preparation

Total soluble protein extracts were prepared as previously de-
scribed (Zhang and Storey 2015) for samples of frozen skele-
tal muscle from four animals for each of the six stages in the
torpor-arousal cycle (EC, EN, ET, LT, EA, and LA). Frozen
samples of ~0.5 g tissue were quickly weighed, powdered into
small pieces under liquid nitrogen, and then homogenized
(using a Polytron PT10) 1:3 w:v in ice-cold homogenizing

Fig. 1 Schematic diagram of the
calcineurin-NFAT pathway and
its regulation by Ca2+ signaling in
myocytes. Ca2+ uptake by
myocytes activates calmodulin
and calpain1, which activate
calcineurin as a result. Activated
calcineurin removes the
phosphate group on NFAT
transcription factors, allowing for
nuclear translocation, where it can
regulate the expression of genes
essential for muscle growth.
When intracellular Ca2+ levels
decrease and calcineurin becomes
inactive, and NFAT is
phosphorylated and exported by
several different kinases including
GSK3β, PKA, and Dyrk1a.
Abbreviations: NFAT nuclear
factor of activated T cells (NFAT)
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buffer (20 mMHepes, 200 mMNaCl, 0.1 mMEDTA, 10mM
NaF, 1 mM Na3VO4, 10 mM β-glycerophosphate at a pH of
7.5) with 1 mM phenylmethylsulfonyl fluoride (Bioshop) and
1 μL/mL protease inhibitor cocktail (Bioshop) added.
Samples were centrifuged at 10,000 rpm for 10 min at 4 °C,
and supernatants were removed. Soluble protein concentration
was assayed using the Bio-Rad reagent (Bio-Rad
Laboratories, Hercules, CA; Cat #500-0006) at 595 nm on a
MR5000 microplate reader. The samples were then adjusted
to a final protein concentration of 10 μg/μL by the addition of
a small volume of homogenizing buffer, and then aliquots
were combined 1:1 v:v with 2× SDS loading buffer
(100 mM Tris-base, pH 6.8, 4 % w:v SDS, 20 % v:v glycerol,
0.2 % w:v bromophenol blue, 10 % v:v 2-mercaptoethanol)
and then boiled. The final protein samples at a concentration
of 5 μg/μL were stored at −20 °C until use.

Preparation of nuclear protein extracts

Nuclear protein extracts were prepared as previously de-
scribed (Zhang and Storey 2015) and were separately extract-
ed from the skeletal muscle of the four animals for each of the
six experimental stages. Frozen skeletal muscle samples were
homogenized 1:2 w:v using a Dounce homogenizer (five pis-
ton strokes) in lysis buffer (10 mM HEPES, pH 7.9, 10 mM
KCl, 10mMEDTA, 20mMβ-glycerophosphate), with 10μL
of 100 mM DTT, 10 μL of protease inhibitor cocktail added
immediately before homogenization. The samples were cen-
trifuged for 10 min at 10,000 rpm and 4 °C, and the superna-
tants were removed as the cytoplasmic fraction. Pellets were
resuspended in 147 μL of nuclear extraction buffer (20 mM
HEPES, pH 7.9, 400 mMNaCl, 1 mM EDTA, 10 % v/v glyc-
erol, 20 mM β-glycerophosphate) with 1.5 μL of 100 mM
DTT, and 1.5 μL of protease inhibitor cocktail was added.
The samples were incubated on ice with gentle rocking for
1 h and then centrifuged for 10 min at 10,000 rpm at 4 °C.
Protein concentrations were determined with the Bio-Rad pro-
tein assay, adjusted to 5 μg/μL, and the samples were stored at
−80 °C until use.

Western blotting

Equal amounts of protein from each sample (25 μg) were
loaded onto 8 % (calcineurin, calpain1) polyacrylamide gels
and were run at 180 V for 60–90 min. For calmodulin, 15 %
polyacrylamide gels were used and loaded with 35 μg of
protein for each sample. Proteins were then transferred to
PVDF membranes by electroblotting at 320 mA for 90 min
(calcineurin, calpain1) or at 30 V for 100 min (calmodulin)
using a transfer buffer containing 25 mM Tris (pH 8.5),
192 mM glycine, and 10 % v:vmethanol at room temperature.
Membranes were then blocked for 30 min with 5 % w:v milk
in 1× TBST (20 mMTris base, pH 7.6, 140 mMNaCl, 0.05%

v:v Tween-20, 90 % v:v ddH2O). After washing for 3 × 5 min
again with 1× TBST, membranes were probed with specific
primary antibodies at 4 °C overnight. Antibodies specific for
mammal ian ca lmodul in (06–396) f rom Ups ta te
Biotechnology (Lake Placid, NY), as well as calcineurin A
(GTX111039) and calpain1 (GTX102340) antibodies from
Genetex (Irving, CA), were purchased and used at a 1:1000
v:v dilution in 1× TBST. After probing with primary antibody,
membranes were washed for 3 × 5 min with 1× TBST and
then incubated with HRP-linked anti-rabbit IgG secondary
antibody (Bioshop: 1:6000 v:v dilution) for 30 min at room
temperature. After a second set of three washes, bands were
visualized by enhanced chemiluminescence (H2O2 and
Luminol). Then, blots were restained using Coomassie blue
(0.25 %w/v Coomassie brilliant blue, 7.5 % v/v acetic acid,
50 % methanol) to visualize total protein levels. Immunoblot
bands for ground squirrel proteins corresponded to the molec-
ular weights indicated on the respective antibody specification
sheets or the amino acid sequence of the I. tridecemlineatus
isoform, as confirmed by running PINK Plus Prestained
Protein Ladder (FroggaBio) for calpain1 (82 kDa), calcineurin
(59 kDa), and calmodulin (19 kDa). For calmodulin, the mo-
lecular weight was determined using the I. tridecemlineatus
protein sequence from the NCBI protein database
(NP_001182569.1) and calculated using the ExPASy Mw/pI
tool.

DNA-protein interaction-ELISA

DNA oligonucleotides were designed based on the DNA-
binding elements of NFATc1-4 and were produced by Sigma
Genosys (Oakville, ON, Canada). The biotinylated probe
(NFAT 5′-Biotin-GGGAAGGAAAGTGCGGGTGG-3′) and
the complement probe (NFAT 5′-Biotin CCACCCGCACC
CTTTTTCCC-3′) were first diluted in sterile water (500
pmol/μL), and the two probes were mixed 1:1 v:v for a total
of 20 μL. The probes were then placed in a thermocycler for
10 min at 94 °C and gradually cooled to room temperature.
Double stranded DNA probes were diluted in 1 × PBS
(137 mM NaCl, 2.7 mM KCL, 10 mM Na2HPO4, pH 7.4),
and 50 μL of diluted DNA probe was added (40 pmol DNA/
well) to streptavidin-coatedwells on amicroplate. Following a
1-h incubation, unbound probe was discarded, and wells were
rinsed twice with 1× wash buffer (1× PBS containing 0.1 %
Tween-20), and a third time with 1× PBS. Transcription factor
binding buffer (10 mMHEPES, 50mMKCL, 0.5 mMEDTA,
3 mM MgCl2, 10 % v/v glycerol, 0.5 mg/mL bovine serum
albumin, 0.05 % NP-40, 0.5 mM DTT, 20 pg/μL Salmon
Sperm DNA, 44 mM NaCl, pH 7.9) was added to each well
containing the DNA probe along with 27.5 μg of the nuclear
protein extract. Two negative control wells were loaded with
transcription factor binding buffer but no protein. Following
another 1-h incubation with gentle shaking, protein mixtures
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were discarded, and the wells were washed three times with
1× wash buffer.

Diluted primary antibody (1:500) was then added (60 μL/
well) for 1 h. Primary antibodies specific for mammalian
NFATc1 (sc-13033), c3 (sc-8321), and c4 (sc-13036) were
purchased from Santa Cruz Biotechnologies and used for the
primary antibody incubations. Primary antibodies were then
discarded, and wells were rinsed three times with 1× wash
buffer before incubation with diluted secondary (1:1000,
60 μL/well) for 1 h. This antibody was then discarded, and
wells were rinsed three times with wash buffer. The secondary
antibodies used were the same as those used for immunoblots.
After secondary antibody incubation and washing, bound an-
tibody was detected using tetramethylbenzidine (TMB)
(Bioshop). A 60-μL aliquot of TMB was added to each well,
color was developed for 10–15 min, and then the reaction was
stopped with 60 μL of 1 MHCl. Absorbance was measured at
450 nm (reference wavelength of 655 nm) using a Multiskan
spectrophotometer. To control for background absorbance and
non-specific binding, test strip ELISA experiments were run
with negative controls containing no probe or no protein or no
primary antibody added being run in duplicates using a pooled
sample of multiple sampling points. Conditions were opti-
mized such that negative control wells showed >50 % de-
creases in absorbance relative to sample wells before quanti-
fication runs of sampling points were conducted.

Environmental DPI-ELISA

To assess how transcription factor-DNA binding is altered
when environmental conditions (temperature, [CA2+], [urea])
are altered, the DPI-ELISA protocol described above was
modified. To test for the effect of temperature on transcription
factor-DNA binding, the initial DNA probe synthesis, incuba-
tion, and washing steps were carried out as previously de-
scribed. Afterwards, transcription factor binding buffer was
added to each well containing the DNA probe, plus one other
well that is used to monitor solution temperature. Buffer tem-
perature was monitored using a digital thermometer with two
probes, one placed outside the solution to monitor ambient
temperature and the other placed inside the well to monitor
solution temperature. The ELISA plate was placed in either a
4 °C fridge, a 37 °C incubator, or left at room temperature.
When the solution temperature has matched and stabilized to
the ambient temperature inside the fridge or incubator,
27.5 μg of nuclear extracts of EC and LT samples were added
to wells containing the DNA probe with the exception of the
duplicate negative controls, and the plates were placed on
shakers. Following the 1-h incubation, all plates were placed
at room temperature, and the rest of the procedure was per-
formed as described above. Temperature DPI-ELISAs were
performed to evaluate (1) the effect of temperature (37, 21,
and 4 °C) on NFAT-DNA binding for the EC samples, (2) the

effect of temperature (37, 21, and 4 °C) on binding for the LT
samples, and (3) the difference in binding between the EC and
LT sampling points using their physiological temperatures, 37
and 4 °C, respectively.

In order to test for the effect of Ca2+ and urea on transcrip-
tion factor-DNA binding, the DPI-ELISA protocol described
above was followed; adjusting the transcription factor binding
buffer by adding Ca2+ or urea. To assess the effect of Ca2+ on
transcription factor-DNA binding, quantification runs were
performed on four biological replicates of the LTsamples with
no protein and no Ca2+ (negative controls), no Ca2+, 100 nM
Ca2+, and 600 nM Ca2+ added to the transcription factor bind-
ing buffer during the protein incubation step; 100 and 600 nM
of Ca2+ were selected because they represent the minimum
and maximum concentrations of nuclear Ca2+ that have been
identified mathematically and experimentally (Brière et al.
2006; Xiong et al. 2012; Luan 2011; Dobi and Agoston
1998). A similar experiment was performed to assess for the
effect of urea on transcription factor-DNA binding, with quan-
tification runs being conducted for the LTsamples (n = 4) with
no protein and no urea (negative controls), no urea, 5 mM
urea, and 100 mM urea added to the transcription factor bind-
ing buffer during the protein incubation step. These two con-
centrations were tested as 5 mM is approximately the normal
physiological concentrations of serum urea in hibernating
mammals (Chilian and Tollefson 1976; Kristofferson 1963;
Stenvinkel et al. 2013). Also, 100 mMwas shown experimen-
tally as the maximum concentration of urea that could be
supplemented tomedia before cell culture growth and survival
was inhibited (Yancey and Burg 1990).

Comparative sequence analysis

The amino acid sequences of calcineurin (rabbit:
XP_008248097.1, squirrel: XP_005325804.1, mouse:
NP_032939.1, human: AAB23769.1), calmodulin (rabbit:
NP_001182569.1, squirrel: XP_005226620.1, mouse:
NP_031615.1, human: AAD45181.1), and calpain1 (rabbit:
XP_008250016.1, squirrel: XP_005333505.1, mouse:
NP_031626.1, human: NP_001185797.1) from the NCBI
protein database were compared using the Clustal Omega
multiple alignment tool at EMBL-EBI using default multiple
sequence alignment and pairwise alignment options. Pairwise
alignment scores (percent identity) between the two sequences
are calculated by taking the number of identities between the
two sequences, dividing by the length of the alignment, and
representing this ratio as a percentage (Larkin et al. 2007;
Goujon et al. 2010; McWilliam et al. 2013).

Quantification and statistics

Band densities on chemiluminescent immunoblots were visu-
alized using a Chemi-Genius BioImaging system (Syngene,
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Frederick, MD) and quantified using the Gene Tools software.
Immunoblot band density in each lane was standardized against
the summed intensity of a group of Coomassie-stained protein
bands in the same lane; this group of bands was chosen because
they were not located close to the protein band of interest but
were prominent and constant across all the samples. This meth-
od of standardizing against a total protein loading control has
been suggested to be more accurate in comparison with stan-
dardizing against housekeeping proteins such as tubulin (Eaton
et al. 2013). For DPI-ELISA quantification runs, absorbance
readings were corrected by subtracting values for each sam-
pling point from negative controls containing no protein, and
these values were normalized relative to EC. Similarly, western
blot band densities were also normalized at each other sampling
point relative to EC. Immunoblotting and absorbance data are
expressed as means ± SEM, n = 4 independent samples from
different animals. Statistical testing used the one-way
ANOVA and the Tukey post hoc functions from the
GraphPad Prism software (San Diego, CA).

Results

Calcineurin, calmodulin, and calpain protein levels

Immunoblotting was used to assess changes in the relative
protein levels of the Ca2+-signaling factors, calcineurin, cal-
modulin, and calpain1 levels in ground squirrel skeletal muscle
over the torpor-arousal cycle (Fig. 2.). Calcineurin protein
levels increased upon entering torpor (EN) by 1.19-fold in
comparison with those at euthermic control (EC), p < 0.05.
Protein levels then returned to baseline levels at EC during
early torpor (ET), but it spiked once more by 2.08-fold (in
comparison with those at EC, p < 0.05) and reached its highest
level during late torpor (LT). Upon entering arousal, calcine-
urin levels decreased once again to baseline at early arousal
(EA) and then increased once more by 1.2-fold (compared to
those at EC, p < 0.05) at late arousal (LA). Calpain1 showed a
similar pattern of expression, where spikes in protein levels
occurred at EN, LT, and LA. Calpain levels increased modestly
at EN by 0.72-fold relative to EC. At LT, there was a greater
increase of 2.37-fold relative to EC (p < 0.05). The final spike
at LAwas even greater, where protein levels increased by 4.4-
fold in comparison with that at EC (p < 0.05). Calmodulin
protein levels remained fairly constant throughout the torpor-
arousal cycle with the exception of EN, where levels increased
by two-fold relative to those of EC (p < 0.05) (Fig. 2).

NFATc4 relative binding to DNA
throughout the torpor-arousal cycle

Using the rVista program and the conserved NFAT-binding
sequence from the literature (GGAAA), DNA probes used

to analyze NFAT binding were created as previously described
(Zhang and Storey 2015; Rao et al. 1997; Hung et al. 2008). A
DNA-protein interaction (DPI)-ELISA was used to study the
binding ability of transcription factors in nuclear extracts of
13-lined ground squirrel skeletal muscle with the DNA probes
targeting the promoter regions of these transcription factors.
DPI-ELISAs were used because of its simplicity and robust-
ness (Brand et al. 2010, 2013; Jagelská et al. 2002). We iden-
tified in this study that NFATc4 was able to bind to the DNA
oligonucleotide (Fig. 3). Relative binding to DNA was mea-
sured for six time points: EC, EN, ET, LT, EA, and LA.
NFATc4 binding levels decreased modestly by 63 % at EN
from EC, then binding increased dramatically by 3.96-fold
relative at ET relative to EN (p < 0.05). Following ET, binding
activity decreased slightly at LT, then it increased slowly dur-
ing EA and LA, with binding at LA being 3.77-fold greater
than that at EN (p < 0.05).

Effect of temperature on NFATc1, c3, and c4 relative
binding to DNA

Due to the drastic changes in Tb when ground squirrels enter
torpor, we modified the DPI-ELISA in order to study the
effect of temperature on NFATc1, c3, and c4 transcription
factor binding to DNA. Three temperatures (37, room temper-
ature −21, and 4 °C) were studied at the EC and LT sampling
points. As mentioned previously, the EC animals had not en-
tered hibernation yet, so their Tb remained at 37 °C. The LT
animals were at the deepest part of torpor, where Tb was 4–
5 °C (McMullen and Hallenbeck 2010).

The temperature DPI-ELISA experiments performed on
the EC time point showed that NFATc1 and NFATc4 binding
to DNA decreased dramatically (p < 0.05) by 77 and 94 %,
respectively, from 37 °C to room temperature. NFATc3, on the
other hand, showed a modest decrease of 37 % in binding
activity. However, when we compared changes in binding
for all the three NFATs between 37 and 4 °C, they all showed
significant decreases in binding (p < 0.05) by at least 84 %
(Fig. 4a). Therefore, all the three NFATs showed progressive
declines in binding activity at the EC time point as tempera-
ture was decreased. The temperature DPI-ELISA using the LT
sampling point showed a similar pattern for NFATc1 and c4,
where binding decreased by 66 and 95 %, respectively, from
37 °C to room temperature (Fig. 4b). NFATc1 binding levels
decreased further from 37 to 4 °C by 86 % (p < 0.05). On the
other hand, NFATc4 binding levels stabilized from room tem-
perature to 4 °C. For the LT sampling point, NFATc3 binding
levels did not seem to be affected much by the changes in
temperature, as there was only a modest decline in binding
by 46 % when comparing 37 to 4 °C (Fig. 4b). While analyz-
ing the difference in transcription factor binding to DNA at
physiological conditions from EC at 37 °C to LT at 4 °C, we
observed sharp declines in binding for both NFATc1 and c4 by
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89 and 93 %, respectively (p < 0.05). The decline in binding
from EC to LT for NFATc3 was 64 %, which is less compared
to the differences observed for NFATc1 and c4, but this dif-
ference was still significant (p < 0.05) (Fig. 4c).

Effect of Ca2+ and urea on NFATc1, c3, and c4 relative
binding to DNA

We tested for the effect of adding Ca2+ and urea to the DPI-
ELISA assay in an attempt to discover how these two
metabolites/substrates affect NFATc1, c3, and c4 transcription
factor-DNA binding. Urea and Ca2+ are of particular interest
due to the unique changes in the animal’s regulation of the
urea cycle and Ca2+ signaling, which occur during mammali-
an hibernation (Chilian and Tollefson 1976; Wang et al. 1999,
2002; Stenvinkel et al. 2013; Lee et al. 2012; Epperson et al.
2011). The addition of 5 and 100 mM of urea seemed to have
no effect on the binding of NFATc1, c3, or c4 to DNA, with

Fig. 3 Changes in binding of the transcription factor NFATc4 to a DNA-
binding element designed for the NFAT consensus sequence in the skeletal
muscle of I. tridecemlineatus over the torpor-arousal cycle. DNA-protein
interaction (DPI)-ELISA absorbance readings were corrected by subtrac-
tion of negative controls containing no protein, and values were expressed
relative to EC. Histograms show mean relative values ± S.E.M., n = 4 in-
dependent biological replicates for each of the six experimental conditions.
Data was analyzed using a one-way analysis of variance with a post hoc
Tukey’s test (p < 0.05); for each parameter measured, values that are not
statistically different from each other share the same letter notation

Fig. 2 Changes in calcineurin, calmodulin, and calpain1 total protein levels
in skeletal muscle over the torpor-arousal cycle in I. tridecemlineatus.
Calcineurin, calmodulin, and calpain1 total protein expression levels were
visualized at the six sampling points: euthermic cold (EC), entrance (EN),
early torpor (ET), late torpor (LT), early arousal (EA), and late arousal (LA).
See BMaterials and methods^ section for more extensive definitions of the
sampling points. Westerns blots and Coomassie total protein loading controls
representative of the results are shown for pairs of selected time points, which
are labeled to the left and right of the immunoblot picture. Lane numbers

labeled along the top indicate replicates (n = 4) of one sample (e.g., for
calcineurin: EN lanes 1, 2, 3, and 4) and four of another sample (e.g., for
calcineurin: ET lanes 5, 6, 7, and 8). Also shown are histograms with mean
standardized band densities (±S.E.M., n= 4 independent protein isolations
from different animals). Data was analyzed using a one-way analysis of
variancewith a post hoc Tukey’s test (p< 0.05); for each parametermeasured,
values that are not statistically different from each other share the same letter
notation
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binding levels remaining stable throughout the different con-
ditions during torpor (Fig. 5a). When 100 nM of Ca2+ was
added to the protein incubation, the binding of NFATc1 to
DNA showed a sizeable difference (42 % decrease relative
to the no Ca2+ control) out of the three NFATs tested at LT.

When 600 nM of Ca2+ was added however, NFATc1-DNA
binding continued to decrease (57 % decrease relative to the
control, p < 0.05) with NFATc4 binding showing a 0.42-fold
increase relative to the no Ca2+ control. Throughout the con-
ditions, NFATc3 binding to DNA did not change appreciably
during torpor (Fig. 5b).

Comparative amino acid sequence analysis of calmodulin,
calpain1, and calcineurin

The amino acid sequences of calmodulin, calpain1, as well as
calcineurin in rabbit, 13-lined ground squirrel, mouse, and
human were compared and tested for sequence conservation
using the multiple-alignment tool, Clustal Omega (Larkin et
al. 2007; Goujon et al. 2010; McWilliam et al. 2013).
Alignment of the calmodulin sequences from the different
animals showed very strong conservation as the amino acid
sequences were exactly the same between all the four animals
(Fig. S1a). Analysis done on the degree of conservation for
calmodulin, calpain1, and calcineurin using pairwise align-
ments between the four animals indicated that the percent
identity for all proteins, especially calmodulin and calpain1,
were strong (>78 %) (Fig. S1b).

Discussion

The purpose of this study was to explore the molecular mech-
anisms underlying skeletal muscle remodeling and preserva-
tion that occur during hibernation in a well-researched model
hibernator, the 13-lined ground squirrel. Recently, we have
shown that the NFAT transcription factors play a key role in
skeletal muscle during torpor to promote hypertrophy and
maintain muscle mass (Zhang and Storey 2015). This occurs
despite a predisposition for disuse-induced muscle atrophy
that was shown in torpor through upregulation and activation
of forkhead box O subclass (Foxo) transcription factors,
which regulate many ubiquitin ligases in the ubiquitin
proteasomal system (Wu and Storey 2014; Sandri et al.
2004). In the present study, we were interested in further char-
acterizing the role of not only the NFAT transcription factors
but also its regulation through calcineurin and other Ca2+ sig-
naling proteins, within skeletal muscle. Calmodulin and
calpain1 are two such proteins that contribute to activation
of the NFAT-calcineurin pathway, thereby leading to increased
gene expression of hypertrophic targets (Yang and Klee 2000;
Klee et al. 1979; Burkard 2005; Lee et al. 2014; Shioda et al.
2006). Due to the improved Ca2+-handling abilities of ground
squirrels in comparison with non-hibernating mammals,
[Ca2+] changes very little from euthermia to the 0–5 °C Tb
seen during torpor (Frerichs and Hallenbeck 1998; Wang
and Lee 1996; Wang and Zhou 1999; Wang et al. 1999,
2002; Liu et al. 1991). However, the amplitude of Ca2+

Fig. 4 Effect of adjusting temperature on transcription factor-DNA
binding of NFATc1, c3, and c4. a) Transcription factor-DNA binding
was measured at 37, 24 (room temperature), and 4 °C at the EC sampling
point before hibernation is initiated. b) Transcription factor-DNA binding
was measured at 37, 24 (room temperature), and 4 °C at the LT sampling
point deep within hibernation. c) Changes in the binding of NFAT c1, c3,
and c4 transcription factors to DNA at physiological temperatures from
EC (37 °C) and LT (4 °C). Modified DPI-ELISA absorbance readings
were corrected by subtraction of negative controls containing no protein,
and values were expressed relative to 37 °C for both EC and LT. Data in
panel (a) and (b) were analyzed using a one-way analysis of variance with
a post hoc Tukey’s test (p < 0.05), for each parameter measured, and the
data in panel (c) were analyzed using a paired T test (p < 0.05). Values that
are not statistically different from each other share the same letter
notation
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transients following excitation is actually increased following
excitation at low temperatures, and as a result, stronger con-
tractions with higher amplitudes are seen at lower tempera-
tures (Wang et al. 1997, 2000; Liu et al. 1990, 1993).
Therefore, greater spikes in intracellular [Ca2+] following an
action potential may lead to an activation of NFAT-calcineurin
pathway, thus allowing for a maintenance of muscle mass
during hibernation.

Our results show that indeed, there is an upregulation of
Ca2+ signaling proteins like calmodulin and calpain1 during
torpor, where protein levels increased by 2-fold and 0.72-fold
relative to the euthermic control (EC), respectively, upon en-
tering torpor (EN). These increases are accompanied by a
1.19-fold rise (compared to EC) in calcineurin levels down-
stream (Fig. 2). As a result of this increase in calcineurin levels
and activity, NFATc4 translocates to the nucleus and shows an
increase in binding to DNA during early torpor (ET) (Fig. 3).
A similar pattern is seen during late arousal (LA), where
calpain1 levels increased by 4.4-fold relative to EC, and there
was an accompanying increase in calcineurin levels as well
(1.2-fold compared to EC) (Fig. 2). Once more, there was a
3.77-fold increase in NFATc4 binding activity (relative to EN)
accompanying the upregulation and activation of calcineurin
at LA (Fig. 3). This upregulation of the NFAT-calcineurin
pathway during LA is somewhat unexpected and could reflect
the role that NFATc4 plays in not only muscle remodeling, but
the generation of reactive oxygen species, which are produced
rapidly due to oxidative thermogenesis in squirrels during
arousal (Kalivendi et al. 2005). During late torpor (LT),
2.08-fold and 2.37-fold rises in calcineurin and calpain1 levels
respective, relative to EC, were observed (Fig. 2).
Furthermore, these changes correlate with the dramatic
increase in NFATc3 binding activity that was seen at
LT in a previous study (Zhang and Storey 2015). The
regulation of NFATc3 activity through Ca2+ signaling
provides an explanation for the preservation of muscle

mass during torpor given the vital role that NFATc3
plays in regulation muscle remodeling (Hudson et al.
2014; Delling et al. 2000; Armand et al. 2008;
Demonbreun et al. 2010).

Having established the important role of Ca2+ in regulating
the NFAT-calcineurin pathway during hibernation through
Ca2+-binding proteins, we became interested in determining
whether Ca2+ can directly affect NFAT binding to target pro-
moters during torpor. Several studies have previously shown
that intranuclear Ca2+ can regulate gene expression by directly
binding to DNA or through regulation of transcription factors
and their co-factors (Dobi and Agoston 1998; Chawla et al.
1998; Pusl et al. 2002; Thompson et al. 2003). We identified
using a modified environmental DPI-ELISA that Ca2+ did
indeed affect the binding of NFAT transcription factors to
DNA during torpor. It was observed that progressively in-
creasing [Ca2+] decreased the binding of NFATc1, whereas
NFATc4 showed increased binding to DNA when [Ca2+]
was increased to 600 nM (Fig. 5b). The differential regulation
of NFAT transcription factors by intranuclear calcium may be
due in part to the different roles of each NFAT. For example,
NFATc3 is known to regulate targets like myoferlin that are
important for muscle preservation during torpor (Zhang and
Storey 2015; Demonbreun et al. 2010). As a result, NFATc3
binding to DNAwas not decreased by Ca2+ to the same extent
as NFATc1 after increases in intracellular [Ca2+] were ob-
served from the sharp Ca2+ transients seen at lower tempera-
tures during torpor (Wang et al. 1997, 2000; Liu et al. 1990,
1993). Due to the specificity of intranuclear Ca2+ on NFAT-
DNA binding during torpor, this effect is likely not due to the
binding and blocking of DNA by intranuclear Ca2+ (Dobi and
Agoston 1998). This effect is most likely due to Ca2+ regula-
tion of specific export kinases like calmodulin-dependent pro-
tein kinase IV (CAMKIV) or through specific coactivators of
individual NFATs, such as CREB-binding protein (CBP)
(Chawla et al. 1998; Yang et al. 2001). Given that urea is

Fig. 5 Effect of adding free urea and Ca2+ on transcription factor-DNA
binding of NFATc1, c3, and c4. a) Transcription factor-DNA binding was
measured during the LT sampling point with no urea added (control),
5 mM urea added, and 100 mM urea added. b) Transcription factor-
DNA binding was measured during the LT sampling point with no Ca2+

added, 100 nM Ca2+ added, and 600 nM Ca2+ added. Modified DPI-

ELISA absorbance readings were corrected by subtraction of negative
control containing no protein, and values were expressed relative to the
control (no Ca2+ or no urea added). Data was analyzed using a one-way
analysis of variance with a post hoc Tukey’s test (p < 0.05); for each
parameter measured, values that are not statistically different from each
other share the same letter notation
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another key metabolite that is crucial during hibernation, spe-
cifically torpor, we created an environmental DPI-ELISA to
test whether urea could affect NFAT binding activity as well
(Stenvinkel et al. 2013; Epperson et al. 2011). Urea did not
have a significant effect on NFAT binding to DNA in any of
the tested conditions during LT (Fig. 5a). Theoretically, the
nuclear membrane allows compounds of 60 kDa or less to
pass through into the nucleus, and urea is just over that cut-
off (Gerace and Burke 1988). Therefore, it would not be able
to translocate passively into the nucleus without the aid of
channel proteins or transporters. Aquaporin proteins are a
family of water-channel proteins that are known to transport
urea, and they have been shown to reside partially on the
nuclear membrane (Srivastava et al. 2014; Sato et al. 2011).
Therefore, it is possible for urea to accumulate inside the nu-
cleus, but as we have shown, the amount of nuclear urea is
insufficient to significantly affect NFAT binding to DNA.

Given the extreme variations in temperature that occurs
during torpor-arousal cycles from euthermia (37 °C) to torpor
(0–4 °C), we were interested in knowing whether temperature
could potentiate or inhibit the binding of transcription factors,
such as NFATs (Frerichs and Hallenbeck 1998; Storey 2010;
Storey and Storey 2004; Wang and Lee 1996). We carried out
a modified DPI-ELISA, adjusting for the ambient temperature
during the protein incubation step where binding between
transcription factors and the DNA oligonucleotide occurs.
We found that there were dramatic differences in transcription
factor binding of NFATc1, c3, and c4 as the temperature was
progressively decreased from euthermic (EC) Tb (37 °C) to the
depressed Tb seen during LT (4 °C) (Fig. 4a–c). When com-
paring the declines in NFAT-DNA binding from EC to LT, we
can see that there was a lesser decrease in the binding activity
of NFATc3 (64 %) relative to NFATc1 (89 %) and NFATc4
(93 %) (Fig. 4c). This relatively smaller decrease in binding
activity could partly explain the preservation of skeletal mus-
cle mass during torpor, as NFATc3 plays the most vital role in
coordinating muscle remodeling out of the four NFATs
(Hudson et al. 2014; Delling et al. 2000; Armand et al.
2008; Demonbreun et al. 2010). Due to metabolic rate depres-
sion and the need to conserve ATP during torpor, the expres-
sion of nonessential genes is likely halted; therefore, NFATc1
and c4 activities show a greater decline compared to NFATc3.
This study is the first to identify changes in transcription fac-
tor-DNA binding affinity that are temperature-dependent, al-
though further studies need to be conducted to determine
whether our findings are specific for NFAT transcription fac-
tors or if it reflects a greater number of transcription factors.
More importantly, further studies need to determine whether
the temperature-sensitivity of NFAT transcription factors are
due to conformational changes that occur at lower tempera-
tures to the protein itself, to DNA, or if it has to do with
interactions with temperature-sensitive co-factors. For exam-
ple, NFATc2 has been shown to cooperate with heat shock

transcription factor 1 (HSF1), which is responsible for regu-
lating the gene expression of other heat shock proteins
(Hayashida et al. 2010).

In conclusion, our findings demonstrate that Ca2+ signaling
plays a key role in regulating the NFAT-calcineurin pathway
in skeletal muscle of hibernating 13-lined ground squirrels
over the torpor-arousal cycle. Activation of NFATc4 occurs
during ET and LA as a result of upregulation and activation
of calcineurin through calmodulin-binding and calpain1
cleavage. Also, activation of NFATc3 occurs during LT as a
result of upregulation in calcineurin and calpain1 so that
NFATc3 can regulate the expression of genes to maintain mus-
cle mass despite disuse-induced muscle atrophy during torpor
(Zhang and Storey 2015; Wu and Storey 2014). In addition,
this study developed and used a novel technique, the environ-
mental DPI-ELISA, to study the effects of environmental
stimuli such as temperature, [urea], and [Ca2+] on NFAT bind-
ing to target promoters, which was the secondary objective of
this study. We found that [urea] has little effect on NFAT
binding, but intranuclear [Ca2+] seems to decrease the DNA-
binding affinity of NFATc1, possibly through Ca2+ regulation
of export kinases and coactivators. NFATc3 and c4 binding
activity were not decreased with increasing [Ca2+] as they play
more significant roles in the regulation of targets necessary for
the maintenance of muscle mass (Zhang and Storey 2015;
Demonbreun et al. 2010). Furthermore, we determined that
temperature differences from euthermia (37 °C) to torpor
(4 °C) have profound effects on the binding of NFATc1, c3,
and c4 although the effects are more pronounced for NFATc1
and c4. The novel finding that transcription factor binding to
DNA is temperature-dependent should be explored further for
other transcription factors and to identify potential mecha-
nisms. These findings contribute to our understanding of mus-
cle remodeling, and these mechanisms involved in preserving
ground squirrel skeletal muscle throughout the torpor-arousal
cycle make studying the ground squirrel biologically relevant.
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