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Controlled downregulation of the cannabinoid CB1 receptor
provides a promising approach for the treatment of obesity
and obesity-derived type 2 diabetes
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Abstract Increased activity of the endocannabinoid system
has emerged as a pathogenic factor in visceral obesity, which
is a risk factor for type 2 diabetes mellitus (T2DM). The
endocannabinoid system is composed of at least two G-
protein-coupled receptors (GPCRs), the cannabinoid receptor
type 1 (CB1), and the cannabinoid receptor type 2 (CB2).
Downregulation of CB1 activity in rodents and humans has
proven efficacious to reduce food intake, abdominal adiposity,
fasting glucose levels, and cardiometabolic risk factors.
Unfortunately, downregulation of CB1 activity by universally
active CB1 inverse agonists has been found to elicit psychiat-
ric side effects, which led to the termination of using globally
active CB1 inverse agonists to treat diet-induced obesity.
Interestingly, preclinical studies have shown that downregula-
tion of CB1 activity by CB1 neutral antagonists or peripher-
ally restricted CB1 inverse agonists provided similar anorectic
effects and metabolic benefits without psychiatric side effects
seen in globally active CB1 inverse agonists. Furthermore,
downregulation of CB1 activity may ease endoplasmic retic-
ulum and mitochondrial stress which are contributors to
obesity-induced insulin resistance and type 2 diabetes. This
suggests new approaches for cannabinoid-based therapy in the
management of obesity and obesity-related metabolic disor-
ders including type 2 diabetes.
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Abbreviations
2-AG 2-Arachidonoylglycerol
AEA Arachidonoylethanolamide
CB1 Cannabinoid receptor type 1
CB2 Cannabinoid receptor type 2
CRP C-reactive protein
CNS Central nervous system
EC Endocannabinoid
FAAH Fatty acid amide hydrolase
GPCR G-protein-coupled receptor
HbA1c Glycated hemoglobin
MAGL Monoacylglycerol lipase
T2DM Type 2 diabetes mellitus
ER Endoplasmic reticulum

Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disease
with key pathological features of impaired insulin secre-
tion from pancreatic β-cells and insulin resistance in glu-
cose consumption and storage sites such as adipose, liver,
and skeletal muscle (Ashcroft and Rorsman 2012). This
metabolic disorder affects about 380 million people world-
wide (Guariguata et al. 2014). Studies have linked T2DM
with obesity (Bastard et al. 2006; Eckel et al. 2011), while
other factors such as genetic mutations (Herder and Roden
2011), overexpression of the hormone amylin (Zhang et al.
2014), and a disturbance of the body’s natural clock
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(Buxton et al. 2012; Shi et al. 2013) have also been recog-
nized as contributors to the development of T2DM.
Growing evidence indicates that excessive body fat, partic-
ularly abdominal fat, can cause chronic subclinical inflam-
mation (Donath 2014; Hameed et al. 2015; Li et al. 2015;
Spranger et al. 2003; Van Greevenbroek et al. 2013).
Excessive abdominal fat induces endoplasmic reticulum
(ER) stress and hypertrophy in adipocytes, both of which
have been associated with the production of pro-
inflammatory cytokines and chemokines (Hotamisligil
2010). ER stress can also trigger an adaptive compensatory
unfolded protein response (UPR) (Cnop et al. 2012; Leem
and Koh 2011), which in turn leads to inflammatory pro-
cesses (Hotamisligil 2008). This inflammation interferes
with insulin receptor signaling through the activation of
c-Jun N-terminal kinase (JNK) and subsequent serine
phosphorylation of the insulin receptor substrate 1 (IRS1)
(Hotamisligil 2008) and via induction of reactive oxygen
species (ROS) and the activation of the nuclear transcrip-
tion factor-κB (NF-κB) (Hotamisligil 2010; Zhang and
Kaufman 2008). It has been demonstrated that reversal of
ER stress either by genetic overexpression of ER chaper-
ones (Kammoun et al. 2009; Ozawa et al. 2005) or admin-
istration of chemical chaperones (Özcan et al. 2006) en-
hanced insulin sensitivity in adipose tissue, muscle, and
liver of experimental animals (Fig. 1).

The interplay of mitochondrial dysfunction and ER
stress has been well documented (Leem and Koh 2011;
Rieusset 2011). Imbalanced nutrient supply, energy expen-
diture, and oxidative respiration leads to the dysfunction of

mitochondria, which contributes to the development of in-
sulin resistance and T2DM (Goossens 2008; Lim et al.
2009; Rieusset 2011). Furthermore, obesity can lead to
the expansion, hyperplasia, and hypertrophy of adipocytes,
which pathologically involve ER stress, mitochondrial
dysfunction, and oxidative and other cellular stress
(Tripathi and Pandey 2012). Collectively, obesity-induced
stress alters the secretion properties of adipocytes and leads
to elevated secretion of pro-inflammatory cytokines and
chemokines, such as tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), C-reactive protein (CRP), and other
biomarkers of inflammation (Apovian et al. 2008; Dahlén
et al. 2014; Fontana et al. 2007; Hotamisligil et al. 1995;
Hotamisligil et al. 1993). These pro-inflammatory cyto-
kines impair insulin signaling (Howard and Flier 2006;
Lebrun and Van Obberghen 2008) and recruit pro-
inflammatory immune cells such as macrophages to adi-
pose tissue (Cinti et al. 2005). The infiltrated macrophages
also produce pro-inflammatory cytokines, which can wors-
en the inflammation in adipose tissues and lead to the path-
ogenesis of insulin resistance (Dahlén et al. 2014; Fontana
et al. 2007; Van Greevenbroek et al. 2013).

The importance of weight control has been well-
established in the management of type 2 diabetes (Klein
et al. 2004). Evidence from preclinical and clinical observa-
tions suggests that the endocannabinoid (EC) system is over-
active in the presence of abdominal obesity and/or diabetes
(Scheen 2007). Hence, attenuation of the EC system overac-
tivity has been proposed as a new approach for the treatment
of obesity and its related disorders.

Fig. 1 The impact of blocking
CB1 signaling on obesity and
type 2 diabetes mellitus. Blocking
CB1 signaling globally causes
weight loss and decreases insulin
resistance but also causes
anxiogenic effects. However,
blocking CB1 signaling
peripherally maintains the
benefits of blocking CB1 in liver
and adipose cells while avoiding
these anxiogenic effects
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The overactive endocannabinoid system in obesity

The EC system is composed of two G-protein-coupled recep-
tors (GPCRs), cannabinoid receptor type 1 (CB1), cannabi-
noid receptor type 2 (CB2), a group of lipid-derived endoge-
nous ligands called endocannabinoids, and several metabolic
enzymes that are involved in the synthesis and degradation
of endocannabinoids. The endocannabinoids include
arachidonoylethanolamide (AEA, anandamide) and 2-
arachidonoylglycerol (2-AG) (Pertwee et al. 2010). The major
physiological role of endocannabinoids is to modulate the
release of neurotransmitters including excitatory amino acids
(glutamate), inhibitory amino acids (GABA, glycine), and
monoamines (dopamine, serotonin, noradrenaline, acetylcho-
line) (Di Marzo et al. 2004; Pertwee et al. 2010). The CB1
receptor possesses constitutive (also known as basal) activity
in the absence of any ligand (Pertwee et al. 2010). A CB1
agonist augments the activity of the receptor above its basal
level, whereas a CB1 inverse agonist decreases the activity
below the basal level. A neutral CB1 antagonist has no activ-
ity, but occupies the endogenous ligand binding site to block
its activity. The term Bblockers^ is used here to refer to antag-
onists or inverse agonists.

The EC system was initially known as a neuromodulatory
system and has emerged as an important intercellular signal-
ing system that regulates energy balance (Pagotto et al. 2006)
and other physiological functions (Pacher et al. 2006). In gen-
eral, activation of the EC system depends upon external stim-
uli such as cellular stress, tissue damage, or metabolic chal-
lenges (Di Marzo et al. 2004; Piomelli 2003). Experimental
evidence indicates that the endocannabinoid system is chron-
ically activated in obese states (Blüher et al. 2006; Di Marzo
2008; Engeli 2008; Engeli et al. 2005). Overactivity of the
EC system may result from increased synthesis of
endocannabinoids, overexpression of the cannabinoid recep-
tors, or decreased degradation of endocannabinoids. In human
obese subjects, various genetic variations of fatty acid amide
hydrolase (FAAH) have been identified (Sipe et al. 2010).
Genetic alteration of FAAH can lead to elevated circulating
levels of AEA and other endocannabinoids (Sipe et al. 2010).

In human subjects, circulating 2-AG was correlated with
body fat, visceral fat mass, and fasting plasma insulin con-
centrations (Cote et al. 2007). Additionally, circulating
AEA and 2-AG were higher in obese menopausal women
compared to lean menopausal women (Engeli et al. 2005).
Increased availability of endocannabinoids may lead to an
enhanced activation of cannabinoid receptors in both cen-
tral nervous system (CNS) and peripheral organs (De Kloet
and Woods 2009). Numerous experimental data indicate
that activation of the CB1 receptor by endocannabinoids
promotes food intake (Di Marzo et al. 2001), increases
lipogenesis in adipose tissue and liver (Cota et al. 2003;
Jourdan et al. 2012; Osei-Hyiaman et al. 2005), and

induces insulin resistance and dyslipidemia (Eckardt et al.
2009; Liu et al. 2012).

Clinical evidence suggests that accumulation of abdominal
fat is a critical correlate of the overactive peripheral
endocannabinoid system in human obesity (Blüher et al.
2006; Cote et al. 2007). Therefore, downregulation of the
overactive endocannabinoid system, particularly CB1 recep-
tor activity, represents an attractive approach for the treatment
of obesity-derivedmetabolic disorders such as type 2 diabetes.

Downregulation of the endocannabinoid system
by CB1 receptor blockers

It has been demonstrated that downregulation of CB1 receptor
activity by various CB1 inverse agonists can reduce body
weight, insulin resistance, dyslipidemia, and fatty liver in
obese experimental animals (Jourdan et al. 2010; Simiand
et al. 1998; Trillou et al. 2003). Similar Bproof-of-concept^
results have been obtained from preclinical studies of CB1
receptor inverse agonists (Black 2004; Lange and Kruse
2004; Smith and Fathi 2005). In preclinical settings, activation
of the CB1 receptor elicits metabolic stress conditions linked
to insulin resistance and T2DM. Examples include the induc-
tion of ER stress in human and mice hepatocytes (Liu et al.
2012), impaired mitochondrial biogenesis in mice white adi-
pose, muscle, and liver tissues (Tedesco et al. 2010), and al-
tered hepatic mitochondrial function (Lipina et al. 2014) as
well as induction of adipose hypertrophy and macrophage
infiltration (Wong et al. 2012). On the other hand, downregu-
lation of CB1 receptors by the CB1 inverse agonist
rimonabant has been found to improve hepatocyte
(Flamment et al. 2009) and adipocyte (Tedesco et al. 2008)
mitochondrial functions, to induce transdifferentiation of
white adipocytes to brown fat (Perwitz et al. 2010), and to
reduce hypertrophy of adipocytes (Jbilo et al. 2005).

The therapeutic value of rimonabant, the first CB1 inverse
agonist, has been assessed in multiple clinical trials (i.e., RIO
Europe, RIO North America, and RIO Lipids) (Christopoulou
and Kiortsis 2011). In overweight/obese non-diabetic patients,
rimonabant produced significant weight loss (−4.7 to −5.4 kg)
and waist circumference reduction (−3.6 to −4.7 cm). At the
same time, there was a decrease in cardiometabolic risk factors
(Pi-Sunyer et al. 2006; Van Gaal et al. 2005; Van Gaal et al.
2008). Along with these clinical benefits, increasing plasma
adiponectin and decreasing plasma leptin and CRP were also
achieved (Després et al. 2005). Adiponectin is a plasma pro-
tein exclusively secreted by adipose tissue. It induces free
fatty acid oxidation, decreases hyperglycemia and
hyperinsulinemia, and leads to body weight reduction (Diez
and Iglesias 2003; Yamauchi et al. 2001). Data from the same
clinical trials (i.e., the RIO trials) revealed that rimonabant not
only can lead to significant reductions in plasma glucose and
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insulin levels but can also prevent or reverse progression of
glucose intolerance in overweight/obese non-diabetic patients
(Scheen 2007). Clinical assessment of rimonabant in drug-
naive type 2 diabetic patients has shown that the drug at a
20-mg dosage reduced HbA1C (glycated hemoglobin) and
fasting plasma glucose levels, while body weight, waist cir-
cumference, and cardiometabolic risk factors were decreased
(Iranmanesh et al. 2006; Rosenstock et al. 2008).
Furthermore, rimonabant was investigated in overweight/
obese type 2 diabetic patients who were insulin-treated or on
metformin or sulphonylurea monotherapy. In this trial, reduc-
tion of body weight and HbA1c were achieved, while lipid
profiles were improved (Hollander et al. 2010; Scheen et al.
2006). The clinical efficacy of rimonabant and several follow-
up CB1 inverse agonists (Janero andMakriyannis 2009) in the
management of body weight indicated an exciting path for the
translation of CB1 receptor blockers into antiobesity and an-
tidiabetic medications. However, soon after the regulatory ap-
proval of rimonabant in Europe, the drug was found with
psychiatric side effects such as anxiety, depression, and sui-
cidal ideation (Christensen et al. 2007; Moreira and Crippa
2009). These untoward psychiatric side effects of rimonabant
caused all CB1 inverse agonists to be abandoned from further
clinical development (Janero and Makriyannis 2009).
However, the clinically tested CB1 inverse agonists all are
CB1 blockers that can target CB1 receptors located in both
central circuits and in peripheral organs (Janero and
Makriyannis 2009). Given that the modulation of food intake
and feeding behavior by the EC systemwas initially attributed
to both central (Cota et al. 2003; Di Marzo and Matias 2005)
and peripheral (Cota et al. 2003; Gómez et al. 2002) mecha-
nisms, the metabolic benefits from rimonabant or other clini-
cally tested CB1 inverse agonists cannot be exclusively as-
cribed to the CB1 receptors present in central circuits. The
involvement of the downregulation of CB1 receptors present
in the liver, muscle, adipocytes, and endocrine pancreatic cells
cannot be excluded (Quarta et al. 2011). In this context, pe-
ripherally active CB1 blockers with limited brain penetration
may be promising for the management of obesity and obesity-
related metabolic disorders without the depressive side effects
(Kunos and Tam 2011).

Investigations of the therapeutic benefits from downregu-
lation of peripheral CB1 receptors have started recently. A
number of peripherally restricted CB1 antagonists such as
AM6545 (Cluny et al. 2010; Tam et al. 2010) and inverse
agonists such as JD5037 (Chorvat et al. 2012; Tam et al.
2012) and others (Chorvat 2013; Dow et al. 2012; Hortala
et al. 2010; Silvestri and Di Marzo 2012; Son et al. 2010;
Wu et al. 2011) have provided proof of concept in preclinical
studies. For instance, in mice with genetic and diet-induced-
obesity (DIO), AM6545 at the dose of 10 mg/kg/day led to a
12 % weight reduction as compared to rimonabant, which
caused a 21 % reduction at the same dose. Interestingly,

AM6545 does not show an anxiogenic effect, which is pro-
phetic for the neuropsychiatric side effects of centrally active
CB1 inverse agonists like rimonabant (Tam et al. 2010). As a
glycemic control, AM6545 is almost as efficacious as
rimonabant in improving glucose tolerance and insulin sensi-
tivity, reversing fatty liver, and improving the plasma lipid
profile of the experimental animals. These effects were attrib-
uted to the blockade of CB1 receptors in peripheral tissues, as
proven by the use of hepatic CB1-deficient mice (Tam et al.
2010). Similarly, the peripherally restricted CB1 inverse ago-
nist JD5037 was demonstrated to elicit effects of reducing
food intake, body weight, and adiposity without anxiogenic
effects in mice models (Chorvat et al. 2012; Tam et al. 2012).
Collectively, these preclinical results indicate that blockade of
peripheral CB1 receptors may be sufficient to produce anti-
obesity effects without CNS liabilities. In addition to the ef-
fects of reducing food intake and body weight, downregula-
tion of CB1 receptor activity by CB1 inverse agonists has
been found to suppress insulin hypersecretion under condi-
tions of metabolic dysfunction (Getty‐Kaushik et al. 2009;
Lynch et al. 2012; Rohrbach et al. 2012) and to promote the
proliferation and survival of β-cells in pancreases of obese
animal models (Doyle et al. 2011; Duvivier et al. 2009;
Janiak et al. 2007; Jourdan et al. 2013; Kim et al. 2012).
These effects probably resulted from the reduction of
lipotoxicity, which has been implied to cause β-cell death in
rodents and humans (Unger and Orci 2001).

Besides peripherally active CB1 inverse agonists, a novel
class of CB1 ligands has been discovered in the last few years.
This class of compounds can allosterically modulate the ac-
tivity of the CB1 receptor through a site topographically dis-
tinct from the endogenous ligand binding site (Ross et al.
2012). One of these CB1 allosteric modulators, PSNCBAM-
1, was characterized as an allosteric CB1 antagonist (Horswill
et al. 2007). It interacts with the CB1 receptor at a receptor site
that is different from the active site where traditional CB1
inverse agonists bind. The compound was demonstrated to
induce acute hypophagia and weight loss in male Sprague–
Dawley rats (Horswill et al. 2007). Whether the hypophagic
effects from allosteric CB1 antagonists can be achieved in
obese models and translated into therapeutic implications for
obesity and T2DM remains to be investigated.

Conclusions

Obesity-provoked subclinical inflammation is pathogenic for
insulin resistance, which is a hallmark of type 2 diabetes.
Overactivation of the endocannabinoid system has been found
to underpin factors of obesity. The antiobesity efficacy and
metabolic benefits from blocking the CB1 receptor have been
confirmed by numerous preclinical studies and multiple clin-
ical trials of rimonabant and other CB1 inverse agonists.
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However, the psychiatric side effects of globally active CB1
inverse agonists like rimonabant prevent clinical applications
of this class of compounds. Alternative approaches to down-
regulate the endocannabinoid system by selectively blocking
the CB1 receptor in the peripheral tissues have been demon-
strated in preclinical studies as a viable strategy to avoid CNS
side effects while maintaining therapeutic benefits. New ap-
proaches to downregulate CB1 activity through allosteric
modulation are also emerging. Collectively, controlled down-
regulation of CB1 activity could provide a promising strategy
to treat obesity and obesity-related disorders such as type 2
diabetes.
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