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Abstract Osteoarthritis (OA) treatments presently rely on
analgesics, which manage pain but fail to restore imbalances
between catabolic and anabolic processes that underlie OA
pathogenesis. Recently, biologic (biotherapeutic) drugs,
which alter the activity of catabolic agents such as nitric oxide
and inflammatory cytokines in ways, allowing tissue regener-
ation, were evaluated for efficacy in OA treatment. These
studies failed to demonstrate dramatic abatement of OA symp-
toms by these drugs, but suggested strategies by which bio-
logic agents might be used to treat OA. The present review
summarizes current understanding of OA pathogenesis and
evolving treatments. Preliminary evaluations of a novel
biotherapeutic strategy are presented here. Twenty OA pa-
tients receiving sour topical cherry seed extract (SCE), an
inducer of heme oxygenase-1 (HO-1), a major physiological
protectant against oxidative stress exhibited significantly de-
creased joint pain and activation of CD4+ T cells expressing
inflammatory cytokines (p<0.05), significantly decreased pe-
ripheral blood C-reactive protein (CRP), and increased leuko-
cyte HO-1 (p<0.05) in comparison with ten placebo-treated
patients. SCE inhibits joint-damaging inflammatory mediator
production. This agent therefore meets the main criterion for

classification as a “biotherapeutic,” or “biologic” agent. The
negligible toxicity and low cost of such materials make them
promising contributors to OA treatment, sustainable within
resource limitations of a wide range of patients.
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Introduction

Osteoarthritis (OA), a degenerative age-related disease that
affects the joints, is the most common human musculoskeletal
disorder and a leading cause of disability in elderly popula-
tions worldwide (Aggarwal et al. 2013). OA onset is typically
triggered by sustained biomechanical trauma, resulting in
chondrocyte-mediated cartilage destruction.

Oxidative stress, created by this degradative process, pro-
motes emergence of senescent osteoarthritic osteoblasts,
which in turn enhance dysregulation of proinflammatory sig-
naling and apoptotic depletion of functional joint cells, caus-
ing insufficient cartilage repair and aberrant remodeling of the
extracellular matrix (Chevalier et al. 2013; Clerigues et al.
2012, 2013). Tissue damage is exacerbated by trauma-related
dysregulation of normal maintenance of healthy joint homeo-
stasis (Dieppe and Lohmander 2005). This disruption pro-
motes increasingly severe inflammation (synovitis) (Volpi
and Maccari 2005), leading to adverse changes in joint fluid
composition, breakdown of extracellular matrix material, and
impairment of normal tissue repair.

The pathomechanisms of OA are facilitated by progres-
sively elevated levels of the inflammatory cytokines tumor
necrosis factor alpha (TNF-α), and the interleukins (IL) IL-
1β, IL-6, and IL-8, produced primarily by macrophages and T
lymphocytes, systemically and in affected joint tissue (Attur
et al. 1998). Downstream signaling cascades of these
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cytokines also increase expression of nitric oxide (NO) by
mesenchymal cells (Volpi and Maccari 2005). Collectively,
each of these factors contribute to joint capsule thickening,
along with loss of cartilage, chondrocyte apoptosis, progres-
sive articular dysfunction, and extreme chronic pain (Simanek
et al. 2005).

Evaluation of “biotherapeutic” agents in OA treatment
Several well-known features of the OA disease process that
present very attractive therapeutic targets are summarized in
Fig. 1. For example, the production of inflammatory cytokines
by activated CD3+ T lymphocytes offers an excellent “choke
point” for intervention in OA pathogenesis. This is due to
critical roles for these mediators in disease-associated pain and
articular tissue destruction (Attur et al. 1998). Many treat-
ments interfere with inflammatory cytokines at the level of
their interaction with their normal physiological receptors and
block downstream signaling processes, including dysregulat-
ed inflammation (Chevalier et al. 2013). However, a class of
agents known as “biologic” or “biotherapeutic” drugs are
distinguished by mechanisms that modulate cellular signaling
pathways to interfere with disease progression, promoting
activities that contribute to healthy homeostasis (Chevalier
et al. 2013). These approaches differ from use of analgesics
and related drugs currently favored in clinical practice, which
may ameliorate pain and other symptoms but have a negligi-
ble effect on the fundamental pathomechanisms of OA
(Chevalier et al. 2013).

Disappointing performance of biotherapeutic treatments for
OA Previous clinical trials of inflammatory cytokine inhibi-
tors reported by other investigators failed to produce dramatic
improvement of OA prognoses (Chevalier et al. 2013). Inhib-
itors of both TNF and IL-1β were constructed as fusion
products of a synthetic genetic element containing a portion
of the gene for cognate receptors of TNF or IL-1β, spliced to
the Fc (constant) portion of the immunoglobin G1 (IgG1)
antibody. The resulting fusion protein binds to each cytokine,
competitively reducing their physiological availability, there-
by inhibiting their proinflammatory effects. In OA, this in-
cludes destruction of joint tissue (Fig. 1) (Chevalier et al.
2013). These agents, administered systemically or via intra-
articular injection to OA patients affected in both knees and
hands, failed to halt structural deterioration or severity of
symptoms (Chevalier et al. 2013). Moreover, genetically
engineered cytokine inhibitors are extremely costly. For in-
stance, per-patient costs for a 1-year regimen of Etanercept, a
TNF-inhibitory fusion protein with broad application in in-
flammatory disease, is approximately $20,000 (Pollack 2011).
This class of drug and related products are also associatedwith
severe side effects, including cancer and, occasionally, fatal
immune impairment (Chevalier et al. 2013; Smith and Skelton
2001; Jain and Singh 2013).

HO-1-mediated inhibition of inflammation The lack of effec-
tive biopharmaceutical strategies for OA management has left
clinicians heavily dependent on corticosteroids and nonsteroi-
dal anti-inflammatories. Despite being highly effective in
controlling inflammation, these drugs are often severely toxic,
particularly over extended time periods (Wenham and
Conaghan 2010). Conversely, biotherapeutic strategies avoid
small molecule inhibitors of proinflammatory signaling cas-
cades—which may be costly, toxic, and only marginally ef-
fective. Here, we demonstrate that a topically applied blend of
phytochemicals interferes with OA pathogenesis by reducing
the number of T lymphocytes activated to produce disease-
associated inflammatory cytokines. Sour cherry seed extract
(SCE) systemically increases the activity of heme oxygenase-
1 (HO-1), a major naturally occurring antioxidant defense
enzyme, ameliorates OA symptoms, and inhibits activation
of CD3+ T cells to express inflammatory cytokines. HO-1
does not directly inactivate reactive oxygen molecules. Rather,
its contribution to antioxidant defense occurs indirectly due to
two major heme degradation products of HO-1 activity: bili-
rubin and carbon monoxide (CO). The enzyme metabolizes
heme that accumulates in tissues as a result of red blood cell
turnover to CO, free iron, and bilverdin. Biliverdin is rapidly
reacted to bilirubin by ubiquitously expressed biliverdin reduc-
tase, and in nanomolar intracellular concentrations, acts as a
powerful scavenger of reactive oxygen molecules (Haines
et al. 2012;Morse andChoi 2002). CO exerts its cytoprotective
effects through increases in the activity of guanylate cyclase to
increase levels of the second messenger cyclic guanosine-3′5′-
monophosphate (cGMP), which interacts with multiple cellu-
lar targets to reduce oxidative stress (Haines et al. 2012; Morse
and Choi 2002). Previously, the authors showed that SCE-
induced HO-1 inhibits the representation of CD3+ TNF-α+
and CD3+ IL-8+ cells in cultured leukocytes from human
rheumatoid arthritis and diabetes type 2 patients at significantly
greater levels than in cells from healthy control subjects
(Mahmoud et al. 2013, 2014). These findings are highly en-
couraging, as both rheumatoid arthritis and type 2 diabetes are
chronic inflammatory diseases with many features of patho-
genesis—particularly inflammatory tissue destruction—com-
mon with OA (Velasquez and Katz 2010).

Topically administered SCEmay be considered a “biophar-
maceutical” because it directly inhibits the activity of inflam-
matory cytokines, which are core contributors to the disease.
Components of this product curtail cytokine expression by T
cells via increased tissue activity of HO-1 (Mahmoud et al.
2013, 2014). Results of a preliminary evaluation of the effi-
cacy of a topical HO-1 inducer for OA treatment are described
below. The outcomes of this study suggest that phytochemical
inducers of this enzyme are potentially superior to fusion
protein biopharmaceuticals, which inhibit cytokine activity
at the level of interaction with their cognate receptors (Che-
valier et al. 2013).
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Materials and methods

This section describes a representative clinical use of a topical
biotherapeutic agent in the treatment of OA.

Study participants

Participants included 30 patients aged 40 years or older,
diagnosed with inflammatory OA of the knee, according to
criteria for OA set by the American College of Rheumatology
(Altman et al. 1986). Patients selected for participation in the
study were under treatment regimens that included nonsteroi-
dal anti-inflammatory agents. Persons with medical condi-
tions which might affect outcome measures independent from
OA pathogenesis or routine treatment for the condition were
excluded. The present study met Kuwait University’s human
subject protection criteria and was approved by the
University’s Institutional Review Board (IRB)/ethics commit-
tee. Informed consent agreements were obtained from all
participating subjects.

Each subject was treated topically with 5 ml of SCE emul-
sion twice daily for 2 months. Treatments were conducted by
applying 2.5 ml of the cream to both knees of each participant,
followed by dispersal across the kneecap and surrounding skin
in a circular motion, continuing until the full 5 ml had been
absorbed. Patients in the placebo group were administered
5 ml of a variety of the skin cream created from the seed oil
without the flavonoid fraction. The SCE emulsion was pre-
pared from seed kernels as previously described (Mahmoud
et al. 2013, 2014; Bak et al. 2010).

Treatment groups and outcomes assessed

The participants were randomly assigned into one of two
treatment groups defined as follows: SCE group: 20 subjects,
administered SCE emulsion twice daily for 2 months; control
(placebo) group: 10 subjects, administered a SCE oil-based
vehicle without the flavonoid fraction (placebo) with no SCE
twice daily for 2 months.

Fig. 1 Major pathomechanisms
contributing to OA-associated
articular tissue damage.
Mechanical trauma and
endogenous oxidative stressors
increase synoviocyte, T cell, and
macrophage expression of the
inflammatory cytokines IL1-β,
TNF-α, and IL-6, resulting in
aberrant chondrocyte activity and
damaged cartilage. Increased
macrophage TGF-β expression
stimulates bone tissue
osteophytes, promoting joint
inflammation. Pathologically
elevated macrophage activity also
increases neovascularization,
increasing production of pro-
matrix metalloproteinase
(ProMMP), which activates its
collagenase function by
autocatalytic cleavage, allowing it
to contribute to OA-associated
collagen matrix destruction.
From: Chevalier et al. (2013)
[Reproduced with permission
fromNat Rev Rheumatol 9, 2013]
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Patients were assessed at baseline and at week 8 of treat-
ment for: (i) index knee pain using the WOMAC pain sub-
scale (Bellamy et al. 1988); (ii) serum HO-1; (iii) serum C-
reactive protein (CRP); and (iv) activation of T lymphocytes
to express the inflammatory cytokines IL-8, TNF-α, interfer-
on gamma (IFN-γ), IL-1α, IL-1β, and IL-6. Blood collection
and analysis was conducted according to previously published
methods used by this laboratory (Mahmoud et al. 2013, 2014).
Statistical analyses of data were performed using Windows
Norusis/SPSS version 17. A p value of <0.05 was considered
statistically significant.

Clinical and laboratory outcomes Prior to study enrollment,
each patient was screened for compliance with inclusion/
exclusion criteria. Parameters evaluated included medical his-
tory, current health status (by physical examination), labora-
tory and radiographic evaluations, and a review of current
medications. The methodology for measurement of each of
these outcomes is summarized below:

Pain assessment Self-assessed pain in the index knee was
measured using the 100-mm visual analog scale (VAS) on
the WOMAC pain subscale (Bellamy et al. 1988).

Phlebotomy and extraction of peripheral blood mononuclear
cells Ten-milliliter samples of sodium heparin-anticoagulated
peripheral venous blood were collected from study partici-
pants in vacutainer collection tubes (Becton Dickinson Bio-
sciences Inc., Rutherford, NJ, USA) and diluted 1:1 in sterile
phosphate-buffered saline (PBS) followed immediately by
isolation of peripheral blood mononuclear cell (PBMC) using
density centrifugation on Ficoll-Hypaque gradients
(Pharmacia, Uppsala, Sweden) and a Centra-CL-2 centrifuge
(MidAtlantic Diagnostics, Inc., Mount Laurel, NJ 08054
USA).

Cell culture PBMC were separated by Ficoll-Paque
(Pharmacia, Uppsala, Sweden) density gradient centrifuga-
tion. The cells were washed and suspended in RPMI 1640
medium (Gibco BRL, Gaithersburg, MD, USA) at density of
1×10(6) cells/ml; 200 μl cultures in 96-well plates were
incubated under humidified conditions for 6 h at 37 ° C in
an atmosphere of 5 % CO2. PBMC were stimulated in the
presence of 50 ng/ml of phorbol 12-myristate 13-acetate
(PMA; Sigma, St. Louis, MO), 1 ng/ml of ionomycin (Sigma),
and 2 mM monensin (Sigma). Here, monensin is added to
cells as a glycoprotein export inhibitor, which allows intracel-
lular accumulation of each target cytokine, thus enhancing its
signal during flow cytometric analysis.

Flow cytometric analysis for inflammatory cytokines
Expression of IL-8, IFN-γ, IL-1α, IL-1β, and IL-6 in CD3+
CD4+ lymphocytes in freshly collected peripheral blood or for

each cell culture stimulation condition was analyzed as previ-
ously described (Mahmoud et al. 2013). Briefly, cells harvest-
ed from each culture were first incubated for 15 min at room
temperature with fluorescein-isothiocyanate (FITC) anti-
human CD3+ (Dakopatts, A/S, Glostrup, Denmark), then
fixed and permeabilized using the Fix and Perm cell perme-
abilization kit (Life Technologies Inc., Eugene, OR, USA).
Intracellular labeling of permeablized cells for inflammatory
cytokines was accomplished by 30-min incubations at room
temperature, with phycoerythrin (RD1)-conjugated monoclo-
nal antibodies to human IL-8 IFN-γ, IL-1α, IL-1β, and IL-6
(BD PharMingen, Heidelberg, Germany). PBMC were then
washed and evaluated by two-color flow cytometry for ex-
pression of each selected cytokine using the FC-500 flow
cytometer (Beckman Coulter Corporation, Hialeah, FL,
USA). Isotypic controls for the antibody used to detect cyto-
kine expression were established for each cell preparation.
Positive analysis regions for cells expressing selected cluster
of differentiation (CD) immunophenotypic markers and cyto-
kines were set against controls, and specific binding of
fluorophore-conjugated antibodies was analyzed according
to standard methods recommended by the manufacturer. Lym-
phocyte subpopulations were identified by position on for-
ward and side-scatter plots. Staining of cell surface and inter-
nal antigens of interest in preparation for flow cytometry was
conducted according to the manufacturer’s protocol
(Invitrogen Molecular Probes manual: Detection of intracel-
lular antigens by flow cytometry (Rev 03/10) DCC-10-0815
(PN 624923BD). Issue A Initial Issue, 8/03 Rev Issue BD 10/
11, Cytomics FC 500 CXP Software IFU Manual, running
samples Sec 4.1 and creating protocols section 1–19).

ELISA analysis for HO-1 expression Measurement of lym-
phocyte expression of HO-1 was made using the
StressXpress™Human HO-1 ELISA Kit (Enzo Life Sciences
International, Inc., Plymouth Meeting, PA, USA). Briefly,
lysates made from cells were incubated in 96-well microtiter
plates coated with anti-human HO-1 antibody, followed by
treatment with secondary/detect antibody and related reagents
provided with kits. Cell-associated HO-1 expression was
evaluated during the absorbance of the developed kit reagents
at 450 nm in a Biotek ELX 808Microplate Reader. Results are
reported asmean values in nanograms per milliliter of HO-1 in
lymphocyte lysates of each patient group±standard error of
the mean (SEM).

ELISA analysis for CRP levels Measurement of CRP was
made by using Active US® CRP ELISA Kit (Diagnostic
System Laboratories, Inc. Webster, Texas, USA). Briefly,
peripheral blood was collected in non-anticoagulated
vacutainer tubes (Becton Dickinson Inc.) and allowed to stand
at room temperature for 2 h to form clots, from which serum
was extracted with sterile applicators. Serum samples were
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subsequently incubated in 96-well microtiter plates coated
with anti-CRP antibody, followed by treatment with horserad-
ish peroxidase (HRP)-cojugated anti-CRP. CRP concentration
in each sample which was proportional to HRP-mediated
conversion of a colorimetric substrate was estimated by mon-
itoring of dual wavelength absorbance at 450 and 620 nm
using a Synergy HT Multi-Mode Micro plate Reader.

Statistical analysis

Wilcoxon signed ranks test was used to compare variables in
each group before and after treatment. Correlations between
variables within each group were performed using Spearman
rank correlation test. The analyses were performed using the
SPSS for Windows statistical package version 17 (Norusis/
SPSS, Inc.). A p value of <0.05 was considered statistically
significant.

Results

Clinical outcomes

The effect of topical SCE treatment on joint pain, self-assessed
by OA patients in a selected index knee is shown in Fig. 2.
When compared with pain scores measured before treatment
(baseline values), SCE-treated patients reported significantly
decreased pain following 2 months of daily application of the
product (p<0.001). By contrast, comparison of pain scores
reported by patients in the placebo group at baseline, with
scores following 2 months of treatment with the placebo skin
cream, revealed only nonsignificant differences (p=0.139).

Figure 3 shows expression of leukocyte-associated HO-1
in the test and control participants. Measurement of HO-1
content of PBMC lysates taken from both groups reveals
significant increases in lymphocyte content of the enzyme in
cells from SCE-treated OA patients evaluated by ELISA
following 2 months of treatment versus baseline levels
(p<0.05). A nonsignificant difference in baseline versus post-
treatment PBMC HO-1 levels was revealed for the placebo
patients (p=0.220).

Evaluation of CRP in peripheral blood serum of OA pa-
tients after 2 months of topical SCE treatment revealed signif-
icantly lower levels of this inflammatory biomarker than in
samples taken in the same group at baseline (p<0.005; Fig. 4).
Comparison of serum CRP in placebo-treated subjects
showed only nonsignificant differences between baseline
and posttreatment values (p=0.957).

The effect of SCE treatment on activation of peripheral
blood leukocytes is shown in Fig. 5. Here, the effect of
treatments on CD4+ T cells is shown, since these cells are a
major source of the inflammatory cytokines contributing to

OA pathogenesis (Attur et al. 1998). It is nevertheless antic-
ipated that SCE also alters proinflammatory signaling by
macrophages and other tissue. Ongoing studies are evaluating
the scope of SCE-mediated effects in other cell types. Relative
to baseline measurements, PBMC from SCE-treated OA pa-
tients cultured with PMA/I, contained significantly lower
post treatment representation of CD4+ IL-8+ (p<0.001),
CD4+ TNF-α+ (p<0.005) and CD4+ IFN-γ+ (p<0.005)
(Fig. 5a), CD4+ IL-1α+ (p<0.005), and CD4+ IL-1β+
(p<0.005) but not CD4+ IL-6 (p=0.494) (Fig. 5b). In these
experiments, comparison of cells from blood of OA patients
taken at baseline, versus placebo-treated patients show non-
significant differences in representation of CD4+ T cells acti-
vated to express IL-8 (p=0.730), TNF-α (p=0.165), and
IFN-γ (p=0.160) (Fig. 5a), IL-1α (p=0.620), IL-1β (p=
0.406) and IL-6 (p=0.240) (Fig. 5b).

Discussion

Implication of preliminary human trials

The representative investigation described above was a
double-blind clinical trial, evaluating a hypothesis that SCE,
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administered topically, reduces joint pain and systemically
inhibits expression of inflammatory cytokines that promote
OA pathogenesis; along with reduction in CRP, and numbers
of T cells activated to express IL-8, TNF-α, IFN-γ, IL-1 α,
and IL-1β. These results were obtained by persons adminis-
tered extracts of the sour cherry seed kernel, but not the fruit.
Interestingly, sour cherry juice is also shown to affect some of
the same parameters as described in the present report. In that
study, 58 nondiabetic patients with Kellgren grade 2e3 OA,
each consumed 28 oz bottles of sour cherry juice or placebo,
daily for 6 weeks. WOMAC pain scores and high sensitivity
C-reactive protein (hsCRP) were significantly reduced in pa-
tients receiving juice but not placebo (P<0.01) (Schumacher
et al. 2013). The mechanisms by which the juice ameliorated
OA symptoms remain undefined. Future studies by our group
will include efforts to isolate and characterize phytochemical
agents produced by the sour cherry plant contributing to
strengthening of processes contributing to healthy tissue ho-
meostasis—including HO-1 activity.

Based on previous investigations and the significantly in-
creased lymphocyte HO-1 expression noted in SCE-treated
patients relative to baseline and placebo (Fig. 3), the thera-
peutic mechanisms likely include HO-1-mediated quenching
of proinflammatory reactive oxygen species. In this study, we
observed that topical treatment of OA patients with a
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preparation of sour cherry flavonoids that include HO-1 in-
ducers which therapeutically diminish oxidative stress burden
on tissue (Mahmoud et al. 2013; Mahmoud et al. 2014),
significantly abated major OA symptoms. These effects oc-
curred via inhibition of CD3+ T cell expression of inflamma-
tory cytokines, thus demonstrating the capacity of this plant
material to ameliorate OA severity by altering a major under-
lying contributor to disease progression. The specific identity
of compound(s) responsible for this effect remain to be iden-
tified, however, since the HO-1-inducing ability of the seed
kernel is localized in the solid fraction but absent from the oil,
it is likely that the phytochemical(s) responsible for the effect
are flavonoid in nature (Bak et al. 2010).

The outcomes reported here provide compelling validation
for the clinical value of SCE, but must nevertheless be qual-
ified by an acknowledgement that they are descriptive data
and cannot be used to define underlying mechanisms. Where-
as the therapeutic effects correlate with HO-1 expression, data
presented here do not unambiguously show them to be HO-1-
dependent. Proposed resolution for this challenge is summa-
rized below in Limitations and proposed solutions. We

previously demonstrated that SCE, administered orally to
animals, induces HO-1 expression at levels that inhibit
and reverse ischemia-reperfusion injury to the retina
(Szabo et al. 2004) and heart (Bak et al. 2006; Juhasz
et al. 2013), with topical application exhibiting powerful
photoprotective effects on skin and negligible toxicity,
even at whole-body dosage in excess of 200× therapeu-
tic levels (Bak et al. 2011).

Human-used studies of orally delivered SCE show that
subclinical dosage of the extract, consumed daily for
2 weeks by human volunteers, resulted in small but sig-
nificant changes in the magnitude of mean cell volume,
mean peroxidase index, ferritin, and transferrins, and pre-
dicted possible beneficial effects at therapeutic dosages.
They also revealed an absence of trends toward significant
increases in toxicity-associated enzyme activity, such as
glutamic-oxaloacetic transaminase (GOT), glutamic
pyruvic transaminase (GPT), and lactate dehydrogenase
(LDH) levels (Lekli et al. 2014). These encouraging find-
ings further suggest future potential for clinical use of this
plant material.
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Emerging applications of HO-1 inducers

The results of ongoing work by our laboratory (Mahmoud
et al. 2013, 2014; Bak et al. 2006, 2010, 2011; Szabo et al.
2004; Juhasz et al. 2013; Lekli et al. 2014) and others (Haines
et al. 2012; Morse and Choi 2002) are consistent with recent
demonstrations that inducers of HO-1 may radically improve
prognoses of many diseases in which oxidative stress is a
primary pathomechanism, particularly disorders of the cardio-
vascular system, lung, neurological tissue, and kidney (Haines
et al. 2012). Strategies for therapeutic induction of the enzyme
are increasingly viewed by clinicians as a primary approach to
prevention and management of an expanding range of serious
chronic illness (Morse and Choi 2002).

The capacity of HO-1 to specifically counteract inflamma-
tory cytokine-mediated impairment of joint tissue homeostasis
and oxidative stress-induced increases in senescent osteoar-
thritic osteoblasts (Clerigues et al. 2012, 2013) is also very
intriguing. Senescent cells, which form as a result of cellular
damage or replicative exhaustion, are major sources of inflam-
matory mediators, creating progressively proinflammatory
tissue environments. Their age-dependent accumulation in
all tissues is a primary contributor to age-related physical
debilitation, including susceptibility to increasingly severe
OA (Haines et al. 2014).

By acting to strengthen native endogenous countermea-
sures against oxidative stress and reduce the destructive effect
o f senescen t ce l l s , HO-1 inducer s func t ion as
“biopharmaceuticals” rather than simply analgesic agents.
Their activity specifically inhibits major OA-associated de-
generative tissue remodeling, rather than temporarily abating
pain. Interference with inflammatory signaling cascades is the
mode of action for most small molecule drug-based OA
countermeasures and is also a major contributor to drug tox-
icity (Morse and Choi 2002; Haines et al. 2011, 2014). For
these reasons, therapeutic strategies which avoid interference
with physiologic signaling and instead augment naturally
occurring immunoregulatory mechanisms offer potent abate-
ment of symptoms with greatly reduced risk of adverse side
effects.

Phytochemicals are particularly attractive as HO-1-
inducing biotherapeutic agents due to their “generally
regarded as safe” (GRAS) status and ability to directly inhibit
OA-associated tissue damage. Some of these, such as turmeric
extract, which, like SCE, contains a phytochemical HO-1
inducer (curcumin) (Aggarwal et al. 2013), have long histor-
ical traditions as components of the human diet. Curcumin is
particularly interesting because this polyphenolic component
of turmeric spice may act as a biotherapeutic agent by
inhibiting IL-1β-mediated articular cartilage destruction
(Clutterbuck et al. 2013).

The specific role of HO-1 in mediating effects described in
this and other reports remains to be clearly defined. SCE is a

complex mixture of phytochemicals. Thus, it is possible that
one or more of the components of this material mediates the
observed effects independently of increased HO-1 activity.
This possibility will be evaluated in future studies.

Relevance HO-1 increases in SCE-treated subjects In the
representative human study described above, the significantly
increased expression of HO-1 by PBMC, isolated from the
blood of SCE-treated subjects (p<0.05) shown in Fig. 3, is
consistent with the expected effect of transdermal delivery of
HO-1-inducers at levels sufficient to mediate systemic upreg-
ulation of the enzyme. Indeed, increased activity of HO-1 in
immune cells (and possibly other tissue) may account for the
significant SCE treatment-associated reduction in serum CRP
shown in Fig. 4 (p<0.05), as CRP level is a well-known
correlate of the severity of inflammatory diseases, including
OA (Jin et al. 2013; Kitamura et al. 2011). The relevance of
increased HO-1 expression and CRP inhibition to OA and
other inflammatory diseases is strengthened by earlier studies
that demonstrate a close correlation between severity of joint
inflammation and levels of HO-1, CRP, and matrix metallo-
proteinase (a tissue degradative enzyme) in synovial fluid of
rheumatoid arthritis patients (Jin et al. 2013; Kitamura et al.
2011; Bak et al. 2003). These observations further underscore
the role of disease- or trauma-related HO-1 expression as a
general adaptive response to dysregulated inflammation with
therapeutic potential in many clinical venues (Morse and Choi
2002). It is therefore tempting to speculate that SCE-induced
increases in HO-1 expression is the critical mediator of sig-
nificant treatment-related decreases in the representation of
CD3+ subpopulations activated to express the inflammatory
cytokines IL-8, TNF-α, IFN-γ, IL-1α, IL-1β, and IL-6
(p<0.05), shown in Figs. 5a, b. Our previous work and those
of other investigators has demonstrated a clear correlation
between HO-1 activity and its effects on disease-related out-
come variables in a wide range of in vitro and in vivo studies
in both humans and animals (Lekli et al. 2014; Clutterbuck
et al. 2013; Jin et al. 2013; Kitamura et al. 2011).

Limitations and proposed solutions Many previous evalua-
tions of whole plant extracts such as SCE, containing HO-1
inducers, to ameliorate inflammatory tissue damage cannot be
considered definitive due to the complex composition of these
materials. For instance, in the example provided as part of the
present review, SCE is demonstrated to increase HO-1 expres-
sion, however pain abatement and decreased OA-associated
biomarker expression was not shown to be directly dependent
on HO-1 increases. Indeed, it is likely that many bioactive
components of the material contributed to the effects ob-
served. Ongoing work by the authors addresses the degree to
which HO-1 mediates therapeutic effects via two major ex-
perimental strategies: First, the findings of previous studies
using transgenic animals (Bak et al. 2003; Juhasz et al. 2011),
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we will evaluate the capacity of HO-1 in mediating the phys-
iologic effects of SCE. In these studies, HO-1 inhibitors and
gene silencing protocols will determine the capacity of SCE to
mediate selected effects independent of the enzyme. Both
in vitro and animal HO-1 transgenic models are being used
to assess its effects in SCE-stimulated systems. Second, SCE
will be tested for its ability to cause epigenetic changes in
chondrocytes, which may diminish the severity of OA symp-
toms. Experimental strategies that have provided significant
insight into this are described in a report of hypomethylation
in promoter sites for genes that contributed to its pathogenesis
in patients’ chondrocytes (Haseeb et al. 2014). Ongoing stud-
ies in our laboratory use these results and related emerging
findings to optimize epigenetic effects of SCE, which contrib-
ute to improved prognoses of OA. It is acknowledged that the
small sample size of this investigation limits the extent to
which SCE use may be predicted to impact broad strategies
for clinical management of OA. Nevertheless, the product’s
ability to significantly ameliorate joint pain following topical
application suggests that it may become an attractive addition
to regimens for treatment of the disease. The significant in-
creases in leukocyte-associated HO-1 and decreased serum
CRP, along with reduced representation of T cells activated to
express inflammatory cytokines, suggest that it may act by
diminishing the effect of core destructive processes that pro-
mote progressive joint tissue damage.

Conclusions The emerging therapeutic application of HO-1
inducers at outcomes of the preliminary human OA trial
shown here suggest that this class of biotherapeutic agents
might be useful as a stand-alone anti-arthritic therapy, espe-
cially for remediation of mild symptoms. However, we ac-
knowledge that SCE and related products may not be suffi-
ciently potent to be an independently curative OA treatment.
The wide availability and low cost of SCE (these seeds are
currently discarded as an agricultural byproduct), and lack of
toxicity even at very high dosage (Bak et al. 2011), make it
attractive as an adjuvant to other OA countermeasures—and
may enable management of symptoms with lower dosages of
other drugs than are currently prescribed.
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