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Abstract To explore possible relationships between mito-
chondrial DNA (mtDNA) polymorphism and the expression
levels of stress-responder nuclear genes we assembled five
cybrid cell lines by repopulating 143B.TK− cells, depleted of
their own mtDNA (Rho0 cells), with foreign mitochondria
with different mtDNA sequences (lines H, J, T, U, X). We
evaluated, at both basal and under heat stress conditions,
gene expression (mRNA) and intra-mitochondrial protein
levels of HSP60 and HSP75, two key components in cellular
stress response. At basal conditions, the levels of HSP60 and
HSP75 mRNA were lower in one cybrid (H) than in the
others (p=0.005 and p=0.001, respectively). Under stress
conditions, the H line over-expressed both genes, so that the
inter-cybrid difference was abolished. Moreover, the HSP60
intra-mitochondrial protein levels differed among the cybrid
lines (p=0.001), with levels higher in H than in the other
cybrid lines. On the whole, our results provide further
experimental evidence that mtDNA variability influences the
cell response to stressful conditions by modulating compo-
nents involved in this response. Sentence summary of the
article: the results reported in the present study provide
important experimental evidence that in human cells mtDNA
variability is able to influence the cellular response to heat
stress by modulating both the transcription of genes involved
in this response and their intra-mitochondrial protein levels.
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Introduction

Recent data indicate that polymorphisms of the mitochon-
drial genome (mtDNA) are not neutral and evidence of an
association between mtDNA variability and complex traits
is increasing (Wallace 2005; Crispim et al. 2006; Bai
et al. 2007). Furthermore, numerous evidences suggest that
the different mtDNA lineages are qualitatively different
from each other, bearing mutations that can modulate
mitochondrial function and consequently influence com-
plex phenotypes (Mishmar et al. 2003). This modulation is
carried out either directly by influencing energy production
efficiency (Baudouin et al. 2005), or indirectly by interac-
tion with nuclear genes (Ryan and Hoogenraad 2007). In
humans, the involvement of nuclear–mitochondrial inter-
actions in modulating complex phenotypes is supported by
the observation of non-random associations between
mtDNA and nuclear variability (De Benedictis et al. 2000;
Carrieri et al. 2001; Maruszak et al. 2008). In mice, by
means of conplastic strains expressing different combinations
of mitochondrial/nuclear genomes, it has been unequivocally
demonstrated that mtDNA variability affects complex phe-
notypes, such as hearing loss (Johnson et al. 2001), cognitive
function (Robertoux et al. 2003) and risk of type 2 diabetes
(Pravenec et al. 2007). Finally, in vitro transmitochondrial
hybrids have shown that nuclear–mitochondrial interactions
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may modulate nuclear gene expression (Jahangir Tafrechi et
al. 2005), mitochondrial reactive oxygen species (ROS)
production (Vives-Bauza 2006) and intracellular calcium
dynamics (Kazuno et al. 2008). Recently, we have provided
experimental evidence of such interactions by analyzing
human cybrid cell lines that share the same nuclear genome
but have different mtDNA (Bellizzi et al. 2006). In these
cells, mtDNA variability is associated with expression
levels of genes encoding cytokines and cytokine-recep-
tors. In particular, the existence of mitochondrial-
specific effects on the expression of interleukin-1β
(IL-1β), interleukin 6 (IL-6) and tumor necrosis factor
receptor 2 (TNFR2) genes has been observed at both
basal and oxidative stress conditions.

Considering these observations, the aim of the
present study was to investigate whether the modulation
of stress-responder nuclear genes by mtDNA variability
is a general phenomenon concerning not only cytokines
and oxidative stress, but also other stress-responder
systems, such as heat shock proteins (HSPs) and heat
stress.

To this purpose, we developed cybrid cell lines by
repopulating osteosarcoma Rho0 cells with foreign mito-
chondria having different mtDNA sequences. In these
cells we analyzed the expression of two heat shock protein
genes, HSP60 and HSP75, at both basal and heat stress
conditions. HSP60 (Cpn60) and HSP75 (TRAP1) are
mitochondrial chaperones that assist, in both stressed and
non-stressed cells, in the folding, unfolding, or disaggre-
gating of proteins either imported from the cytosol or
synthesized within mitochondria (HSP60) (Cheng et al.
1989; Frydman 2001; Itoh et al. 2002; Saibil 2008) and in
the reallocation of cytosolic protein into mitochondria
(HSP75) (Felts et al. 2000; Mokranjac and Neupert 2005).
In addition to its chaperone activity, HSP60 has well-
documented anti- or pro-apoptotic roles (Arya et al. 2007;
Chandra et al. 2007) as well as immunoregulatory properties
(Habich and Burkart 2007; Pockley et al. 2008). HSP75 acts
as an antagonist of ROS and exhibits anti-apoptotic activity
(Hua et al. 2007; Pridgeon et al. 2007).

The results reported here show that the levels of HSP60
and HSP75 mRNAs, and the intra-mitochondrial protein
level of HSP60, are correlated to mtDNA variability
thereby providing additional evidence for the role played
by such variability in the stress response.

Materials and methods

Cell lines and culture conditions

143B.TK− osteosarcoma cells and cybrid cell lines were
grown in Dulbecco’s modified eagle medium (DMEM,

Invitrogen) containing 25 mM glucose and 1 mM sodium
pyruvate, supplemented with 10% fetal bovine serum (FBS,
Invitrogen) and 0.1 mM gentamycin (Invitrogen). Rho0

cells were grown in the above medium supplemented with
0.2 mM uridine (Sigma). 143B.TK−, cybrid cell lines, and
Rho0 cells were cultured in a water-humidified incubator at
37°C in 5% CO2/95% air.

Heat stress treatment

143B.TK-, Rho0, and cybrid cells, 1×105, were seeded in
24 well/plates. In the exponential growth phase, the cells
were incubated at 42°C for 2, 4 and 6 h. Untreated cells
were also used as control.

Cell viability assay

Treated and untreated cell lines were assayed for viability
by Trypan blue exclusion assay. Floating and adherent cells
were collected and 200 μl of cellular suspension were
added to an equal volume of 0.4% Trypan Blue solution
(Sigma). Then, viable and non-viable cells were counted on
a hemocytometer with an inverted light microscope using a
×20 magnification.

RT-PCR of HSP genes

Total RNAwas extracted from control and heat-treated cells
with RNeasy kit (Qiagen). The reverse-transcriptase-poly-
merase chain reactions (RT-PCR) were carried out by using
the ImPromII Kit (Promega). An RT mix including 500 ng
of total RNA and 0.5 μg of oligo-dT primers was pre-
heated at 70°C for 5 min. The reaction was carried out in a
40 μl final volume containing 1X RT buffer, 0.5 mM of
each dNTP, 3 mM MgCl2, 20 U RNase inhibitor, and 5 U
reverse transcriptase. The mix was incubated at 25°C for
5 min, then 37°C for 1 h and, successively, at 95°C for
10 min to inactivate the reverse transcriptase.

The primers used in gene expression analyses were the
following:

HSP72 Forward
primer

5’ AAGTTGCAATGAACCCCACC 3’

Reverse primer 5’ TTGCGCTTAAACTCAGCAA 3’
HSP60 Forward

primer
5’ ATTCCAGCAATGACCATTGC 3’

Reverse primer 5’ GAGTTAGAACATGCCACCTC 3’
HSP75 Forward

primer
5’ TGGCAGTTATGGAAGGTAAA 3’

Reverse primer 5’ AGCAATGACTTTGTCTTCTG 3’
GAPDH Forward

primer
5’ GACAACTTTGGTATCGTGGA 3’

Reverse primer 5’ TACCAGGAAATGAGCTTGAC 3’
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The PCR mixture (30 μl) contained 1.5 μl of cDNA, 1X
buffer RB, 0.5 mM of each dNTP, 3.5 mM MgCl2, 0.6 μM
of each primer, and 10 U DNA polymerase (EuroTaq).
After an initial denaturation step at 94°C for 1 min, the
PCR was carried out for 25 cycles at 92°C for 1 min,
followed by 56°C for 1 min and 72°C for 1 min. The final
step was an incubation at 72°C for 10 min. Then, PCR
products were analyzed on 2.5% agarose gel containing
0.5 mg/ml ethidium bromide. Fluorescence intensity of
each band was calculated using densitometric analyses
(Kodak Electrophoresis Documentation and Analysis Sys-
tem 290, EDAS 290) and then normalized to glyceralde-
hyde phosphate dehydrogenase gene (GAPDH) band
intensity.

Isolation of mitochondrial protein fractions

Mitochondrial extracts were prepared by using Mitochon-
drial Fractionation Kit (Active Motif). 2×107 heat-treated
and untreated cells were scraped on ice after the addition of
10 ml of ice-cold 1X phosphate-buffered saline (PBS) and
then centrifuged at 600×g for 5 min at 4°C. Cell pellets
were re-suspended in 5 ml of ice-cold PBS and centrifuged
at 600×g for 5 min at 4°C. Then, cell pellets were
resuspended in 250 μl of 1X cytosolic buffer included in
the kit and then incubated on ice for 15 min. Successively,
cell pellets were homogenized with a homogenizer and the
resulting supernatant was centrifuged at 800×g for 20 min
at 4°C. Then, the supernatant, containing the cytosol and
the mitochondria, was removed and centrifuged a second
time at 800×g for 10 min at 4°C. Then, the supernatant was
newly removed and centrifuged at 10,000×g for 20 min at
4°C to pellet the mitochondria. Mitochondrial pellets were
washed with 100 μl of 1X cytosolic buffer and then
centrifuged at 10,000×g for 10 min at 4°C. Finally,
mitochondrial pellets were lysed by adding 35 μl of
complete mitochondria buffer, prepared by adding mito-
chondria buffer, protease inhibitor cocktail, and dithiothrei-
tol included in the kit, and incubating on ice for 15 min.

Western blot analyses

Fifteen microgram of mitochondrial extracts were separated
on 10% SDS-PAGE and transferred into Hibond-P mem-
branes at 60 V for 1 h at 4°C. Membranes were washed
with TBST 1X (0.3 mM Tris–HCl, pH 7.5, 2.5 mM NaCl,
0.05% Tween 20) for 10 min and then incubated overnight
at room temperature with 5% non-fat dried milk in TBST
1X. Then blots were washed three times with TBST 1X for
10 min and incubated in TBST containing 1% milk with
anti-HSP60 polyclonal mouse antibodies (1:1,000) (Stress-
gen) and anti-HSP75 polyclonal rabbit antibodies (1:50)
(SantaCruz). Then, anti-mouse (1:5,000) or anti-rabbit

(1:2,000) antibodies conjugated with horseradish peroxi-
dase (HRP, Amersham) were used as secondary antibodies.
Immunoreactivity was determined by means of the ECL
chemiluminescence reaction (Amersham). Anti-CoxIV an-
tibody (1:500, Molecular Probes) was used as an internal
control of the mitochondrial fraction. Quantitative evalua-
tion of the blots was carried out by using densitometric
analyses of immunoreactive band intensities (Kodak Elec-
trophoresis Documentation and Analysis System 290,
EDAS 290) and then normalized to the internal control.

Statistical analyses

Statistical analyses were performed using SPSS 15.0
statistical software. We adopted one-way analysis of
variance for multiple comparisons and student t-test for
pair-wise comparisons. Significance level was defined as
α=0.05.

Results

Cell lines

We analyzed the 143B.TK− native cell line, its derivative
Rho0 line, and the H and J cybrid cell lines which we have
previously described (Bellizzi et al. 2006). In addition, we
produced ex-novo three cybrid cell lines by fusing Rho0

cells with platelets isolated from young donors. According
to the variability at diagnostic positions (RFLP analyses),
mtDNAs of the donor platelets were classified as belonging
to U, X, and T haplogroups (Torroni et al. 1996). Therefore,
we named the newly produced cybrid cell lines according
to the name of the respective mtDNA haplogroup. By
analyzing the AvaII8249 polymorphic site, we found that
the mtDNA of the X cybrid line and that of the 143B.TK−

native line, although both belonging to the X haplogroup,
were of different haplotype (Table S1 in Supplementary
Material).

Then, we assessed the cellular state of the newly
produced U, X, and T cybrid lines by carrying out control
experiments (proliferation assays, quantification of
mtDNA, and mitochondrial membrane potential—MMP—
assay) as previously described (Bellizzi et al. 2006).
Proliferation rate, number of copies of mtDNA per cell
and MMP values of U, X, and T cybrid lines did not differ
significantly from those of the native cell line (data not
shown).

Heat stress

In order to determine the optimal conditions necessary to
induce heat stress in our cell lines, we treated the seven cell
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lines at 42°C for 2, 4 and 6 h, and then we checked the
cellular state of the seven lines by cell viability assay. In all
the lines, the treatment did not induce excessive cell death,
as the percentage of living cells was 90% about in all the
cases. Slight differences in the percentage of living cells
between basal and stress condition were observed at 2 h
(Fig. S1 in Supplementary Material), probably because of
casual cell fluctuations or experimental manipulation.
These differences were minimum at 4 h. Then, since
HSP60 and HSP75 are reported to be constitutively
expressed genes we measured the cell response to heat
stress by looking at the expression pattern of the major heat
shock-inducible gene, Heat shock protein 72 (HSP72). In
Fig. S2 (Supplementary Material) a representative HSP72
gene expression pattern is shown, while Table S2 (Supple-
mentary Material) reports the densitometric analyses of
three independent experiments. We observed that the
HSP72 gene is significantly up-regulated by heat, and such
up-regulation is maximum at 4 h. Therefore, considering
cell viability assays and HSP72 gene expression analysis
we choose 4 h of heat treatment as the ideal experimental
condition.

HSP60 and HSP75 mRNA level analysis

The levels of HSP60 and HSP75 mRNAs were evaluated in
the seven cell lines at basal and stress conditions by semi-
quantitative RT-PCRs. We ruled out the possibility that
PCRs reached the stationary level by assembling saturation
curves for each gene including the glyceraldehyde phos-
phate dehydrogenase gene, used as an internal control (data
not shown).

In Fig. 1, a representative RT-PCR electrophoresis
pattern of HSP60 and HSP75 gene expression is shown,
while Table 1 summarizes the densitometric analyses for
three experiments. Considering the fluctuating values of
mRNA levels of HSP60 and HSP75 genes in our cell lines,
we pointed our attention only to differences of gene
expressions where one cell line consistently had a gene
expression level at least twofold higher with respect to
another cell line.

At basal conditions, comparing 143B.TK− and Rho0 cell
lines no significant difference was observed for either
HSP60 or HSP75 (p=0.871 and p=0.523, respectively),
thus indicating that the expression of the two genes is
independent of the presence of active mitochondria. In
contrast, under stress conditions HSP60 mRNA levels were
significantly lower in Rho0 cells than in the native line (p=
0.003).

As for the cybrid lines, at basal conditions the mRNA
levels of both HSP60 and HSP75 differed among the lines
(p=0.005 and p=0.001, respectively), with the H cybrid
showing mRNA levels lower than those of the other lines
(Table 1). This result was confirmed by RT-PCRs carried
out on an independent H clone (data not shown). Since
mtDNA is the sole variant among the cybrid lines, we can
conclude that a correlation exists between mtDNA variabil-
ity and mRNA levels of HSP60 or HSP75. Interestingly,
under heat stress the mRNA levels of both HSP60 and
HSP75 in H cybrid increase up to the levels of the other
cybrid lines (p=0.924 and p=0.744, respectively). This

Fig. 1 Representative RT-PCR electrophoresis patterns of HSP60 and
HSP75 mRNAs at basal and under stress conditions (42°C for 4 h) in
the following cell lines: 143B.TK− (1), Rho0 (2), H (3), J (4), U (5), X
(6) and T (7). HSP60 heat shock protein 60, HSP75 heat shock protein
75, GAPDH glyceraldehyde phosphate dehydrogenase, M molecular
weight 100 bp ladder

Table 1 Densitometric analysis of HSP60 and HSP75 mRNA levels, normalized to GAPDH mRNA levels, in 143B.TK−, Rho0, H, J, U, X and T
cell lines at basal and under stress conditions (42°C for 4 h)

Densitometric analysis

Basal condition
143B.TK− Rho0 H J U X T

HSP60 0.573 (0.080) 0.550 (0.110) 0.245 (0.089) 0.675 (0.086) 0.532 (0.056) 0.640 (0.065) 0.555 (0.051)
HSP75 0.465 (0.045) 0.416 (0.056) 0.211 (0.042) 0.342 (0.024) 0.365 (0.017) 0.416 (0.048) 0.461 (0.062)
Stress condition

143B.TK− Rho0 H J U X T
HSP60 0.847 (0.040) 0.489 (0.062) 0.734 (0.065) 0.680 (0.058) 0.764 (0.039) 0.751 (0.065) 0.742 (0.104)
HSP75 0.369 (0.041) 0.272 (0.050) 0.400 (0.032) 0.328 (0.057) 0.413 (0.050) 0.386 (0.050) 0.352 (0.057)

Average values over three experiments are reported with standard error mean in parentheses
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observation suggests that the H line reacted to heat stress by
up-regulating the expression of the two genes.

Western blot analysis

Considering that both HSP60 and HSP75 are mitochondrial
proteins, we evaluated whether mitochondrial protein levels
were correlated with mtDNA variability. By Western blot
we analyzed the amount of HSP60 and HSP75 present in
mitochondria in all the cell lines. In Fig. 2, a representative
Western blot pattern of the HSP60 and HSP75 intra-
mitochondrial protein levels is shown, while Table 2
summarizes the densitometric analyses of three experi-
ments. As referred in the previous paragraph, we pointed
our attention only to differences of protein levels where one
cell line consistently had levels at least twofold higher with
respect to another cell line.

At basal conditions, the HSP60 and HSP75 intra-
mitochondrial protein levels were higher in Rho0 cells than
in the native line (p=0.046 and p=0.036, respectively).
Under stress conditions, only the HSP60 protein level
increased in Rho0 cells compared to the native line (p=
0.015). As for HSP75, although the same trend was

observed, the difference between basal and stress condi-
tions was not statistically significant (p=0.258).

By comparing cybrid cell lines at basal conditions, no
difference was found either in HSP60 or in HSP75 intra-
mitochondrial protein levels (p=0.419 and p=0.064, re-
spectively) thus indicating that these levels are independent
of mtDNA variability. On the contrary, under stress
conditions the HSP60 protein level differed among the
lines (p=0.001), with the H cybrid showing higher levels
compared to the other cybrid lines (Table 2). These results
were also confirmed by Western blot carried out on an
independent H clone (results not shown).

Discussion

The aim of the present study was to investigate whether
mtDNA variability affects gene expression levels and/or
intra-mitochondrial protein concentration, of HSP60 and
HSP75, two key components of the mitochondrial stress
response machinery. The question is of general interest due
to the well-documented role of HSPs in maintaining
cellular homeostasis in response to stress.

The cybrid technology used in our model to answer the
question is largely debated in regards to the effect of
cybridization on transcription patterns (Danielson et al.
2005). In the present case, however, we are confident of the
reliability of our results for two reasons. First, observing
Table 1, we see that under the heat stress condition, the
cybridization process does not affect either HSP60 or
HSP75 mRNA levels with respect to the native line, while
these levels are lower in the cells depleted of active
mitochondria (Rho0 cells). Second, the down-regulation of
HSP60 and HSP75 genes observed in the H line in basal
conditions, as well as the up-regulation observed in this line
under stress conditions (Table 1), were confirmed in an
independent clone.

To our knowledge, the present study identifies a
correlation between mtDNA variability and mRNA levels
of HSP genes for the first time. We note that as for the H

Fig. 2 Representative Western blot electrophoresis patterns of HSP60
and HSP75 intra-mitochondrial proteins in 143B.TK−, Rho0, H, J, U,
X and T cell lines at basal (B) and stress conditions (S 42°C for 4 h).
CoxIV cytochrome c oxidase subunit IV

Table 2 Densitometric analysis of intra-mitochondrial protein levels of HSP60 and HSP75, normalized to CoxIV protein levels, in 143B.TK-,
Rho0, H, J, U, X and T cell lines at basal and under stress conditions (42°C for 4 h)

Densitometric analysis

Basal condition
143B.TK− Rho0 H J U X T

HSP60 2.078 (0.444) 4.303 (0.880) 2.071 (0.439) 2.023 (0.559) 1.761 (0.277) 1.832 (0.329) 1.524 (0.314)
HSP75 0.171 (0.029) 0.363 (0.060) 0.152 (0.012) 0.151 (0.035) 0.178 (0.010) 0.164 (0.029) 0.159 (0.020)
Stress condition

143B.TK− Rho0 H J U X T
HSP60 2.748 (0.445) 5.259 (0.425) 3.939 (0.222) 1.688 (0.185) 1.108 (0.090) 1.264 (0.208) 1.620 (0.473)
HSP75 0.254 (0.092) 0.502 (0.244) 0.132 (0.005) 0.130 (0.019) 0.145 (0.016) 0.115 (0.016) 0.146 (0.018)

Average values over three experiments are reported with standard error mean in parentheses
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cybrid, the heat induction of HSP60 gene is in line with
literature data, while the up-regulation of the HSP75 gene
is unexpected, as it had been reported to be up-regulated
by stresses different from heat (Hadari et al. 1997; Ryan
et al. 1997; Carette et al. 2002; Zhao et al. 2002; Tokalov
et al. 2003; Murray et al. 2004; Voloboueva et al. 2008).
Considering the role of the two HSPs in the processes of
protein import into mitochondria and subsequent protein
folding (Frydman 2001; Mokranjac and Neupert 2005;
Saibil 2008), we could hypothesize that mtDNA variability
modulates mRNA levels of HSP60 and HSP75 through
transcription factors that coordinate the activity of the two
genes. In fact, numerous evidence indicate that the mito-
chondrial genome is able to regulate a series of nuclear target
genes by transcription factors, such as NFkB and CEBP, that
acts as mediators of the well known cross-talk nucleus-
mitochondrion (Biswas et al. 2005). The above hypothesis is
also in line with literature data showing that promoters of
HSP genes contain common and highly conserved binding
sites for transcription factors some of which are specifically
required for the heat shock response (Amin et al. 1988;
Trinklein et al. 2004). We are currently investigating whether
the above transcription factors are able to regulate also genes
encoding for heat shock proteins localized in the cytoplasm
and not only for those localized in the mitochondria.

The cybrid-specific response to stress (line H in Table 1)
is in agreement with the results for cytokines and cytokine-
receptors we described previously (Bellizzi et al. 2006).
Therefore, the correlation between mtDNA variability and
expression levels of stress-responder nuclear genes could be
a general phenomenon, even if further studies are needed to
generalize this assumption.

We obtained a confirmation of the cybrid-specificity in
the response to stress by Western blot data (Table 2): the H
line is the sole cybrid line that accumulated HSP60
within mitochondria. This result is very interesting
because it suggests a correlation between mtDNA
variability and accumulation within mitochondria of a
protein which has a crucial role in coping with stress
damage. In line with this role, the Rho0 cells, which are
in very stressful conditions due to mitochondrial dysfunc-
tion, show an increase in intra-mitochondrial protein
levels of both HSP60 and HSP75. The cell mechanisms
through which the accumulation of both proteins within
mitochondria occurs independently of nuclear gene ex-
pression is not known, and further studies are needed to
clarify this point.

On the whole, the results reported in the present study
provide important experimental evidence that in human cells
mtDNA variability is able to influence the cellular response
to heat stress by modulating both the transcription of genes
involved in this response and their intra-mitochondrial
protein levels.
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