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Abstract
Two improved subgradient extragradient algorithms are proposed for solving non-
monotone variational inequalities under the nonempty assumption of the solution set
of the dual variational inequalities. First, when the mapping is Lipschitz continuous,
we propose an improved subgradient extragradient algorithm with self-adaptive step-
size (ISEGS for short). In ISEGS, the next iteration point is obtained by projecting
sequentially the current iteration point onto two different half-spaces, and only one
projection onto the feasible set is required in the process of constructing the half-spaces
per iteration. The self-adaptive technique allows us to determine the step-size without
using the Lipschitz constant. Second, we extend our algorithm into the case where the
mapping is merely continuous. The Armijo line search approach is used to handle the
non-Lipschitz continuity of the mapping. The global convergence of both algorithms
is established without monotonicity assumption of the mapping. The computational
complexity of the two proposed algorithms is analyzed. Some numerical examples are
given to show the efficiency of the new algorithms.

Keywords Nonmonotone variational inequality · Subgradient extragradient
algorithm · Self-adaptive · Armijo line search · Global convergence

1 Introduction

LetRn be an n-dimensional Euclidean space,C ⊂ R
n be a nonempty closed convex set

and F : Rn → R
n be a continuous mapping. We consider the variational inequalities
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(VI(F,C) for short), which is to find a vector x∗ ∈ C such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C, (1.1)

where 〈·, ·〉 denotes the inner product in Rn . The dual variational inequalities of (1.1),
is to find a vector x∗ ∈ C such that

〈F(x), x − x∗〉 ≥ 0, ∀x ∈ C . (1.2)

Denote by S the solution set of (1.1), i.e.,

S := {x∗ ∈ C : 〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C}, (1.3)

and denote by SD the solution set of (1.2), i.e.,

SD := {x∗ ∈ C : 〈F(x), x − x∗〉 ≥ 0, ∀x ∈ C}. (1.4)

When the mapping F is continuous and the set C is convex, we have SD ⊂ S.
For solving VI(F,C), different types of projection algorithms have been pro-

posed in the past few decades, see, for example, Goldstein–Levitin–Polyak projection
algorithms [1, 2], proximal point algorithms [3, 4], extragradient algorithms [5, 6], pro-
jection and contraction algorithm [7], double projection algorithms [8, 9], subgradient
extragradient algorithm [10], projected reflected gradient algorithm [11] and golden
ratio algorithm [12], etc. The convergence of all the above algorithms is based on the
common condition that S = SD , which is a direct consequence of pseudomonotonicity
of F on C when F is continuous. Note that the relationship S = SD may fail if the
mapping F is continuous and quasimonotone on C , see, for example, [13, Example
4.2].

In order to solve quasimonotone variational inequalities, interior proximal algo-
rithms [14, 15] have been proposed. However, the global convergence of those
algorithms was obtained under more assumptions than SD 
= ∅. Recently, the gradient
algorithms with the new step-sizes [16] and two relaxed inertial subgradient extragra-
dient algorithms [17] were proposed for quasimonotone variational inequalities. The
global convergence was proved under the assumptions SD 
= ∅ and

{z ∈ C : F(z) = 0}\SD is a finite set. (1.5)

However, the assumption (1.5) may not suit for solving quasimonotone variational
inequalities, see, for example, [18, Example 4.4]. Therefore, it is important to pro-
pose some algorithms for quasimonotone variational inequalities or the general
nonmonotone variational inequalities without the condition (1.5).

Under the assumption of SD 
= ∅, Konnov [19] proposed the first extrapolation
algorithm with Armijo-type line search and proved the sequence generated by that
algorithm has a subsequence converging to a solution. To obtain the global con-
vergence of the generated sequence, Ye and He [13] proposed a double projection
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algorithm for solving variational inequalities without monotonicity. The global con-
vergence was proved under the mapping F is continuous and SD 
= ∅. Note that the
next iteration point in [13] is generated by projecting the current iteration point onto
the intersection of the feasible set C and k + 1 half-spaces, where k represents the
current number of iteration steps. Therefore, in order to calculate the next iteration
point, the computational cost will increase as the number of iteration steps increas-
ing. To overcome the difficulty, Lei and He [20] proposed an extragradient algorithm
for variational inequalities without monotonicity, in which the next iteration point is
generated by projecting the current iteration point onto the feasible set C . In 2022, a
modified Solodov–Svaiter algorithm was introduced by Van, Manh and Thanh [21],
in which the next iteration point is obtained by projecting the current iteration point
onto the intersection of the feasible set C and one half-space. The global convergence
of these algorithms in [20] and [21] is proved under the mapping F is continuous and
SD 
= ∅. Note that in order to obtain the next iteration point of these algorithms, in
[13, 20, 21], one projection onto the feasible set C or the intersection of the feasible
C and one (or more) half-space(s) is required.

Very recently, some new projection algorithms have been proposed for nonmono-
tone variational inequalities to reduce the projection onto the feasible set C or the
intersection of C and half-space(s). First, based on the modified projection-type algo-
rithm [22], an infeasible projection algorithm was proposed by Ye [18] and the global
convergence was proved under the mapping F is continuous and SD 
= ∅. In the
algorithm, the next iteration point is generated by projecting the current iteration point
onto only one half-space. Then, based on the projection and contraction algorithm [7]
and Tseng-type extragradient algorithm [23], Huang, Zhang and He [24] proposed
a class modified projection algorithms for solving variational inequalities without
monotonicity. In this algorithm, the generation of the next iteration point is obtained
by projecting the current iteration point onto the intersection of multiple half-spaces.
The global convergence is established under themapping F is continuous and SD 
= ∅.
More algorithms for nonmonotone variational inequalities can be seen [25–27].

Inspired by the above related works, in this paper, we propose two improved sub-
gradient extragradient algorithms for solving VI(F,C) without monotonicity. First,
an improved subgradient extragradient algorithm with self-adaptive step-size (ISEGS
for short) is proposed. The generation of the next iteration point in the algorithm is
obtained by projecting sequentially the current iteration point onto two different half-
spaces, and only one projection onto the feasible set C is needed in the process of
constructing the half-spaces per iteration. Under the mapping F is Lipschitz contin-
uous and SD 
= ∅, the global convergence of ISEGS is established without the prior
knowledge of Lipschitz constant of the mapping. Then, to weaken the Lipschitz conti-
nuity of the mapping F , an improved subgradient extragradient algorithmwith Armijo
line search (ISEGA for short) is proposed. Under the mapping F is continuous and
SD 
= ∅, the global convergence of ISEGA is proved.

Our algorithms can be regarded as an extension of the subgradient extragradient
algorithm in [10], the infeasible projection algorithm in [18] and the class modified
projection algorithms in [24]. Compared with the classical subgradient extragradient
algorithm [10], in our two algorithms, the next iteration point is generated by intro-
ducing a new half-space and then projecting the point generated by [10] onto the
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new half-space. In this way, by improving the generation method of the next itera-
tion point, we generalize the classical subgradient extragradient algorithm [10] from a
class of monotone (or pseudomonotone) VI(F,C) to a class of nonmonone VI(F,C).
Compared with the infeasible projection algorithm [18], although our two algorithms
need to project sequentially onto two different half-spaces, the projection onto the
half-space has an explicit expression, so it is as easy to implement as the algorithm in
[18]. Finally, compared with the class modified projection algorithms in [24], our two
algorithms do not need to project the current iteration point onto the intersection of
multiple half-spaces, but onto two different half-spaces in sequence. Some numerical
experiments show that our two algorithms are much more efficient than the existing
algorithms from the view point of the number of iterations and CPU time.

The paper is organized as follows. In Sect. 2, some basic definitions and preliminary
materials are introduced. In Sect. 3, we analyze the global convergence and the compu-
tational complexity of the proposed algorithms. Finally, we perform some numerical
experiments to illustrate the behavior of our proposed algorithms and compare their
performance with other algorithms in Sect. 4.

2 Preliminaries

In this section, we recall some basic definitions and well-known lemmas, which are
helpful for convergence analysis in Sect. 3. Let ‖ · ‖ and 〈·, ·〉 denote the norm and
inner product of Rn , respectively.

Definition 2.1 Let F : Rn → R
n be a mapping. Then, the mapping

(i) F is Lipschitz continuous on R
n with constant L > 0, if

‖F(x) − F(y)‖ ≤ L‖x − y‖, ∀x, y ∈ R
n .

Specifically, if L = 1 then F is said nonexpansive mapping.
(ii) F is monotone on R

n , if

〈F(y) − F(x), y − x〉 ≥ 0, ∀x, y ∈ R
n .

(iii) F is pseudomonotone on Rn , if

〈F(x), y − x〉 ≥ 0 ⇒ 〈F(y), y − x〉 ≥ 0, ∀x, y ∈ R
n .

(iv) F is quasimonotone on R
n , if

〈F(x), y − x〉 > 0 ⇒ 〈F(y), y − x〉 ≥ 0, ∀x, y ∈ R
n .

From the above definitions, we see that (ii) ⇒ (iii) ⇒ (iv). But the reverse is not true.
In the following, we give the definition and some properties of metric projection.
The metric projection of x ∈ R

n onto C is denoted by

�C (x) := argmin{‖x − y‖ : y ∈ C}.
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The distance function from x ∈ R
n to C is denoted by

dist(x,C) := inf{‖x − y‖ : y ∈ C}.

Since C is a closed convex set and �C is a single-valued mapping, we can obtain that
dist(x,C) = ‖x − �C (x)‖.
Lemma 2.1 [28, 29] Let C ⊂ R

n be a nonempty closed convex set and x ∈ R
n be any

fixed point. Then, the following inequalities hold:

(i) 〈�C (x) − x,�C (x) − y〉 ≤ 0, ∀y ∈ C;
(ii) ‖�C (x) − y‖2 ≤ ‖x − y‖2 − ‖x − �C (x)‖2, ∀y ∈ C;
(iii) ‖x−�C (x−αF(x))‖

α
≤ ‖x−�C (x−βF(x))‖

β
, ∀α ≥ β > 0.

Lemma 2.2 [28] Let a ∈ R be a fixed vector and H := {x ∈ R
n : 〈w, x〉 ≤ a} be a

half-space. Then, for any u ∈ R
n, we have

�H (u) = u − max

{ 〈w, u〉 − a

‖w‖2 , 0

}
w.

Moreover, if in addition u /∈ H, it follows that

�H (u) = u − 〈w, u〉 − a

‖w‖2 w.

Lemma 2.3 [28] Let {ak} and {bk} be two nonnegative real number sequences
satisfying

ak+1 ≤ ak + bk, �∞
k=1bk < +∞, ∀k ≥ 0.

Then, the sequence {ak} is convergent.

3 Main results

In this section, in order to solve VI(F,C) with the mapping F is Lipschitz continu-
ous or continuous (without any generalized monotonicity), two improved subgradient
extragradient algorithms are proposed. The generation of the next iteration point of
these algorithms does not need to project the current point onto the feasible set C . In
order to obtain the convergence proof of those two algorithms, we always assume that
the following condition holds:

Condition 3.1 The solution set of the dual variational inequalities is nonempty, i.e.,
SD 
= ∅.
Remark 3.1 Some sufficient conditions for SD 
= ∅ were given in [13, Proposition
2.1] and [30, Proposition 1].
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3.1 ISEGS for nonmonotoneVI(F,C) with Lipschitz continuous

In this subsection, based on the subgradient extragradient algorithm [10], we intro-
duce a new half-space and self-adaptive method to propose an improved subgradient
extragradient algorithm with self-adaptive step-size (ISEGS) for solving nonmono-
tone variational inequalities. To obtain the global convergence of ISEGS, we assume
the following condition holds:

Condition 3.2 The mapping F : Rn → R
n is Lipschitz continuous.

Now, we give the iterative format of ISEGS as follows:

Algorithm 3.1

Step 1. Let x0 ∈ R
n be chosen arbitrarily. Choose parameters τ ∈ (0, 1), λ0 > 0 and

a nonnegative real sequence {εk} satisfies
∞∑
k=0

εk < +∞. Set k := 0.

Step 2. Given the current iterations xk and λk , compute

yk = �C (xk − λk F(xk)).

If xk = yk or F(yk) = 0, then stop and yk is a solution of VI(F,C).
Otherwise, go to Step 3.

Step 3. Compute

zk = �Tk (x
k − λk F(yk)),

where

Tk := {x ∈ R
n : 〈xk − yk − λk F(xk), x − yk〉 ≤ 0}. (3.1)

Step 4. Let Hk := {x ∈ R
n : 〈F(yk), x − yk〉 ≤ 0} and choose

ik := arg max
0≤j≤k

〈F(y j ), zk − y j 〉
‖F(y j )‖ . (3.2)

Compute

xk+1 = �H̃k
(zk) with H̃k := Hik (3.3)

and

λk+1 =
{
min{λk + εk, τ

‖xk−yk‖
‖F(xk)−F(yk )‖ }, if F(xk) 
= F(yk),

λk + εk, otherwise.
(3.4)

Let k := k + 1 and return to Step 2.
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Remark 3.2 In [10], the next iteration point is defined by xk+1 = �Tk (x
k −λk F(yk)).

In Algorithm 3.1, the generation of the next iteration point is based on the subgradient
extragradient algorithm in [10], by introducing anewhalf-spaceHk , the point�Tk (x

k−
λk F(yk)) generated by [10] is projected onto one half-space H̃k , i.e.,

xk+1 = �H̃k
(�Tk (x

k − λk F(yk))).

In this manner, it is unnecessary to assume the generalized monotonicity of the
mapping F when proving the global convergence of the Algorithm 3.1.

According to Lemma 2.2, the projection onto the half-space has an explicit
expression. Therefore, the calculation of the iteration points zk and xk+1 is easy to
implement.

Lemma 3.1 Assume that the Condition 3.2 holds. Let {λk} be the sequence generated
by Algorithm 3.1. Then, there exists a constant λ > 0 such that lim

k→∞ λk = λ.

Proof Since the mapping F is Lipschitz continuous (Assume that the Lipschitz
constant is L > 0). In this case that F(xk) 
= F(yk), we have

τ
‖xk − yk‖

‖F(xk) − F(yk)‖ ≥ τ
‖xk − yk‖
L‖xk − yk‖ = τ

L
. (3.5)

According to the definition of λk in (3.4) and mathematical induction, it follows that
the sequence {λk} has a lower bound min{ τ

L , λ0}. Hence, λk > 0 holds for all k.
Next, we prove that the sequence {λk} is convergent. By the definition of λk in (3.4),

we know that

λk+1 ≤ λk + εk, ∀k ≥ 0. (3.6)

Since the sequence {εk} satisfies
∞∑
k=0

εk < +∞, use (3.6) and Lemma 2.3, we deduce

that the sequence {λk} is convergent, i.e., there exists a number λ > 0 such that
lim
k→∞ λk = λ. This completes the proof. ��

In the following, we shall present three lemmas utilized in the global convergence
proof of Algorithm 3.1.

Lemma 3.2 Let {zk} be a sequence and Hk be a half-space generated by Algo-
rithm 3.1 and H̃k be a half-space defined in (3.3). Then, for all k ≥ 0, we deduce
that dist(zk, Hj ) ≤ dist(zk, H̃k) holds for any j ∈ {0, 1, . . . , k}.
Proof Without loss of generality, let

I := { j : zk ∈ Hj , j ∈ {0, 1, . . . , k}},
J := { j : zk /∈ Hj , j ∈ {0, 1, . . . , k}}.
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Therefore, for all j ∈ {0, 1, . . . , k}, the above equations can be rewritten as

{
zk ∈ Hj , j ∈ I ,

zk /∈ Hj , j ∈ J .
(3.7)

For any fixed ς ∈ I , according to (3.7), we have zk ∈ Hς , then dist(zk, Hς ) =
0. For any fixed l ∈ J , according to (3.7) and the definition of Hj , we know that
〈F(yl), zk − yl〉 > 0. Further, by Lemma 2.2, we obtain that

�Hl (z
k) = zk − 〈F(yl), zk − yl〉

‖F(yl)‖2 F(yl). (3.8)

Thus,

dist(zk, Hl) = ‖zk − �Hl (z
k)‖

= ‖zk − zk + 〈F(yl), zk − yl〉
‖F(yl)‖2 F(yl)‖

= 〈F(yl), zk − yl〉
‖F(yl)‖ > 0.

(3.9)

Hence, for all j ∈ {0, 1, . . . , k}, we have

dist(zk, Hj ) =
{
0, j ∈ I ,
〈F(y j ),zk−y j 〉

‖F(y j )‖ > 0, j ∈ J .
(3.10)

By the definition of ik in (3.2), we know that ik ∈ {0, 1, . . . , k} and

〈F(yik ), zk − yik 〉
‖F(yik )‖ ≥ 〈F(y j ), zk − y j 〉

‖F(y j )‖ , ∀ j ∈ {0, 1, . . . , k}. (3.11)

Combining (3.10) and (3.11), it follows from the definition of H̃k in (3.3) that

0 ≤ dist(zk, Hj ) ≤ dist(zk, H̃k), ∀ j ∈ {0, 1, . . . , k}

holds for all k. This completes the proof. ��

Lemma 3.3 Assume that Condition 3.1 holds. Let Hk, H̃k and Tk be the half-spaces
generated by the Algorithm 3.1. Then, for all k, we have
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SD ⊆ C ∩
∞⋂
k=0

Hk ⊆ C ∩ H̃k ⊆ Tk ∩ H̃k .

Proof For any fixed u ∈ SD , by the definition of SD in (1.4) and the fact yk ∈ C ,
we have 〈F(yk), u − yk〉 ≤ 0. It follows from the definition of Hk , we deduce that
u ∈ Hk for all k, which means

u ∈ SD ⊆
∞⋂
k=0

Hk ⊆ H̃k . (3.12)

By the definition of yk and Lemma 2.1 (i), we have

〈xk − λk F(xk) − yk, y − yk〉 ≤ 0, ∀y ∈ C .

Therefore, by the definition of Tk in (3.1), we know thatC ⊆ Tk holds for all k. Hence,
by the definition of SD and (3.12), we see that

SD ⊆ C ∩
∞⋂
k=0

Hk ⊆ C ∩ H̃k ⊆ Tk ∩ H̃k . (3.13)

This completes the proof. ��
Lemma 3.4 Assume that Conditions 3.1 and 3.2 hold. Let {xk}, {yk}, {zk} be the
sequences and Hk be the half-space generated by Algorithm 3.1. Then, the following
statements hold:

(i) For any fixed x ∈ C ∩
∞⋂
k=0

Hk, we have

‖zk − x‖2 ≤ ‖xk − x‖2 − (1 − τ
λk

λk+1
)(‖xk − yk‖2 + ‖yk − zk‖2). (3.14)

(ii) There exists k0 ∈ N
+ such that 1 − τλk/λk+1 > 0 holds for all k ≥ k0.

(iii) lim
k→∞ ‖xk − yk‖ = 0, lim

k→∞ ‖yk − zk‖ = 0 and lim
k→∞ ‖xk − zk‖ = 0.

Proof (i) By Lemma 3.3, we know that C ∩
∞⋂
k=0

Hk 
= ∅. For any fixed x ∈ C ∩
∞⋂
k=0

Hk ⊆ Tk ∩
∞⋂
k=0

Hk ⊆ Tk ∩ H̃k , by the definition of zk and Lemma 2.1 (ii), we

have

‖zk − x‖2 ≤ ‖xk − λk F(yk ) − x‖2 − ‖xk − λk F(yk ) − zk‖2
= ‖xk − x‖2 − ‖xk − zk‖2 + 2λk 〈F(yk ), x − zk 〉
= ‖xk − x‖2 − ‖xk − zk‖2 + 2λk 〈F(yk ), x − yk 〉 + 2λk 〈F(yk ), yk − zk 〉
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(a)≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 − 2〈xk − yk , yk − zk 〉
+ 2λk 〈F(yk ), yk − zk 〉 (3.15)

= ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 − 2〈xk − yk − λk F(xk ), yk − zk 〉
+ 2λk 〈F(yk ) − F(xk ), yk − zk 〉

(b)≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λk 〈F(yk ) − F(xk ), yk − zk 〉
≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λk‖F(yk ) − F(xk )‖‖yk − zk‖,

where (a) holds from the facts that λk > 0 for all k, x ∈ Hk and the definition of
Hk , and (b) uses the facts that zk ∈ Tk and the definition of Tk in (3.1).
In addition, we claim that

λk‖F(yk) − F(xk)‖ ≤ τ
λk

λk+1
‖xk − yk‖. (3.16)

Indeed, if ‖F(xk) − F(yk)‖ = 0, then (3.16) holds. Otherwise, by the definition
of λk in (3.4), we have

λk+1 = min{λk + εk, τ
‖xk − yk‖

‖F(xk) − F(yk)‖} ≤ τ
‖xk − yk‖

‖F(xk) − F(yk)‖ .

It implies that

λk‖F(xk) − F(yk)‖ ≤ τ
λk

λk+1
‖xk − yk‖.

Therefore, we have (3.16) holds.
Substituting (3.16) into (3.15), we have

‖zk − x‖2 ≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2τ
λk

λk+1
‖xk − yk‖‖yk − zk‖

≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + τ
λk

λk+1
(‖xk − yk‖2 + ‖yk − zk‖2)

≤ ‖xk − x‖2 − (1 − τ
λk

λk+1
)(‖xk − yk‖2 + ‖yk − zk‖2).

(3.17)

(ii) By the facts that lim
k→∞ λk = λ > 0 and τ ∈ (0, 1), we consider the limit

lim
k→∞(1 − τ

λk

λk+1
) = 1 − τ > 0.

Thus, there exists k0 ∈ N
+ such that 1 − τλk/λk+1 > 0 holds for all k ≥ k0.
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(iii) By the definition of xk+1 and the nonexpansive property of the projection, we
obtain that

‖xk+1 − x‖2 = ‖�H̃k
(zk) − �H̃k

(x)‖2
≤ ‖zk − x‖2
(a)≤ ‖xk − x‖2 − (1 − τ

λk

λk+1
)(‖xk − yk‖2 + ‖yk − zk‖2),

(3.18)

where (a) holds from (3.17). Combine the fact that 1 − τλk/λk+1 > 0 for all
k ≥ k0, we deduce that

lim
k→∞ ‖xk − yk‖ = 0 and lim

k→∞ ‖yk − zk‖ = 0. (3.19)

Moreover, together with the fact that ‖xk − zk‖ ≤ ‖xk − yk‖ + ‖yk − zk‖, we
have

lim
k→∞ ‖xk − zk‖ = 0. (3.20)

This completes the proof. ��
Next, we give the global convergence analysis of Algorithm 3.1.

Theorem 3.1 Assume that Conditions 3.1 and 3.2 hold. Let {xk}, {yk}, {zk} be the
sequences and Tk, Hk, H̃k be the half-spaces generated by Algorithm 3.1. Then, the
infinite sequence {xk} converges globally to a solution of VI(F,C).

Proof For any fixed x ∈ C ∩
∞⋂
k=0

Hk ⊆ H̃k , by the definition of xk+1 and Lemma 2.1

(ii), for all k ≥ k0, we have

‖xk+1 − x‖2 ≤ ‖zk − x‖2 − ‖xk+1 − zk‖2
= ‖zk − x‖2 − dist2(zk , H̃k )

(a)≤ ‖xk − x‖2 − (1 − τ
λk

λk+1
)(‖xk − yk‖2 + ‖yk − zk‖2) − dist2(zk , H̃k )

(b)≤ ‖xk − x‖2 − dist2(zk , H̃k ),

(3.21)

where (a) follows from Lemma 3.4 (i) and (b) follows from Lemma 3.4 (ii). From the
above inequality, we deduce that the sequence {‖xk − x‖} converges and

lim
k→∞ dist(zk, H̃k) = 0. (3.22)

Hence, it implies that the sequence {xk} is bounded. Then, there exists a subsequence
{xkl } of {xk} and a vector x ∈ R

n such that {xkl } converges to x . By the facts that
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lim
k→∞ ‖xk − yk‖ = 0 and lim

k→∞ ‖xk − zk‖ = 0 in Lemma 3.4 (iii), we obtain that

lim
l→∞ ykl = x and lim

l→∞ zkl = x .

Moreover, by the definition of yk , we know ykl ∈ C , combine the fact that C is a
closed set, we have x ∈ C .

Now, we prove that x ∈
∞⋂
k=0

Hk . By the definition of H̃k and Lemma 3.2, we know

that

0 ≤ dist(zk, Hj ) ≤ dist(zk, H̃k), ∀ j ∈ {0, 1, . . . , k}. (3.23)

Taking the limit as k → ∞ in (3.23) and combining (3.22), for any fixed nonnegative
integer j, we have

lim
k→∞ dist(zk, Hj ) = 0.

Hence,

lim
l→∞ dist(zkl , Hj ) = 0.

Let vkl := �Hj (z
kl ), it is clear that

lim
l→∞ ‖vkl − zkl‖ = 0.

By the fact that lim
l→∞ zkl = x , we have lim

l→∞ vkl = x . From the facts that {vkl } ⊂ Hj

and Hj is closed set, we deduce that x ∈ Hj holds. By the arbitrariness of j , we obtain

that x ∈
∞⋂
k=0

Hk .

Next, we prove that x ∈ S. According to ykl = �C (xkl − λkl F(xkl )) and Lemma
2.1 (i), we obtain that

〈ykl − xkl + λkl F(xkl ), y − ykl 〉 ≥ 0, ∀y ∈ C,

which implies that

〈ykl − xkl , y − ykl 〉
λkl

+ 〈F(xkl ), y − ykl 〉 ≥ 0, ∀y ∈ C . (3.24)

Taking the limit as l → ∞ in (3.24), combine with the facts that lim
l→∞ λkl = λ > 0

(see Lemma 3.1), lim
l→∞ ‖xkl − ykl‖ = 0 (see Lemma 3.4 (iii)), the continuity of the
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mapping F and lim
l→∞ ykl = x , we obtain that

〈F(x), y − x〉 ≥ 0, ∀y ∈ C,

which implies x ∈ S.
Finally, we prove that the entire sequence {xk} converges globally to x . Since the

fact

x ∈ S ∩
∞⋂
k=0

Hk ⊆ C ∩
∞⋂
k=0

Hk .

By replacing x by x in (3.21), we see that

lim
k→∞ ‖xk − x‖ = lim

l→∞ ‖xkl − x‖ = 0.

This completes the proof. ��
Remark 3.3 According to Theorem 3.1, we know that the global convergence of Algo-
rithm 3.1 is proved only need under conditions that the mapping F is Lipschitz
continuous on R

n and SD 
= ∅. This removes the condition that S\SD is a finite
set in [16].

Before ending this subsection, we give the computational complexity analysis of
Algorithm 3.1.

Theorem 3.2 Assume that Conditions 3.1 and 3.2 hold. For any k ≥ 0, let xk , yk ,
zk , Tk , Hk and H̃k be generated by Algorithm 3.1. Denote λ̄ = λ0 + ε̄, where ε̄ =
∞∑
k=0

εk < +∞ and {εk} is selected in Algorithm 3.1. If λ̄ ∈ (0, 1
L ) (where L is the

Lipschitz constant of F), then for any x∗ ∈ SD and for any k ≥ 0,

min
0≤i≤k

‖xi − yi‖2 ≤ 1

k

‖x0 − x∗‖2
1 − λ̄L

.

Proof By the definition of λk+1 in (3.4) and mathematical induction, we deduce that
the sequence {λk} has upper bound λ̄ = λ0 + ε̄. Then, we know that

λk ≤ λ̄, ∀k ≥ 0. (3.25)

For any fixed x∗ ∈ SD , combine Lemma 3.3, we have x∗ ∈ Tk ∩ H̃k ⊆ Tk . By the
definition of zk and Lemma 2.1 (ii), for any k ≥ 0, we have

‖zk − x∗‖2 ≤ ‖xk − λk F(yk ) − x∗‖2 − ‖xk − λk F(yk ) − zk‖2
(a)≤ ‖xk − x∗‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λk‖F(yk ) − F(xk )‖‖yk − zk‖
(b)≤ ‖xk − x∗‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λ̄‖F(yk ) − F(xk )‖‖yk − zk‖
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≤ ‖xk − x∗‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λ̄L‖yk − xk‖‖yk − zk‖
≤ ‖xk − x∗‖2 − (1 − λ̄L)(‖xk − yk‖2 + ‖yk − zk‖2), (3.26)

where (a) follows from (3.15) and (b) follows from (3.25).
By the fact x∗ ∈ Tk∩H̃k ⊆ H̃k , combine the definition of xk+1 and the nonexpansive

property of the projection, for all k ≥ 0, we deduce that

‖xk+1 − x∗‖2 = ‖�H̃k
(zk) − �H̃k

(x∗)‖2
≤ ‖zk − x∗‖2
(a)≤ ‖xk − x∗‖2 − (1 − λ̄L)(‖xk − yk‖2 + ‖yk − zk‖2)
(b)≤ ‖xk − x∗‖2 − (1 − λ̄L)‖xk − yk‖2,

where (a) follows from (3.26) and (b) follows from the fact λ̄ ∈ (0, 1
L ). Then,

rearranging the above formula, we have

‖xk − yk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2
1 − λ̄L

, ∀k ≥ 0.

Summing the above display on both sides from i = 0 to k, we obtain that

k∑
i=0

‖xi − yi‖2 ≤ ‖x0 − x∗‖2 − ‖xk+1 − x∗‖2
1 − λ̄L

≤ ‖x0 − x∗‖2
1 − λ̄L

.

Then, we deduce that

min
0≤i≤k

‖xi − yi‖2 ≤ 1

k

k∑
i=0

‖xi − yi‖2 ≤ 1

k

‖x0 − x∗‖2
1 − λ̄L

.

This completes the proof. ��

3.2 ISEGA for nonmonotoneVI(F,C) with continuous

In this subsection, in order to further weaken the Lipschitz continuity of the map-
ping F , we introduce a line search method to search for the step-size and propose
an improved subgradient extragradient algorithm with Armijo line search (ISEGA).
To obtain the global convergence of ISEGA, we assume the following condition
holds:

Condition 3.3 The mapping F : Rn → R
n is continuous.

Now, we give the iterative format of ISEGA as follows:
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Algorithm 3.2

Step 1. Let x0 ∈ R
n be chosen arbitrarily. Choose parameters η, σ ∈ (0, 1) and

μ > 0. Set k := 0.
Step 2. Given the current iteration point xk , compute

yk = �C (xk − λk F(xk)),

where λk := μηmk and mk is the smallest nonnegative integer m satisfies

μηm‖F(xk) − F(�C (xk − μηmF(xk)))‖ ≤ σ‖xk − �C (xk − μηmF(xk))‖.
(3.27)

If xk = yk or F(yk) = 0, then stop and yk is a solution of VI(F,C).
Otherwise, go to Step 3.

Step 3. Compute

zk = �Tk (x
k − λk F(yk)),

where

Tk := {x ∈ R
n : 〈xk − yk − λk F(xk), x − yk〉 ≤ 0}. (3.28)

Step 4. Let Hk := {x ∈ R
n : 〈F(yk), x − yk〉 ≤ 0} and choose

ik := arg max
0≤j≤k

〈F(y j ), zk − y j 〉
‖F(y j )‖ . (3.29)

Compute

xk+1 = �H̃k
(zk) with H̃k := Hik . (3.30)

Let k := k + 1 and go to Step 2.

In the following lemma, we show that the Armijo line search rule (3.27) in
Algorithm 3.2 is well defined.

Lemma 3.5 Assume that Condition 3.3 holds. Let xk be generated at the beginning
of the k-th iteration of Algorithm 3.2 for any k ≥ 0. Then, there exists a nonnegative
integer m such that (3.27) holds.

Proof If xk ∈ S, then xk = �C (xk − μF(xk)). Hence, (3.27) holds with m = 0.
If xk /∈ S, suppose to the contrary that for all m, we have

μηm‖F(xk) − F(�C (xk − μηmF(xk)))‖ > σ‖xk − �C (xk − μηmF(xk))‖.
(3.31)
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Then,

‖F(xk) − F(�C (xk − μηmF(xk)))‖ > σ
‖xk − �C (xk − μηmF(xk))‖

μηm
.

(3.32)

Now, we consider the following two possibilities of xk :
i) If xk ∈ C , by the continuity of the metric projection �C , we have

lim
m→∞ ‖xk − �C (xk − μηmF(xk))‖ = 0. (3.33)

The continuity of the mapping F implies that

lim
m→∞ ‖F(xk) − F(�C (xk − μηmF(xk)))‖ = 0.

Combining this with (3.32), we have

lim
m→∞

‖xk − �C (xk − μηmF(xk))‖
μηm

= 0. (3.34)

Let ykm := �C (xk − μηmF(xk)). By the Lemma 2.1 (i), we deduce that

〈ykm − xk + μηmF(xk), y − ykm〉 ≥ 0, ∀y ∈ C,

or equivalently,

〈 y
k
m − xk

μηm
, y − ykm〉 + 〈F(xk), y − ykm〉 ≥ 0, ∀y ∈ C . (3.35)

Taking the limit as m → ∞ in (3.35), combining (3.33) with (3.34), we obtain that

〈F(xk), y − xk〉 ≥ 0, ∀y ∈ C,

which implies that it contradicts xk /∈ S.
ii) If xk /∈ C , then

lim
m→∞ ‖xk − �C (xk − μηmF(xk))‖ = ‖xk − �C (xk)‖ > 0 (3.36)

and

lim
m→∞ μηm‖F(xk) − F(�C (xk − μηmF(xk)))‖ = 0. (3.37)

Combining (3.31), (3.36) and (3.37), we obtain a contradiction. Therefore, there exists
a nonnegative integer m such that (3.27) holds. This completes the proof. ��
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Lemma 3.6 Assume that Conditions 3.1 and 3.3 hold. Let {xk}, {yk}, {zk} be the
sequences and Tk, Hk, H̃k be the half-spaces generated by Algorithm 3.2. Then, the
following statements hold:

(i) For any fixed x ∈ C ∩
∞⋂
k=0

Hk, we have

‖zk − x‖2 ≤ ‖xk − x‖2 − (1 − σ)(‖xk − yk‖2 + ‖yk − zk‖2), ∀k ≥ 0.

(3.38)

(ii) lim
k→∞ ‖xk − yk‖ = 0, lim

k→∞ ‖yk − zk‖ = 0 and lim
k→∞ ‖xk − zk‖ = 0.

Proof (i) For any fixed x ∈ C ∩
∞⋂
k=0

Hk ⊆ C ∩ H̃k ⊆ Tk ∩ H̃k , by the definition of

zk and Lemma 2.1 (ii), we have

‖zk − x‖2 ≤ ‖xk − λk F(yk ) − x‖2 − ‖xk − λk F(yk ) − zk‖2
= ‖xk − x‖2 − ‖xk − zk‖2 + 2λk 〈F(yk ), x − yk 〉 + 2λk 〈F(yk ), yk − zk 〉
≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 − 2〈xk − yk , yk − zk 〉

+ 2λk 〈F(yk ), yk − zk 〉
= ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 − 2〈xk − yk − λk F(xk ), yk − zk 〉

+ 2λk 〈F(yk ) − F(xk ), yk − zk 〉
(a)≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λk 〈F(yk ) − F(xk ), yk − zk 〉
(b)≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2λk‖F(yk ) − F(xk )‖‖yk − zk‖
(c)≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + 2σ‖yk − xk‖‖yk − zk‖
≤ ‖xk − x‖2 − ‖xk − yk‖2 − ‖yk − zk‖2 + σ(‖xk − yk‖2 + ‖yk − zk‖2)
= ‖xk − x‖2 − (1 − σ)(‖xk − yk‖2 + ‖yk − zk‖2), (3.39)

where (a) follows from the fact zk ∈ Tk and the definition of Tk in (3.28), (b)
follows from the fact that λk > 0 for all k and Cauchy–Schwarz inequality, and
(c) follows from (3.27).

(ii) By the definition of xk+1, the nonexpansive property of the projection and (3.39),
we obtain that

‖xk+1 − x‖2 = ‖�H̃k
(zk) − �H̃k

(x)‖2
≤ ‖zk − x‖2
≤ ‖xk − x‖2 − (1 − σ)(‖xk − yk‖2 + ‖yk − zk‖2).

(3.40)

Since the fact σ ∈ (0, 1), we deduce that

lim
k→∞ ‖xk − yk‖ = 0 and lim

k→∞ ‖yk − zk‖ = 0. (3.41)
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Furthermore, together with the fact ‖xk − zk‖ ≤ ‖xk − yk‖+‖yk − zk‖, we have

lim
k→∞ ‖xk − zk‖ = 0.

This completes the proof. ��
In the following, we give the global convergence analysis of Algorithm 3.2.

Theorem 3.3 Assume that Conditions 3.1 and 3.3 hold. Let {xk}, {yk}, {zk} be the
sequences and Tk, Hk, H̃k be the half-spaces generated by Algorithm 3.2. Then, the
infinite sequence {xk} converges globally to a solution of VI(F,C).

Proof For any fixed x ∈ C ∩
∞⋂
k=0

Hk ⊆ H̃k , by the definition of xk+1 and Lemma 2.1

(ii), we have

‖xk+1 − x‖2 ≤ ‖zk − x‖2 − ‖xk+1 − zk‖2
= ‖zk − x‖2 − dist2(zk, H̃k)

(a)≤ ‖xk − x‖2 − (1 − σ)(‖xk − yk‖2 + ‖yk − zk‖2) − dist2(zk, H̃k)

(b)≤ ‖xk − x‖2 − dist2(zk, H̃k),

(3.42)

where (a) follows from Lemma 3.6 (i), (b) follows from σ ∈ (0, 1). From the above
inequality, we deduce that the sequence {‖xk − x‖} converges and

lim
k→∞ dist(zk, H̃k) = 0. (3.43)

Hence, it implies that the sequence {xk} is bounded. Then, there exists a subsequence
{xkn } of {xk} and x̃ ∈ R

n such that the subsequence {xkn } converges to x̃ . By the facts
that lim

k→∞ ‖xk − yk‖ = 0 and lim
k→∞ ‖xk − zk‖ = 0 in Lemma 3.6 (ii), we know that

lim
n→∞ ykn = x̃ and lim

n→∞ zkn = x̃ .

Moreover, by the definition of yk , we know ykn ∈ C , combine the fact that C is a
closed set, we have x̃ ∈ C .

Now, we prove that x̃ ∈
∞⋂
k=0

Hk . We omit this part of the proof and refer to the

corresponding part of the proof in Theorem 3.1.
Next, we prove that x̃ ∈ S. According to ykn = �C (xkn − λkn F(xkn )) and Lemma

2.1 (i), we have

〈ykn − xkn + λkn F(xkn ), y − ykn 〉 ≥ 0, ∀y ∈ C,
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or equivalently,

〈ykn − xkn , y − ykn 〉
λkn

+ 〈F(xkn ), y − ykn 〉 ≥ 0, ∀y ∈ C . (3.44)

We consider the following two cases:
i) If lim

n→∞ λkn > 0. Taking the limit as n → ∞ in (3.44), by the fact lim
n→∞ ‖xkn −

ykn‖ = 0 in Lemma 3.6 (ii), the continuity of the mapping F and lim
n→∞ ykn = x̃ , we

obtain that

〈F (̃x), y − x̃〉 ≥ 0, ∀y ∈ C,

which means x̃ ∈ S.
ii) If lim

n→∞ λkn = 0. Assumewkn := �C (xkn −λknη
−1F(xkn )).By the definition of

λk , we know that λkn > 0 for all n. Hence, λknη
−1 > λkn (since η ∈ (0, 1)). Applying

Lemma 2.1 (iii), we obtain that

‖xkn − wkn‖ ≤ 1

η
‖xkn − ykn‖.

By the fact that lim
n→∞ ‖xkn − ykn‖ = 0 in Lemma 3.6 (ii), we have

lim
n→∞ ‖xkn − wkn‖ = 0,

which implies that lim
n→∞ wkn = x̃ . Since the mapping F is continuous, we have

lim
n→∞ ‖F(xkn ) − F(wkn )‖ = 0. (3.45)

By the definition of λk in Step 2 of Algorithm 3.2 and (3.27), we have

λkn η−1‖F(xkn ) − F(�C (xkn − λkn η−1F(xkn )))‖ > σ‖xkn − �C (xkn − λkn η−1F(xkn ))‖.

Reformulating the above inequality, we obtain that

1

σ
‖F(xkn ) − F(wkn )‖ >

‖xkn − wkn‖
λknη

−1 . (3.46)

Combining (3.45) and (3.46), we deduce that

lim
n→∞

‖xkn − wkn‖
λknη

−1 = 0. (3.47)
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Furthermore, by the definition of wkn and Lemma 2.1 (i), we have

〈wkn − xkn + λknη
−1F(xkn ), y − wkn 〉 ≥ 0, ∀y ∈ C .

The above inequality can be rewritten as

〈wkn − xkn , y − wkn 〉
λknη

−1 + 〈F(xkn ), y − wkn 〉 ≥ 0, ∀y ∈ C . (3.48)

Taking the limit as n → ∞ in (3.48), according to (3.47), the mapping F is continuous
and lim

n→∞ wkn = x̃ , we have

〈F (̃x), y − x̃〉 ≥ 0, ∀y ∈ C,

which means x̃ ∈ S.
Finally, we prove that the entire sequence {xk} converges globally to x̃ . Since the

fact that

x̃ ∈ S ∩
∞⋂
k=0

Hk ⊆ C ∩
∞⋂
k=0

Hk .

By replacing x by x̃ in (3.42), we have

lim
k→∞ ‖xk − x̃‖ = lim

n→∞ ‖xkn − x̃‖ = 0.

This completes the proof. ��
Before ending this subsection, we give the computational complexity analysis of

Algorithm 3.2.

Theorem 3.4 Assume that Conditions 3.1 and 3.3 hold. For any k ≥ 0, let xk , yk , zk

Tk, Hk andH̃k be generated by Algorithm 3.2. If σ ∈ (0, 1), then, for any x∗ ∈ SD
and k ≥ 0, we have

min
0≤i≤k

‖xi − yi‖2 ≤ 1

k

‖x0 − x∗‖2
1 − σ

.

Proof For any fixed x∗ ∈ SD , combine Lemma 3.3, we have x∗ ∈ Tk ∩ H̃k ⊆ H̃k . By
the definition of xk+1 and the nonexpansive property of the projection, for any k ≥ 0,
we have

‖xk+1 − x∗‖2 = ‖�H̃k
(zk) − �H̃k

(x∗)‖2
≤ ‖zk − x∗‖2
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(a)≤ ‖xk − x∗‖2 − (1 − σ)(‖xk − yk‖2 + ‖yk − zk‖2)
(b)≤ ‖xk − x∗‖2 − (1 − σ)‖xk − yk‖2,

where (a) follows from Lemma 3.6 (i) and (b) follows from σ ∈ (0, 1). Then,
rearranging the above formula, we deduce that

‖xk − yk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2
1 − σ

, ∀k ≥ 0.

By adding up the two sides of the above inequality, we obtain that

k∑
i=0

‖xi − yi‖2 ≤ ‖x0 − x∗‖2 − ‖xk+1 − x∗‖2
1 − σ

≤ ‖x0 − x∗‖2
1 − σ

.

Then, we deduce that

min
0≤i≤k

‖xi − yi‖2 ≤ 1

k

k∑
i=0

‖xi − yi‖2 ≤ 1

k

‖x0 − x∗‖2
1 − σ

.

This completes the proof. ��

4 Numerical experiments

In this section, the effectiveness of our Algorithm 3.1 (Algorithm 3.1 for short) and
Algorithm 3.2 (Algorithm 3.2 for short) will be illustrated through numerical experi-
ments and compared with the existing algorithms. All programs are written in Matlab
R2017a and executed on an Intel(R) Core(TM) i5-5350U CPU@ 1.80GHz 1.80GHz.

Let ‖xk − yk‖ ≤ Err be the stopping criterion of these algorithms. We report that
Iter. represents the number of iterations, np represents the number of projections onto
the feasible set C and CPU(s) represents the time the program runs (in seconds).

Example 4.1 Considering the following variational inequality problemVI(F,C)with

F : (x1, x2, . . . , xn) �→ (sin x1, sin x2, . . . , sin xn) and C = [0, π ]n .

One can see that the mapping F is not quasimonotone on the feasible setC . Indeed,
taking x̄ = (π

6 , π, π, . . . , π) and ȳ = (π
4 , 5π

6 , π, . . . , π), we have

〈F(x̄), ȳ − x̄〉 = π

24
> 0 and 〈F(ȳ), ȳ − x̄〉 =

√
2 − 2

24
π < 0.

123



J. Chen et al.

Table 1 Results for Example 4.1

n Err [18, Alg.1] Algorithm 3.1 Algorithm 3.2

Iter. np CPU(s) Iter. np CPU(s) Iter. np CPU(s)

500 10−4 16 32 1.5554 8 8 0.3918 9 17 0.8589

10−5 18 36 1.7880 10 10 0.5138 11 21 1.0854

10−6 20 40 1.9528 12 12 0.6170 12 23 1.1555

3000 10−4 17 34 114.8506 9 9 31.9254 10 19 70.2992

10−5 19 38 129.7722 11 11 39.6853 12 23 93.0657

10−6 21 42 186.6146 12 12 58.0784 13 25 116.2408

In addition, it is clear that the mapping F is Lipschitz continuous on R
n . Moreover,

we have

S = {(x1, x2, . . . , xn) : xi ∈ {0, π}} and SD = {(0, 0, . . . , 0)}.

Let x0 := (π
2 , π

2 , . . . , π
2 ) be the initial point. In this example, we compare [18,

Alg.1], Algorithms 3.1 and 3.2 by changing the dimension n and the value of Err .
We use the same parameter settings as in [18]. That is, we choose η = 0.5, σ = 0.99
for [18, Alg.1]. For Algorithm 3.1, we choose λ0 = 1.5, μ = 0.6, εk = 100

(k+1)2
. For

Algorithm 3.2, we choose μ = 1.55, η = 0.4, σ = 0.99. The computational results
are reported in Table 1.

Remark 4.1 From Table 1, one can see that Algorithm 3.1 needs only to calculate
one projection onto the feasible set C per iteration. Moreover, from the view point
of the number of iterations and computational time, we have Algorithm 3.1 is more
efficient than [18, Alg.1] andAlgorithm 3.2 for nonmonotoneVI(F,C)with Lipschitz
continuous on R

n .

In the following three examples, it is easy to verify that the Lipschitz continuity
of the mapping F on R

n is not true, therefore it does not satisfy the Condition 3.2 of
Algorithm 3.1. Then, we only test the effectiveness of Algorithm 3.2 for these three
examples.

Example 4.2 The well-known asymmetric transportation network equilibrium exam-
ple was proposed in [31, Example 7.5]. The network has 25 nodes and 37 directed
links (the set of directed links is denoted by L), and the network topology is shown in
Fig. 1.

Let W be a set of the origin/destination (O/D) pairs of this network, Pw be a set
of all paths corresponding to the O/D pair ω ∈ W , and P be a set of all paths in the
network. Then, we have the path set P = ⋃

ω∈W
Pω. The O/D pairs and the number of

paths of each O/D pair for this example are given in Table 2.
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Fig. 1 A transportation network topology

Table 2 The O/D pairs and the
number of paths of each O/D
pair

No.pairs ω1 ω2 ω3 ω4 ω5 ω6

(O,D) (1,20) (1,25) (2,20) (3,25) (1,24) (11,25)

No.paths 10 15 9 6 10 5

Denote by A the path-link incidence matrix, i.e.,

A = (δpl)55×37, where δpl =
{
1, if the link l ∈ p (where l ∈ L, p ∈ P),

0, otherwise.

Denote by B the path-O/D pair incidence matrix, i.e.,

B = (vpω)55×6, where vpω =
{
1, if the path p ∈ Pω (where p ∈ P, ω ∈ W ),

0, otherwise.

Wewill use the symbol xp to represent the traffic flow on path p, then x = (xp)p∈P ∈
R
55×1. Hence, the traffic flow f on link is AT x and the traffic flow d between the O/D

pair w is BT x .
For the link flow, there is a link travel cost function t(u) and a travel disutility

function λ(v), which are given in [32, Example 5.1]. Because both the travel cost
and the travel disutility are functions of the path flow x , we can describe the traffic
equilibrium example with link capacity bounds as the VI(F,C), i.e.,

F(x) = At(AT x) − Bλ(BT x), C := {x ∈ R
55+ : AT x ≤ b},

and b = q · (1, 1, . . . , 1)T ∈ R
37×1 is the vector indicating the capacity on links with

q ∈ R
n+.

Since the mapping F is monotone, the relationship SD = S 
= ∅ clearly holds. In
this example, we compare [18, Alg.1], [24, Alg.3.2] and Algorithm 3.2 by changing
the values of Err and q. We use the same parameter settings as in [18, 24]. That is,
we choose η = 0.5, σ = 0.99 for [18, Alg.1] and μ = 0.5, η = 0.4, σ = 0.99 for
[24, Alg.3.2]. For Algorithm 3.2, we choose μ = 0.14, η = 0.13, σ = 0.99. We take
the initial point x0 = (1, 1, . . . , 1)T . The results are reported in Table 3.
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Table 3 Results for Example 4.2

Err q [18, Alg.1] [24, Alg.3.2] Algorithm 3.2

Iter. np CPU(s) Iter. np CPU(s) Iter. np CPU(s)

10−3 30 308 1130 8.6682 108 489 4.9672 115 261 2.1267

35 313 1163 8.8352 112 531 5.5052 112 259 1.9328

40 448 1759 13.4821 152 750 8.7453 141 335 2.5296

10−4 25 376 1359 10.6346 132 596 6.9278 155 349 2.7610

30 415 1506 11.8484 134 612 7.2465 152 345 2.7457

35 439 1683 13.6813 147 696 8.6390 141 326 2.5656

Remark 4.2 From Table 3, one can see that Algorithm 3.2 is more efficient than [18,
Alg.1] in these aspects of the number of iterations and computational time. Moreover,
it can be found from Table 3 that the computational time of Algorithm 3.2 is less than
that of [24, Alg.3.2] even though the number of iterations of Algorithm 3.2 is more
than [24, Alg.3.2].

Example 4.3 The following quasiconvex example was presented in [33, Exercise 4.7],

min
{
g(x) = f0(x)

cx + d
: x ∈ C

}

with c ∈ R
n , d ∈ R and C = {x ∈ R

n : fi (x) ≤ 0, i = 1, 2, . . . ,m, Ax = b},
where f0, f1, . . . , fm are convex functions, A is a matrix of order m × n, b ∈ R

m .
This is a quasiconvex optimization problem.

In this example, we choose

g(x) =
1
2 x

T Hx + qT x + r

�n
i=1xi

,

where q = (−1,−1, . . . ,−1)T ∈ R
n , r = 1 ∈ R, the positive diagonal matrix

H = hI with h ∈ (0.1, 1.6) and I is a identity matrix. The feasible set defined by

C := {x ∈ R
n : xi ≥ 0, i = 1, 2, . . . , n, �n

i=1xi = a}, a > 0.

It is clear that g is a smooth quasiconvex and can attain its minimum value on C (see
[33, Exercise 4.7]), Hence, its derivative F(x) = (F1(x), F2(x), . . . , Fn(x))T with

Fi (x) = hxi�n
i=1xi − 1

2h�n
i=1xi

2 − 1

(�n
i=1xi )

2

is quasimonotone on C . Moreover, it is routine to check that SD =
{( 1n a, 1

n a, . . . , 1
n a)T }. Hence, solving this quasiconvex problem can be converted to

solve quasimonotone VI(F,C).
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Table 4 Results for Example 4.3

Err n [13, Alg.2.1] [21, Alg.1] Algorithm 3.2

Iter. np CPU(s) Iter. np CPU(s) Iter. np CPU(s)

10−4 80 439 877 29.8849 439 877 5.7914 186 186 1.2018

100 547 1093 61.7641 548 1095 7.2515 232 232 1.5955

120 639 1278 100.9105 640 1279 8.6622 270 270 1.9221

10−5 60 380 758 17.9917 450 899 5.2114 185 185 1.1197

80 498 995 41.9185 595 1188 7.2073 243 243 1.5377

100 618 1235 86.8684 741 1482 9.9367 301 301 2.0839

Since this example was solved in [13, 21]. In this example, we test [13, Alg.2.1],
[21, Alg.1] and Algorithm 3.2 by changing the value of Err and the dimension n.
Let h = 1.2. We use the same parameter settings as in [13, 21]. That is, we choose
γ = 0.4, σ = 0.99 for [13, Alg.2.1] and η = 0.99, σ = 0.4 for [21, Alg.1]. For
Algorithm 3.2, we choose μ = 2.8, η = 0.4, σ = 0.99.

We take a = n and the initial point

x0 := a ∗ rand(n, 1)

sum(rand(n, 1))
,

where rand(n, 1) ∈ R
n×1 is a random vector with each component selected from

(0, 1). We generate 5 random initial points as described above. We present the
computational results in Table 4, averaged over the 5 random initial points.

Remark 4.3 From Table 4, one can see that Algorithm 3.2 performs better than [13,
Alg.2.1] and [21, Alg.1] in the number of iterations and computational time, and
Algorithm 3.2 is less affected by changing the dimension n at the same stopping
criterion accuracy.

Example 4.4 The nonmonotone variational inequality problem is considered in [13,
Example 4.2], where the mapping F is defined by

F : (x1, x2, . . . , xn) �→ (x21 , x
2
2 , . . . , x

2
n ),

and the feasible set C is defined by C = [−1, 1]n . It is easy to verify that the
mapping F is quasimonotone on the feasible set C whenever n = 1 and the map-
ping F is not quasimonotone on the feasible set C whenever n ≥ 2. Moreover,
S = {(x1, x2, . . . , xn)T : xi ∈ {−1, 0},∀i}, SD = {(−1,−1, . . . ,−1)T }.

Since this example was solved in [13, 20, 21]. In this example, we compare [13,
Alg.2.1], [20, Alg.1], [21, Alg.1] and Algorithm 3.2 by changing the value of Err
and the dimension n. Let x0 := (1, 1, . . . , 1)T be the initial point. We use the same
parameter settings as in [13, 20, 21]. That is, we choose γ = 0.4, σ = 0.99 for [13,
Alg.2.1], γ = 0.4, σ = 0.99, αk = α0

k for [20, Alg.1] and η = 0.99, σ = 0.4 for
[21, Alg.1]. For Algorithm 3.2, we choose μ = 1.5, η = 0.9, σ = 0.7. We present
the computational results in Table 5.
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Remark 4.4 From Table 5, one can see that the number of iterations and computational
time of Algorithm 3.2 performs better than [20, Alg.1] and [21, Alg.1]. Moreover, it
can be found from Table 5 that the computational time and the number of projections
onto C of Algorithm 3.2 are less than that of [13, Alg.2.1] even though the number of
iterations of Algorithm 3.2 is more than [13, Alg.2.1] when Err = 10−5.

5 Conclusion

In this paper, two improved subgradient extragradient algorithms are proposed for
solving variational inequalities without monotonicity in a finite dimensional space
R
n . In the global convergence proof of the two new algorithms, we do not need to

assume the generalized monotonicity of the mapping F . Under the mapping F is Lip-
schitz continuous (without the prior knowledge of Lipschitz constant) or continuous
and SD 
= ∅, the infinite sequences generated by Algorithms 3.1 and 3.2 converge
globally to a solution of VI(F,C). Under some appropriate assumptions, we give
the computational complexity analysis of the two algorithms. Finally, some numerical
experiments are given to illustrate the efficiency of the two algorithms.
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