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Abstract
This article introduces a Haar wavelet-based numerical method for solving fifth-order
linear and nonlinear differential equations. This method easily handles both homo-
geneous and nonhomogeneous equations. It also works with variable and constant
coefficients under various conditions. The method is flexible, making it easy to work
with boundary, integral, and two-point integral conditions. These three different cases
of given information are coupledwith fifth-order linear and nonlinear differential equa-
tions, and the method proves to be effective in these cases. The outcomes of the Haar
wavelet collocation technique are compared with approaches found in existing liter-
ature. The method demonstrates second-order convergence, and experimental results
support this idea aswell. TheCPU time is used to evaluate the efficiency of themethod,
and the maximum absolute errors (L∞) are utilized to assess the accuracy level. Dif-
ferent examples are studied along with various given information, and the method is
found to be adaptable to different types of boundary conditions and particular integral
conditions.
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1 Introduction

In the field of engineering and applied sciences, particularly in combination of math-
ematics and physics, the ordinary differential equations (ODEs) play a key role for
describing a real-world phenomenon. Differential equations also arises in mathemat-
ical modelling such as viscoelastic flow which is represented by fifth-order nonlinear
ODEs with two-point boundary conditions and is studied by Davies [1]. Many other
methods used by researchers such as Adomian decomposition technique (ADM) used
by Wazwaz [2] to solve fifth-order ODE. Spline techniques like Sextic B splines as
weighted function and Quartic B splines as basis function in Petrove–Galerkin meth-
ods are implemented to solve fifth order ODEs [3]. Variation of parameter technique is
also used for numerical solution of fifth-order ODEs in [4]. Beside of these methods,
other techniques have also been reported to solve fifth-orderODEs in [5, 6]. Apart from
ODEs there are also some applied problems which have importance in mathematics
and applied sciences [7–11].

Several alternative methods exist for approximating higher-order ODEs. For
instance, direct explicit numerical integrators of RK-type tailored for a specific class
of ninth-order ODEs are presented in [12]. For the approximate solution of the tem-
poral fractional advection diffusion problem, a computational technique based on the
finite difference scheme with redefined extended B-spline functions is provided in
[13, 14]. The fractional boundary value problems were addressed using the spline
collocation approach in [15, 16]. The numerical solution of different partial differen-
tial equations are given in [17–21]. Additionally, the utilization of a Newton-Gregory
backward difference polynomial as a predictor-corrector technique is discussed in
[22]. Moreover, a novel computational approach utilizing Chebyshev series in [23]
provides a direct solution pathway for nonlinear higher-order ODEs. Another note-
worthy method is presented in [24], which proposes a simple implementation of a
Taylor series expansion-based approach for higher-orderODEs. These references offer
diverse strategies for tackling higher-order ODEs, each with its unique advantages and
applicability.

This paper aims to find the solution to the following nonlinear fifth-order ODE:

y(v) + g(x, y, y′, y′′, y′′′, y(iv)) = f (x), for x ∈ (λ0, λ1). (1)

Here, we have taken different types of given information along with Eq. (1):

Case 1: Simple boundary conditions

y(λ0) = η0, y(λ1) = η1, y′(λ0) = η2, y′(λ1) = η3, y′′(λ0) = η4. (2)
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Case 2: Two points boundary conditions

y(λ0) + y(λ1) = ζ0, y(λ0) + y′(0) = ζ1, y(λ0) + y′(λ1) = ζ2,

y(λ0) + y′′(λ0) = ζ3, y(λ1) + y′(λ0) = ζ4.
(3)

Case 3: Two points integral boundary conditions

β0

∫ λ1

λ0

y(x)dx = α0, y(λ0) + β0

∫ λ1

λ0

y(x)dx = α1,

y(λ1) + β0

∫ λ1

λ0

y(x)dx = α2

y′(λ0) + β0

∫ λ1

λ0

y(x)dx = α3, y′(λ1) + β0

∫ λ1

λ0

y(x)dx = α4,

(4)

where β0, ζi , ηi , αi , such that i = 0, 1, 2, 3, 4 represents constants while g(x) is a
given function.

In the early twentieth century, wavelets were utilized to find applications in various
forums, such as engineering and applied sciences. Nowadays, its popularity are further
extended in different disciplines such as numerical analysis and compression of data.
Creating different images for medical purposes by focusing on wavelet theory also
highlights the importance of wavelets. The benefit of the wavelet method is that it
simplifies the understanding and study of complex functions that may otherwise be
difficult to comprehend [25]. Biorthonormal spline wavelet used in fingerprint, differ-
ent JPEG chip and electrocardiograph analysis are some uses of wavelets in practice
[26]. Due to localization properties of wavelet based algorithms, it become famous
in numerical analysis. Coiflet, Symlet and Daubechies are some techniques based on
wavelet approach, used in numerical solutions of different problems. Wavelet fami-
lies have some demerits that is the scaling of wavelet function, and therefore cannot
provide an explicit representation. In order to integrate or differentiate these wavelets,
the process is a little bit complicated.

The introduction of Haar wavelet become famous after implementing it to find
the numerical solution of different problems. First of all, Alfred Haar is the one who
introduced wavelets notation [27]. Approaches such as Chen & Hasio developed in
[28, 29] are then used the wavelet to integrate ODE. After that, Ülo Lepik [30, 31] used
direct method in which Haar functions are directly integrated. In order to calculate
arbitrary-order integrals, direct technique is easy to implement, but operational matrix
technique is applicable only for first-order integrals.

Wavelet methodologies have garnered increased attention as a computational solver
for both linear and nonlinear differential equations, encompassing significant to the
direct and inverse problems. Initially, Chen and Hsiao formulated a collocation
approach utilizing Haar wavelets (CAHW) to address nonlinear stiff systems [28,
29]. Subsequently, Ülo Lepik, a distinguished Estonian mathematician, harnessed the
CAHW to tackle a diverse array of applied phenomena within optimal control theory,
elastic beam buckling and free vibrations concerning Euler-Bernoulli and Timoshenko
beams [30, 31]. In his famous book, he also demonstrated the versatility of the CAHW
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by adapting it to address integral, evolution, differential and fractional differential
equations [31]. It is noteworthy to mention that a machine learning algorithm focus on
CAHW has also been designed for damage detection [32]. These remarkable accom-
plishments have underscored the prominence of CAHW among various researchers,
leading many to regard it as a viable solver for their pertinent problems. A concise
summary of CAHW with its adaptation to address a wide spectrum of problems can
be found in [25, 32–44]. In 2018, M. Ahsan et al. applied CAHW to discern various
types of source functions within the realm of inverse problems [45].Moreover, CAHW
effectively tackles challenging fractional differential equations [46–50]. Furthermore,
CAHW has demonstrated its efficacy in resolving a plethora of diverse direct and
inverse problems, as documented in [51–58].

Therefore, CAHW is utilized to approximate solutions for ordinary, partial, inte-
gral, and fractional differential equations. However, it’s crucial to acknowledge a
technical limitation of the Haar wavelet, which lacks continuity and differentiability.
Interestingly, this drawback can sometimes serve as an advantage when addressing
certain challenging differential equations which have jumps or non-continuities in
their solution, as discussed in [34, 45, 56, 59].

1.1 The aim of this study

Up to now, fifth-order ODEs with two-point boundary conditions or two-point integral
boundary conditions have not been successfully addressed in the literature by adopting
CAHW. This study pioneers the application of the CAHWmethod to solve fifth-order
linear and nonlinear ODEs, specifically addressing specialized cases of boundary con-
ditions like two-point boundary conditions or two-point integral boundary conditions.
Hence, this is referred to as the novelty of the paper. Furthermore, in tackling nonlinear
equations, numerous researchers have traditionally relied on methods such as New-
ton’s or Broyden’s method and both of these techniques necessitate the computation
of the Jacobian matrix; a procedure known to be time consuming and often considered
a drawback of the method. Therefore, a quasi-linearization technique is coupled with
CAHW, and calculating the Jacobian is not required. Therefore, the proposed CAHW
is efficient as well.

The paper follows a structured flow, beginning with an introduction in which the
application of fifth-order ODEs along with a literate survey are elaborated upon in
detail. Following this, Sect. 2 provides a comprehensive discussion of the Haar func-
tions, laying the groundwork for the subsequent sections. In Sect. 3, the focus shifts
towards the development of numerical approximation techniques designed to handle
various types of given conditions effectively. Sect. 4 delves into the convergence anal-
ysis of the proposedmethods, while Sect. 5 presents the results obtained from applying
this technique. Lastly, Section 6 brings together the main discoveries from our study
and offers closing thoughts along with potential directions for future research.
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2 Haar functions

Representation of generalized Haar wavelet in [λ0, λ1] is given as follows [28, 29]

Hi (x) =

⎧⎪⎨
⎪⎩
1 for x ∈ [�1(i), �2(i)),
−1 for x ∈ [�2(i), �3(i)),
0 elsewhere,

(5)

where

⎧⎪⎨
⎪⎩

�1(i) = λ0 + (λ1−λ0)tp
mr

, �2(i) = λ0 + (λ1−λ0)(tp+0.5)
mr

,

�3(i) = λ0 + (λ1−λ0)(tp+dp)
mr

,

i = mr + tp + 1, tp = 0, 1, . . . ,mr − 1, mr = 2dp , dp = 0, 1, . . . , Dp.

(6)

Dilation parameter is denoted by dp having its maximum value Dp, and the translation
parameter is represented by tp. The graphical presentation of Haar functions is given
in Fig. 1.

To simplify the derivations, the sth-order integrals of the Haar functions are intro-
duced, denoted as ρi,s(x), where i = 1, 2, 3, . . . . It is important to note that these
values can be obtained through analytical calculations, yielding the following expres-
sions:

ρi,s(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x < �1(i),
1
s!

(
x − �1(i)

)s
for x ∈ [�1(i), �2(i)),

1
s!

(
(x − �1(i))s − 2(x − �2(i))s

)
for x ∈ [�2(i), �3(i)),

1
s!

(
(x − �1(i))s − 2(x − �2(i))s + (x − �3(i))s

)
for x ≥ �3(i).

For i = 1, the Haar scale function is defined as:

H1(x) =
{
1 for x ∈ [λ0, λ1],
0 elsewhere,

and

ρ1,s(x) = (x − a)s

s! .

3 Collocation approach utilizing Haar wavelets (CAHW)

Chen and Hsiao, who implemented CAHW for the first time to solve differential
equations, made significant contributions to the field and achieved notable results [28,
29]. Here, the CAHW is extended to solve (1) with the boundary conditions given in
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Fig. 1 Graphical presentation of first sixteen Haar wavelets

(2). According to this method, the approximation of highest derivative term in (1) is
performed by the following Haar series

y(v) =
RM∑
i=1

ai Hi (x), where, RM = 2Rm = 2Dp+1. (7)
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The coefficients a1, . . . , aRM are the unknown series constants.We can now obtain the
following expression by integrating Eq. (7) five times with respect to x consecutively.

y(iv) =
RM∑
i=1

aiρi,1(x) + c1, (8)

y′′′ =
RM∑
i=1

aiρi,2(x) + c1x + c2, (9)

y′′ =
RM∑
i=1

aiρi,3(x) + c1
x2

2
+ c2x + c3, (10)

y′ =
RM∑
i=1

aiρi,4(x) + c1
x3

6
+ c2

x2

2
+ c3x + c4, (11)

y =
RM∑
i=1

aiρi,5(x) + c1
x4

24
+ c2

x3

6
+ c3

x2

2
+ c4x + c5, (12)

where ci , for i = 1, . . . , 5, is the unknown integration constant. Utilizing (7)–(12)
into (1) and then introducing the collocation points xi = λ0 + (λ1−λ0)(i−0.5)

RM
, the RM

equations with RM + 5 unknowns can be obtained. By utilizing any of the three cases
of boundary conditions, the remaining five equations can be obtained. After finding
all the integration constants along with ai s, these values will be used in (12) to obtain
the numerical solution.

Just for better understanding of the proposed technique, a special case of (1), such
that g(x, y, y′, y′′, y′′′, y(iv)) = f1(x)y2 having the same integral conditions given in
(4) is presented here step by step.

y(v) + f1(x)y
2 = f (x) for x ∈ (λ0, λ1), (13)

where f1 and f are some functions.
In the first step, the following iterative scheme is designed.

[
y(v)

]z+1 + [ f1(x)]
z+1

[
y2

]z+1 = [ f (x)]z+1, (14)

where z = 1, 2, . . . , zm is the iteration numberwithmaximum iteration zm . The values
of g(x) and f (x) being the function of independent variable do not change due to z,
therefore we replaced [ f (x)]z+1 by f (x) and g(x)]z+1 by g(x). In the second step, the
following quasi-linearization approach is introduced [60] to linearized the nonlinear
term in (14)

[
y2

]z+1 ≈ 2 [y]z [y]z+1 − ([yz])2. (15)
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Putting (15) in (14), the linearized form of (13) is

[y(v)]z+1 + 2 [y]z f1(x) [y]
z+1 = f (x) + ([yz])2 f1(x). (16)

In the third step, Eq. (16) can be converted into Haar functions using (7) through (12),
which is

RM∑
i=1

ai
(
Hi (x) + 2 f1(x) [y]

z (ρi,5(x))
)

+ 2c1 f1(x) [y]
z
(
x4

24

)

+ 2c2 [y]
z f1(x)

(
x3

6

)
+ 2c3 [y]

z f1(x)

(
x2

2

)

+ 2c4 [y]
z f1(x)

(
x
) + 2c5 [y]

z f1(x) = f (x) + f1(x)
([yz])2.

(17)

In the fourth step, the collocation points are used in (17) to get RM equation in RM +5
unknowns:

RM∑
i=1

ai
(
Hi (xi ) + 2 f1(xi ) [y]

z (ρi,5(xi ))
) + 2c1 f1(xi ) [y]

z

(
x4i
24

)

+ 2c2 f1(xi ) [y]
z

(
x3i
6

)
+ 2c3 f1(xi ) [y]

z

(
x2i
2

)

+ 2c4 f1(xi ) [y]
z (
xi

) + 2c5 f1(xi ) [y]
z = f (xi ) + f1(xi )

([yz])2.

(18)

In the fifth step, the five other equations can be obtained from (4), which are presented
one by one as follow:

β0

∫ λ1

λ0

y(x)dx = α0 �⇒
RM∑
i=1

aiβ0

(
ρi,6(λ1) − ρi,6(λ0)

)
+ c1β0

(λ51 − λ50

120

)

+ c2β0

(λ41 − λ40

24

)
+ c3β0

(λ31 − λ30

6

)
+ c4β0

(λ21 − λ20

2

)
+ c5β0

(
λ1 − λ0

)
= α0, (19)

y(λ0) + β0

∫ λ1

λ0

y(x)dx = α1 �⇒
RM∑
i=1

ai
[
β0

(
ρi,6(λ1) − ρi,6(λ0)

) + ρi,5(λ0)
]

+ c1
[
β0

(λ51 − λ50

120

) + λ40

24

] + c2
[
β0

(λ41 − λ40

24

)
+ λ30

6

] + c3
[
β0

(λ31 − λ30

6

)
+ λ20

2

]

+ c4
[
β0

(λ21 − λ20

2

)
+ λ0

] + c5
[
β0

(
λ1 − λ0

)
+ 1

] = α1, (20)

y(λ1) + β0

∫ λ1

λ0

y(x)dx = α2 �⇒
RM∑
i=1

ai
[
β0

(
ρi,6(λ1) − ρi,6(λ0)

) + ρi,5(λ1)
]

+ c1
[
β0

(λ51 − λ50

120

) + λ41

24

] + c2
[
β0

(λ41 − λ40

24

)
+ λ31

6

] + c3
[
β0

(λ31 − λ30

6

)
+ λ21

2

]
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+ c4
[
β0

(λ21 − λ20

2

)
+ λ1

] + c5
[
β0

(
λ1 − λ0

)
+ 1

] = α2. (21)

y′(λ0) + β0

∫ λ1

λ0

y(x)dx = α3 �⇒
RM∑
i=1

ai
[
β0

(
ρi,6(λ1) − ρi,6(λ0)

) + ρi,4(λ0)
]

+ c1
[
β0

(λ51 − λ50

120

) + λ30

6

] + c2
[
β0

(λ41 − λ40

24

)
+ λ20

2

] + c3
[
β0

(λ31 − λ30

6

)
+ λ0

]

+ c4
[
β0

(λ21 − λ20

2

)
+ 1

] + c5
[
β0

(
λ1 − λ0

)] = α3, (22)

y′(λ1) + β0

∫ λ1

λ0

y(x)dx = α4 �⇒
RM∑
i=1

ai
[
β0

(
ρi,6(λ1) − ρi,6(λ0)

) + ρi,4(λ1)
]

+ c1
[
β0

(λ51 − λ50

120

) + λ31

6

] + c2
[
β0

(λ41 − λ40

24

)
+ λ21

2

] + c3
[
β0

(λ31 − λ30

6

)
+ λ1

]

+ c4
[
β0

(λ21 − λ20

2

)
+ 1

] + c5
[
β0

(
λ1 − λ0

)] = α4. (23)

In the six step, combining the equations of step four and five, the following system
will be obtained

JU = W, (24)

where U is unknown vectors containing as and cs and J contains the Haar functions
andW is the right side known values. In the last step, solve (24) and then putting the
calculated values of Haar coefficient and integration constant in Eq. (12) the required
solution of the given nonlinear ODEs can be achieved.

4 Convergence analysis

Convergence rate of the proposed CAHW is second order.

Theorem 1 Assume that y(p), where p = i, i i, i i i, iv, v, vi , exist and show bounded
in [λ0, λ1]. For any RM, if yE and yRM are the representations of exact and Haar

wavelet based solution, then ‖yE − yRM ‖∞ ≤ O( 1
RM

)2 as RM → ∞.

Proof See in [41]. �

4.1 Stability

Definition 1 Let us suppose,we have theEq. (24) (JU = W), representing a sequence
of equations obtained fromODEs using the numerical technique. Any numerical tech-
nique is said to be stable if J −1 is bounded [61]:

‖J −1‖ ≤ Co,
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Table 1 The condition number
of CAHW method at various
values of Dp

Dp Cases Test Problem 1 Test Problem 3
(linrear problem) (nonlinear problem)

3 Case 1 7.6003e+02 1.2311e+03

Case 2 1.2455e+03 1.3206e+03

Case 3 8.3238e+03 1.2847e+04

4 Case 1 1.0602e+03 1.7285e+03

Case 2 1.6929e+03 1.8270e+03

Case 3 1.1040e+04 1.7600e+0

5 Case 1 1.4893e+03 2.4357e+03

Case 2 2.3484e+03 2.5550e+03

Case 3 1.5122e+04 2.4486e+04

where Co is some constant.

To analyze the stability of the CAHW, we have followed the definition 1 and find the
least values of eigenvalues of J that reflects the spectral radius magnitudes of J −1,
which are shown in Figs. 3, 5, 7, 9, 11, 13, 15 and 17. Moreover, with an increase in
resolution RM as observed in the mentioned figures, the 2-norm of J −1 for various
cases does not rise rapidly. Therefore, the method satisfies the stability condition
presented in Definition 1 and hence, CAHW is stable.

Another way to check the stability is the invertibility of amatrixJ . The invertibility
of a matrix J is crucial in solving differential equations using numerical techniques,
especially the (24). It refers to the property of a square matrix, whether an inverse
exists or not. In practical terms, the invertibility of J ensures a unique solution to
the system of equations. If J is not invertible (i.e., singular), it suggests that the
system is either underdetermined or the equations are linearly dependent, resulting
in non-unique or inconsistent solutions. To assess this, the determinants of J were
calculated in Table 1 for Case 1, Case 2, and Case 3 at different Dp, observing values
that are non-zero. Ensuring the invertibility of matrices derived from the discretization
of differential equations is vital for the stability and accuracy of numerical methods.
Thus, this crucial aspect of maintaining the robustness of the solution using CAHW
is processed and also preventing computational errors.

5 Results with discussion

We have implemented the CAHW method to solve linear and nonlinear ODEs. The
numerical computations have been carried out using the “MATLAB R2015b” soft-
ware. The results have been obtained on a Toshiba Laptop equipped with an Intel(R)
Celeron(R) B830 CPU running at 1.80 GHz and 2 GB of RAM. In order to observe
the correctness and reliability of the obtained results, the L∞ error has been utilized
which is defined as:

L∞(y) = max ‖yE − yRm‖.
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To check the applicability of the CAHW, the rate of convergence (CR) of CAHW is
an important factor, which is define as:

CR =
log

(
L∞

(
Rm
2

))
− log(L∞(Rm))

log(2)
.

Example 1 Considering the nonhomogeneous fifth-order ODE having constant coef-
ficient, which is given as:

y(v) − y = −15ex − 10xex . (25)

The exact solution is provided in [5]:

y(x) = (x − x2)ex . (26)

The following three different forms of boundary conditions are studied with (25) to
get the particular solutions.

Case 1: Simple boundary conditions:

[y(0) y(1) y′(0) y′(1) y′′(0)] = [0 0 1 − e 0]. (27)

Case 2: Two-points boundary conditions:

y′(0) + y(0) = 1, y′′(0) + y(0) = 0, y(0) + y(1) = 0,

y′(1) + y(0) = −e, y′(0) + y′′(0) = 1.

Case 3: Two-points integral boundary conditions:

∫ 1

0
y(x)dx + y(0) = ln(4) − 1, y(1) +

∫ 1

0
y(x)dx = ln(4) + ln(2) − 1,

∫ 1

0
y(x)dx + y′(0) = ln(4), y′′(0) +

∫ 1

0
y(x)dx = ln(4) − 2,

∫ 1

0
y(x)dx = ln(4) − 1.

Various methodologies, such as the polynomial sextic spline method(PSSM) [62],
sixth-degree B-spline method(SB-SM) [63], quartic spline method(QSM) [64], non-
polynomial sextic spline method(NSSM) [6], sextic-spline method(S-SM) [65],
non-polynomial spline method(NSM) [66] and cubic B-spline method(CB-SM) [5]
have been applied to tackle Test Problem 1. The comparative results of CAHW
with other methods are documented in Table 2, where the CAHW accuracy is bet-
ter than the reported methods even at less amount of grid points n (but for CAHW
n = RM = 2Dp+1). The largest values of absolute errors for various cases are metic-
ulously documented in Table 3. A visual representation of Case 1 of Test Problem 1
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Table 2 Comparison of L∞ error of various methods with CAHW for Case 1 of Test Problem 1

Methods n L∞ n L∞ n L∞

CAHW 8 1.16E−5 16 3.00E−6 32 7.57E−7

CB-SM [5] 10 1.84E−4 20 4.54E−5 40 1.14E−5

QSM [64] 10 3.60E−3 20 5.55E−4 40 7.66E−5

SB-SM [63] 10 0.15 20 0.07 40 0.02

S-SM [65] 10 2.25E−4 20 1.33E−5 40 5.28E−7

PSSM [62] 10 2.76E−3 20 2.45E−4 40 2.01E−5

NSSM [6] 10 3.75E−5 20 6.20E−6 40 8.87E−7

NSM [66] 10 1.28E−4 20 2.79E−5 40 9.39E−6

Fig. 2 The numerical and exact solution comparison along with absolute errors for Case 1 at low and high
resolutions ( Test Problem 1)

is displayed in Fig. 2 using different values of Dp, where comparisons between the
exact and numerical solutions are performed as well. Results for Case 2 and Case 3
of this problem are also displayed in Fig. 4 using Dp = 6. The stability of CAHW
is evident in Fig. 3 for Case 1 and Fig. 5 for Cases 2 and 3. Analyzing the tables and
figures, provides insights into the performance of the proposed CAHW, and the pro-
posed method outcomes are promising, showcasing its better effectiveness over the
other mentioned methodologies.

Example 2 Considering the important nonhomogeneousfifth-orderODEwith variable
coefficients

xy(v) + xy = 5(x − 1) sin(x) + 5(x − x2 − 5) cos(x). (28)

The exact solution is reported in [67]:

y = 5(1 − x) cos(x). (29)

The Eq. (28) is coupled with the following three various form of conditions:
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Fig. 3 The spectral radius and the 2-norm of J−1 for Test Problem 1, Case 1

Table 3 The L∞ error of Test
Problem 1 for the given
information in Case 2 and Case
3 at various Dp

Dp n = RM Case 2 Case 3

2 8 1.1612E−5 4.6212E−6

3 16 3.0084E−6 1.4013E−6

4 32 7.5711E−7 3.6243E−7

5 64 1.8936E−7 9.1091E−8

6 128 4.7369E−8 2.2772E−8

7 256 1.1843E−8 5.6957E−9

8 512 2.9609E−9 1.4240E−9

9 1024 7.4025E−10 3.5600E−10

Fig. 4 Comparison of the numerical and exact solutions along with absolute errors of Test Problem 1 for
different Cases at Dp = 6
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Fig. 5 The 2-norm and spectral radius of J−1 for Case 2 and Case 3 (Test Problem 1)

Table 4 Comparison of different methods with CAHW in terms of L∞ error of Case 1, Test Problem 2

CAHW CB − SM [5] QSM [67]
Dp L∞ n L∞ n L∞

1(n = 4) 2.4788E−5 5 1.156E−4 5 1.255E−5

2(n = 8) 6.0430E−6 10 2.897E−5 10 7.720E−7

3(n = 16) 1.5191E−6 20 7.256E−6 20 4.806E−8

4(n = 32) 3.7856E−7 40 1.816E−6 40 3.013E−9

5(n = 64) 9.4748E−8 80 4.557E−7 80 1.207E−10

Case 1: Simple boundary conditions:

[y(0) y′(0) y′′(0) y′(1) y(1)] = [5 − 5 − 5 − 5 cos(1) 0]. (30)

Case 2: Two-points boundary conditions:

y(0) + y′(0) = 0, y′′(0) + y(0) = 0, y(1) + y(0) = 5,

y(0) + y′(1) = 5 − 5 cos(1), y′′(0) + y′(0) = −10.
(31)

Case 3: Two-points integral boundary conditions:

y(0) +
∫ 1

0
y(x)dx = 10 − 5 cos(1),

∫ 1

0
y(x)dx = 5 − 5 cos(1),

∫ 1

0
y(x)dx + y(1) = 5 − 5 cos(1),

y′(0) +
∫ 1

0
y(x)dx = −5 cos(1),

∫ 1

0
y(x)dx + y′′(0) = −5 cos(1).

(32)
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Fig. 6 Test Problem 2, the exact and approximate solution for Case 1 at different values of Dp along with
absolute errors

Table 5 The L∞ error of Test
Problem 2 for different Cases

Dp Case 2 Case 3

2 6.0430E−6 2.6680E−6

3 1.5190E−6 7.4630E−7

4 3.7855E−7 1.9258E−7

5 9.4747E−8 4.8511E−8

6 2.3691E−8 1.2147E−8

7 5.9227E−9 3.0377E−9

8 1.4806E−9 7.5946E−10

9 3.7016E−10 1.8985E−10

The performance of the CAHW technique has been assessed through a comparative
analysis in Table 4 with the cubic B-spline method(CB-SM) [5] and the quartic spline
method(QSM) [67]. The collocation points of CAHWdepend on RM , where RM is the
resolution (2Dp+1 number of collocation points (n)). We see that the CAHW results
are better than the CB-SM and are comparable with QSM.Here, it should be noted that
the n of CAHW is smaller than the other methods. In Fig. 6, the solutions at low and
high resolutions are presented, along with the absolute errors for Case 1. The behavior
of the L∞ error against the resolution (Dp) is shown in Table 5 and the error decreases
as Dp increases, for both Case 1 and Case 2. The solutions with absolute errors are
also displayed in Fig. 8 at Dp = 6 for both Case 2 and Case 3. The stability of CAHW
can be seen in Fig. 7 for Case 1 and Fig. 9 for Case 2 and Case 3. The experimental
rate of convergence, CPU time, and L∞ errors of Test Problem 1 and Test Problem
2 are presented in Table 6. These results conclude that the current CAHW performs
effectively for the numerical solution of different linear problems.

Example 3 Considering the fith-order nonlinear homogeneous differential equation of
the following form:

y(v) − e−x y2 = 0, (33)

123



M. Ahsan et al.

Fig. 7 The spectral radius of J−1 and the 2-norm of J−1 Test Problem 2 (Case 1)

Fig. 8 The exact and approximate solution for Test Problem 2 along with absolute errors at resolution
Dp = 6

Fig. 9 The 2-norm of J−1 and spectral radius of J−1 for Case 1 and Case 2 of Test Problem 2
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Table 6 The L∞ error and experimental rate of convergence for Case 1

Dp Test Problem 1 Test Problem 2

L∞ CR CPU T ime L∞ CR CPU T ime

1 4.6102E−5 − 0.009s 2.4788E−5 − 0.321s

2 1.1612E−5 1.9892 0.134s 6.0430E−6 2.0363 0.016s

3 3.0085E−6 1.9485 0.033s 1.5191E−6 1.9920 0.151s

4 7.5712E−7 1.9905 0.219s 3.7856E−7 2.0046 0.101s

where the exact solution to (33) is

y = ex . (34)

With Eq. (33), we have considered three different types of given information:

Case 1: Simple boundary conditions:

[y(0) y′(0) y′′(0) y′(1) y(1)] = [1 1 1 e e]. (35)

Case 2: Two-points boundary conditions:

y′(0) + y(0) = 2, y(0) + y′(0) = 2, y(1) + y(0) = 1 + e,

y(0) + y′(1) = 1 + e, y′′(0) + y′(0) = 2.
(36)

Case 3: Two-points integral boundary conditions:

∫ 1

0
y(x)dx = e − 1, y(0) +

∫ 1

0
y(x)dx = e,

∫ 1

0
y(x)dx + y′(0) = e,

y′′(0) +
∫ 1

0
y(x)dx = e,

∫ 1

0
y(x)dx + y(1) = 2e − 1.

(37)

The proposed method has been compared with the Sixth-order Degree Spline
Method(S-OSM) [63] and the Variational Iteration Method(VIM) [68] and is given in
Table 7 for various values of x ∈ [0, 1]. Various cases of the given information are
discussed in Table 8 using different values of Dp, and as the value of Dp increases,
the maximum absolute error decreases. Results for Case 1 are visually presented in
Fig. 10, while other cases are illustrated in Fig. 12. The satisfaction of the stability
condition can be seen in Figs. 11 and 13.

Example 4 Consider a nonhomogeneous fifth-order nonlinear differential equation of
the following form:

y(v) + 24e−5y = 48

(1 + x)2
. (38)
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Table 8 The L∞ error of Test
Problem 3 for Case 2 and Case 3

Dp Case 2 Case 3

2 2.7781E−7 1.1049E−7

3 7.2689E−8 3.4116E−8

4 1.8325E−8 8.8709E−9

5 4.5864E−9 2.2335E−9

6 1.1474E−9 5.5876E−10

7 2.8691E−10 1.3973E−10

8 7.1731E−11 3.4926E−11

9 1.7934E−11 8.7330E−12

Fig. 10 Comparison of the numerical and exact solution of Test Problem 3 for Case 1 using Dp = 5 and
Dp = 7, along with absolute error

Fig. 11 Spectral radius and the 2-norm of J−1 of Test Problem 3 (Case 1)
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Fig. 12 Comparison of the numerical and exact solution of Test Problem 3 for Case 2 and Case 3 using
Dp = 6, along with absolute errors

Fig. 13 Spectral radius of J−1 and the 2-norm of J−1 for Case 1 and Case 2 of Test Problem 3

Fig. 14 Comparison of the numerical and exact solution of Test Problem 4 for Case 1 along with absolute
errors
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Table 9 Comparison of absolute errors of Test Problem 4 for Case 1

x CAHW SSM [63]

Dp = 3 (n = 16) Dp = 4 (n = 32) Dp = 5 (n = 64) n = 29

0.0 0 0 0 0.000

0.1 1.56E−7 3.75E−8 9.25E−9 0.000

0.2 8.73E−7 2.12E−7 5.27E−8 0.015

0.3 2.03E−6 4.98E−7 1.24E−7 0.029

0.4 3.24E−6 7.96E−7 1.98E−7 0.028

0.5 4.05E−6 9.97E−7 2.48E−7 0.026

0.6 4.15E−6 1.02E−6 2.55E−7 0.024

0.7 3.46E−6 8.54E−7 2.12E−7 0.026

0.8 2.15E−6 5.31E−7 1.32E−7 0.033

0.9 7.20E−7 1.78E−7 4.44E−8 0.046

1.0 7.77E−16 5.55E−16 0 0.000

Fig. 15 Spectral radius of J−1 and the 2-norm of J−1 for Case 1 of Test Problem 4

Table 10 The L∞ error of Test
Problem 4 for Case 2 and Case 3

Dp Case 2 Case 3

2 1.7626E−5 9.4181E−6

3 4.1740E−6 2.4105E−6

4 1.0361E−6 6.0099E−7

5 2.5846E−7 1.4966E−7

6 6.4575E−8 3.7378E−8

7 1.6140E−8 9.3425E−9

8 4.0349E−9 2.3354E−9

9 1.0087E−9 5.8386E−10
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Fig. 16 Comparison of the numerical and exact solution of Test Problem 4 for Case 2 and Case 3 along
with absolute errors at Dp = 6

Fig. 17 The 2-norm and spectral radius of J−1 for Case 1 and Case 2 of Test Problem 4

The exact solution is

y(x) = ln(1 + x). (39)

For this nonlinear problem, we have consider the following three different types of
information.

Case 1: Simple boundary conditions:

[y(0) y(1) y′(1) y′(0) y′′(0)] = [0 ln(2) 0.5 1 − 1]. (40)

Case 2: Two-points boundary conditions:

y(0) + y(1) = ln(2), y(0) + y′(0) = 1, y′(1) + y(0) = 0.5, (41)
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Table 11 The exact, numerical and maximum absolute errors for Case 1 at Dp = 4

x Test Problem 3 Test Problem 4

yE yRm Error yE yRm Error

0.0 1 1 0 0 0 0

0.1 1.1052 1.1052 9.8663E−11 9.5310 9.5310 9.2552E−9

0.2 1.2214 1.2214 6.3488E−10 1.8232 1.8232 5.2716E−8

0.3 1.3499 1.3499 1.6685E−9 2.6236 2.6236 1.2403E−7

0.4 1.4918 1.4918 2.9549E−9 3.3647 3.3647 1.9826E−7

0.5 1.6487 1.6487 4.0762E−9 4.0547 4.0547 2.4846E−7

0.6 1.8221 1.8221 4.5853E−9 4.7000 4.7000 2.5533E−7

0.7 2.0138 2.0138 4.1668E−9 5.3063 5.3063 2.1297E−7

0.8 2.2255 2.2255 2.8128E−9 5.8779 5.8779 1.3251E−7

0.9 2.4596 2.4596 1.0190E−9 6.4185 6.4185 4.4402E−8

1.0 2.7183 2.7183 0 6.9315 6.9315 0

Table 12 The L∞ error and experimental rate of convergence for Case 1

Dp Test Problem 3 Test Problem 4

L∞ CR CPU T ime L∞ CR CPU T ime

1 1.0564E−6 − 0.130s 7.2117E−5 − 0.127s

2 2.7781E−7 1.9270 0.217s 1.7626E−5 2.0326 0.134s

3 7.2690E−8 1.9343 0.149s 4.1741E−6 2.0782 0.151s

4 1.8326E−8 1.9879 0.218s 1.0361E−6 2.0103 0.216s

y(0) + y′′(0) = −1, y′(0) + y(1) = ln(2) + 1.

Case 3: Two-points integral boundary conditions:

∫ 1

0
y(x)dx = ln(4) − 1,

∫ 1

0
y(x)dx + y(0) = ln(4) − 1,

y′(0) +
∫ 1

0
y(x)dx = ln(4),

∫ 1

0
y(x)dx + y′′(0) = ln(4) − 2, y(1) +

∫ 1

0
y(x)dx = ln(4) + ln(2) − 1.

(42)

Following the same quasilinearized scheme given in [69] for (4), we have

(y(v)(x))z+1 − 120e(−5(y)z)(y)z+1 = 48

(1 + x)2
− 120(y)ze−5(y)z

−24e−5(y)z for z = 0, 1, 2, . . . (43)
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Incorporating the Haar wavelet representations defined in (7)–(12) into (43) and then
following the same procedure discussed in Sect. 5, the solutions can be obtained.
The proposed method has been systematically compared with the Spectral Symmetry
Method (SSM) [63] at different values of Dps in Table 9. Analyzing the table reveals a
decreasing trend in error as the value of Dp increases, implying that higher collocation
points contribute to enhanced accuracy. Specifically, the results for Case 2 and Case
3 at various Dps are presented in Table 10. Remarkably, the CAHW consistently
outperforms the SSM [63]. Figure14 illustrates the exact and approximate solutions
for Case 1 across different Dp values, while the other two cases are depicted in Fig. 16.
The stability behavior of CAHW is shown in Fig. 15 for Case 1 and Fig. 17 for Case
2 and Case 3. In order to check the accuracy, the absolute errors are calculated from
exact and numerical values for Test Problem 3 and Test Problem 4 at RM = 32, as
displayed in Table 11. The comprehensive evaluation continues with the maximum
absolute error, experimental convergence rate, and CPU time for Test Problem 3 and
Test Problem 4 presented in Table 12. These results collectively affirm the efficiency
and convergence capability of the proposed method.

Conclusion

In this investigation, the CAHW method is employed to solve fifth-order linear and
nonlinear differential equations, considering both homogeneous and nonhomogeneous
cases with constant and variable coefficients. The advantage of the current CAHW is
its applicability to various types of given information called boundary conditions,
such as simple, two points, and integral conditions. To make the method easy and
efficient in the case of nonlinear differential equations, a method known as quasilin-
earization is adopted. The results of the proposed CAHW exhibit numerical stability
as well. The CAHW stands out for its efficiency, delivering solutions that are both
acceptable and accurate. Additionally, the CAHW proves to be a straightforward and
precise numerical approach applicable to both linear and nonlinear ODEs. Its versa-
tility, which extends to solving PDEs with various boundary conditions, will make it
a more adaptable choice compared to other numerical methods.

Acknowledgements The second author would like to acknowledge the financial supports from the research
grant JCYJ20210324121402008 by Shenzhen Science and Technology Innovation Commission. The last
author would like to acknowledge theDeanship of Graduate Studies and Scientific Research, Taif University
for funding this work.

Data availibility All the data related to this research are presented within the paper.

Declarations

Conflict of interest There is not any conflict of interest among the authors to published this research.

123



A numerical solver based on Haar wavelet to…

References

1. Davies, A., Karageorghis, A., Phillips, T.: Spectral Galerkin methods for the primary two-point bound-
ary value problem in modelling viscoelastic flows. Int. J. Numer. Meth. Eng. 26(3), 647–662 (1988)

2. Wazwaz, A.-M.: The numerical solution of fifth-order boundary value problems by the decomposition
method. J. Comput. Appl. Math. 136(1–2), 259–270 (2001)

3. Viswanadham, K.K., Reddy, S.: Numerical solution of fifth order boundary value problems by Petrov
Galerkin method with cubic B-splines as basis functions and quintic B-splines as weight functions.
IJCSEE 3(1), 87–91 (2015)

4. Noor, M.A., Mohyud-Din, S.T., Waheed, A.: Variation of parameters method for solving fifth-order
boundary value problems. Appl. Math. Inf. Sci 2(2), 135–141 (2008)

5. Lang, F.-G., Xu, X.-P.: A new cubic B-spline method for linear fifth order boundary value problems.
J. Appl. Math. Comput. 36, 101–116 (2011)

6. Khan, M.A., Tirmizi, I.A., Twizell, E., Ashraf, S., et al.: A class of methods based on non-polynomial
sextic spline functions for the solution of a special fifth-order boundary-value problems. J. Math. Anal.
Appl. 321(2), 651–660 (2006)

7. Zhu, C., Al-Dossari, M., Rezapour, S., Alsallami, S., Gunay, B.: Bifurcations, chaotic behavior, and
optical solutions for the complex Ginzburg–Landau equation. Results Phys. 59, 107601 (2024)

8. Zhu, C., Al-Dossari, M., Rezapour, S., Gunay, B.: On the exact soliton solutions and different wave
structures to the (2+ 1) dimensional Chaffee–Infante equation. Results Phys. 107431 (2024)

9. Zhu, C., Al-Dossari, M., Rezapour, S., Shateyi, S., Gunay, B.: Analytical optical solutions to the
nonlinear Zakharov system via logarithmic transformation. Results Phys. 56, 107298 (2024)

10. Kai, Y., Chen, S., Zhang,K., Yin, Z.: Exact solutions and dynamic properties of a nonlinear fourth-order
time-fractional partial differential equation. Waves Random Compl. Media 1–12 (2022)

11. Kai, Y., Ji, J., Yin, Z.: Study of the generalization of regularized long-wave equation. Nonlinear Dyn.
107(3), 2745–2752 (2022)

12. Mechee, M.S., Wali, H.M., Mussa, K.B.: Developed RKM method for solving ninth-order ordinary
differential equations with applications. J. Phys. Conf. Ser. 1664, 012102 (2020)

13. Khalid, N., Abbas, M., Iqbal, M.K., Singh, J., Ismail, A.I.M.: A computational approach for solving
time fractional differential equation via spline functions. Alex. Eng. J. 59(5), 3061–3078 (2020)

14. Abbas, M., Majid, A.A., Ismail, A.I.M., Rashid, A.: The application of cubic trigonometric b-spline
to the numerical solution of the hyperbolic problems. Appl. Math. Comput. 239, 74–88 (2014)

15. Khalid, N., Abbas, M., Iqbal, M.K.: Non-polynomial quintic spline for solving fourth-order fractional
boundary value problems involving product terms. Appl. Math. Comput. 349, 393–407 (2019)

16. Majeed, A., Kamran, M., Abbas, M., Misro, M.Y.B.: An efficient numerical scheme for the simulation
of time-fractional nonhomogeneous Benjamin-Bona-Mahony-Burger model. Phys. Scr. 96(8), 084002
(2021)

17. Iqbal, A., Abd Hamid, N.N., Ismail, A.I.M., Abbas, M.: Galerkin approximation with quintic b-spline
as basis and weight functions for solving second order coupled nonlinear schrödinger equations. Math.
Comput. Simul. 187, 1–16 (2021)

18. Nazir, T., Abbas,M., Iqbal,M.K.: New cubic b-spline approximation technique for numerical solutions
of coupled viscous burgers equations. Eng. Comput. 38(1), 83–106 (2021)

19. Nazir, T., Abbas, M., Ismail, A.I.M., Majid, A.A., Rashid, A.: The numerical solution of advection-
diffusion problems using new cubic trigonometric b-splines approach. Appl. Math. Model. 40(7–8),
4586–4611 (2016)

20. Abbas, M.: A finite difference scheme based on cubic trigonometric b-splines for time fractional
diffusion-wave equation. arXiv preprint arXiv:1705.08342 (2017)

21. Iqbal, M.K., Abbas, M., Nazir, T., Ali, N.: Application of new quintic polynomial b-spline approxi-
mation for numerical investigation of Kuramoto-Sivashinsky equation. Adv. Differ. Equ. 2020, 1–21
(2020)

22. Rasedee, A.F.N., Sathar, M.H.A., Hamzah, S.R., Ishak, N., Wong, T.J., Koo, L.F., Ibrahim, S.N.I.:
Two-point block variable order step sizemultistepmethod for solving higher order ordinary differential
equations directly. J. King Saud Univ.-Sci. 33(3), 101376 (2021)
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