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Abstract
In this paper, we study linear complementary pairs (LCP) of codes over finite non-
commutative local rings. We further provide a necessary and sufficient condition for
a pair of codes (C, D) to be LCP of codes over finite non-commutative Frobenius
rings. The minimum distances d(C) and d(D⊥) are defined as the security parameter
for an LCP of codes (C, D). It was recently demonstrated that if C and D are both
2-sided LCP of group codes over a finite commutative Frobenius rings, D⊥ and C are
permutation equivalent in Liu and Liu (Des Codes Cryptogr 91:695–708, 2023). As a
result, the security parameter for a 2-sided group LCP (C, D) of codes is simply d(C).
Towards this, we deliver an elementary proof of the fact that for a linear complementary
pair of codes (C, D), where C and D are linear codes over finite non-commutative
Frobenius rings, under certain conditions, the dual code D⊥ is equivalent to C .

Keywords Finite non-commutative Frobenius ring · Complement submodule ·
Essential submodule · Injective hull

Mathematics Subject Classification 51E22 · 94B05

1 Introduction

Linear complementary pairs (LCP) of codes are extensively explored because of their
unique algebraic structure andwide application in cryptography. This concept was first

B Xiusheng Liu
lxs6682@163.com

Sanjit Bhowmick
sanjitbhowmick@niser.ac.in

1 School of Mathematical Sciences, National Institute of Science Education and Research, An
OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050, India

2 School of Science and Technology, College of Arts and Science of Hubei Normal University,
Huangshi 435109, Hubei, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-024-02161-w&domain=pdf


S. Bhowmick, X. Liu

introduced by Bhasin et al. in [1]. LCP of codes over a finite field is further studied in
[5] and [6]. Hu et al. developed these codes over finite chain rings in [10]. Recently,
Liu et al. [16] extended the same results over finite commutative Frobenius rings. In
particular, if D = C⊥ over finite commutative Frobenius rings, LCP is reduced to
LCD, studied in [2]. This paper will develop an algebraic structure of LCP of codes
over finite non-commutative Frobenius rings.

On the other hand, Carlet et al. [6] showed that if the pair (C, D) is LCP, where C
and D are both cyclic codes over a finite field, then C and D⊥ are equivalent. They
further showed that if the length of the codes is relatively prime to the characteristic
of the finite field and C and D are 2D cyclic codes, then C and D⊥ are equivalent.
Later, Guneri et al. [9] extended the same results for linear codes C and D, which are
mD cyclic codes, where m ∈ N.

Without any restriction on the order of the group with a characteristic of a finite
field, in [4], Borello et al. established that if C and D both are group codes and
the pair (C, D) is an LCP of group codes, then C is permutation equivalent to D⊥.
Further, Guneri et al. [8] extended those results for LCP of group codes over finite
commutative chain rings. Using the samemethod of [8], Liu et al. established the same
results for LCP of group codes over finite commutative Frobenius rings in [16]. They
also established that C and D⊥ are equivalent if the pair (C, D) are an LCP of group
codes. In this paper, we will show that C and D⊥ are equivalent if the pair (C, D)

are an LCP of codes over a finite non-commutative Frobenius ring under a certain
condition. The same technique will be held for LCP of codes over finite fields and an
LCP of codes over finite commutative Frobenius rings

The paper is organized as follows. In Sect. 2,we recall backgroundmaterials on non-
commutative Frobenius rings and linear codes over a finite non-commutative ring. In
Sect. 3, we study LCP codes over finite non-commutative local rings. Furthermore, we
develop LCP codes over a finite non-commutative Frobenius ring in Sect. 4. Finally,
we obtain if C and D are two linear codes over finite non-commutative Frobenius
rings, then C is equivalent to D⊥ under certain conditions in Sect. 5.

2 Some preliminaries

In this section, we will state some basic definitions and results that are needed to
derive our main results. Throughout this paper, we will assume all rings to be non-
commutative unless mentioned otherwise. Now let R denote a finite ring with unity
1R . A right R-module A is said to be free if it is isomorphic to the right R-module
Rt for some positive integer t . A right R-module P is said to be projective if there
exists another right R-module Q such that P ⊕ Q is a free right R-module. Further, a
right R-module I is said to be injective if for any monomorphism g : A → B of right
R-modules and any R-module homomorphism h : A → I , there exists an R-module
homomorphism h′ : B → I such that h = h′ ◦ g. Now, the following results are
well-known.
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Proposition 2.1 [7, Prop. 36] A right R-module I is injective if and only if for any
right ideal, P of R, any R-module homomorphism f : P → I can be extended to the
R-module homomorphism f ′ : R → I .

Proposition 2.2 [14, Prop. 2.5 and 3.4] Let P =
n⊕

i=1
Pi be a direct sum of right

R-modules P1, P2, · · · , Pn . The following hold.

(a) The right R-module P is projective if and only if each Pi is a projective right
R-module for 1 ≤ i ≤ n.

(b) The right R-module P is injective if and only if each Pi is an injective right
R-module for 1 ≤ i ≤ n.

The ring R is said to be right (resp. left) self-injective if it is injective over itself
as a right (resp. left) R-module. Further, the finite ring R is said to be Frobenius if it
is right and left self-injective. Equivalently, the finite ring R is said to be Frobenius if

the right R-module
R

J (R)
is isomorphic to Soc(R) as a right R-module, where J(R)

denotes the Jacobson radical of R (i.e., the intersection of all maximal ideals of R)
and Soc(R) denotes the Socle of R (i.e., the sum of all irreducible ideals of R). For
more details, see [14]. Note that J(R) is a 2-sided ideal of R.

Proposition 2.3 [14, Th. 15.9] The following two statements are equivalent:

(a) The ring R is Frobenius.
(b) Every right ideal of R is a projective right R-module if and only if it is an injective

right R-module.

A non-empty subset C of Rn is called a linear code of length n over R if it is a right
R-submodule of Rn . We define the inner product on Rn, as follows

[x, y] =
n∑

i=1

xi yi ,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn . For a linear codeC (right
R-submodule of Rn), the orthogonal set of C is defined by

C⊥ = {v ∈ Rn | [v, c] = 0 ∀ c ∈ C}.

Note that ifC be a linear code (right R-submodule of Rn) thenC⊥ is a left R-submodule
of Rn . It is well known that |C ||C⊥| = |Rn| (see [20]).

For a right R-submodule C of Rn, the left annihilator of C is defined by

Annl(C) = {x ∈ Rn | [x, c] = 0 ∀ c ∈ C}.

Note that Annl(C) is a left R-submodule of Rn . The following proposition, we found
in [14, 20].
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Proposition 2.4 Let C be a right R-submodule of Rn. Assume the left annihilator of
C is Annl(C). Then |C ||Annl(C)| = |Rn|.
Let M be a right R-submodule of Rn and I be a 2-sided ideal of R. Recall that

MI = {
∑

finite sum

mr | m ∈ M, r ∈ I }.

We give a proposition as follows.

Proposition 2.5 [11, Th. 13.11] Let M be a finitely generated right R-module. If
MJ(R) = M, then M = 0.

We deduced the following proposition using Proposition 2.5 and Theorem V.5 in [18].

Proposition 2.6 Let R be a local ∗ ring. Let t1, t2, . . . , tk ∈ M, where M is a right
R-module.

(a) t1, t2, . . . , tk generates M as a right R-module if and only if t̄1, t̄2, . . . , t̄k gen-
erate M/MJ(R) as an Fq -vector space.

(b) t1, t2, . . . , tk forms a minimal set of generators M as a right R-module if and
only if t̄1, t̄2, . . . , t̄k generate M/MJ(R) as an Fq-vector space.

∗ Reader can see Sect. 3 about local rings.

3 Characterization of LCP of codes over a finite non-commutative
Frobenius local ring

In this section, let R be a finite non-commutative Frobenius local ring. According
to Theorem V .1 in[18], R is a local ring if and only if the non-units of R form an
additive Abelian group. We denote the Jacobson radical of R is J(R) consists of all
non-unit elements of R, as R is an Artinian local ring. According to Wedderburn’s
little theorem, every skew field is commutative. Hence, we will denote Fq = R/J(R)

as the residue field of R. There is a natural surjective homomorphism from R onto
Fq , i.e., π : R → R/J(R), r �→ r + J(R), for any r in R. This π can be extended
naturally to a homomorphism from Rn to F

n
q . It is clear that this map is a surjective

ring homomorphism. It is obvious that π maps a linear code over R to linear code
over Fq . We deployed the preliminaries and existing results in Sect. 2. Let us note that
linear code over R is a right R-submodule of Rn . On the other hand, since R is a finite
ring, then there exists t ∈ N such that J(R)t+1 = J(R)t . By the Proposition 2.5, we
obtain that J(R)t = {0}. This implies that J(R) is nilpotent with nilpotency index t
(i.e., J(R)t = {0} but J(R)t−1 �= {0}.) Note that J(R) is a both sided ideal of R and
satisfying the following condition

0 = J(R)t ⊆ J(R)t−1 ⊆ · · · ⊆ J(R) ⊆ R.

Using this relation, we make the following lemma.
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Lemma 3.1 Let R be a finite non-commutative local ring with Jacobson radical J(R).

Then there exists m ∈ J(R) such that αm = 0, for all α ∈ J(R).

Proof By the previous discussion, we obtain that J(R)t = 0 but J(R)t−1 �= 0 and
J(R)t−1 ⊆ J(R). Thus there exists m( �= 0) ∈ J(R)t−1 such that αm = 0, for all
α ∈ J(R). ��
Definition 3.2 For any positive integer n, an n × n matrix A is called invertible over
R if π(A) is invertible over Fq , where π(A) = (π(ai j )) for all 1 ≤ i, j ≤ n.

Lemma 3.3 Let C and D be two linear codes over R. Then C ∩ D = {0} if and only
if π(C) ∩ π(D) = {0}.
Proof Let us suppose that π(C) ∩ π(D) = {0}. We shall prove that C ∩ D = {0}. Let
x ∈ C ∩ D, which implies x ∈ C and x ∈ D, this force that π(x) ∈ π(C) ∩ π(D).

By the hypothesis, π(x) = 0, which means x ∈ (C ∩ D)J(R). Hence, C ∩ D =
(C ∩ D)J(R). Since C ∩ D is finitely generated right R-module, then by Proposition
2.5, we obtain that C ∩ D = {0}.

For the reverse part, let us assume that C ∩ D = {0}. Let x ∈ π(C) ∩ π(D),

which means x ∈ π(C) and x ∈ π(D). then there exists c ∈ C and d ∈ D such that
x = π(c) = π(d). This follows that c − d ∈ RnJ(R). Now by the Lemma 3.1, there
exist non-zero m ∈ J(R) such that (c− d)m = 0, which implies cm = dm ∈ C ∩ D.

By hypothesis cm = dm = 0. Thus, c ∈ RnJ(R). Otherwise, c ∈ Rn \ RnJ(R).

This means that cm( �= 0) ∈ C ∩ D, which contradicts the fact that C ∩ D = {0}.
Therefore, π(C) ∩ π(D) = {0}. ��
Theorem 3.4 Let C and D be two linear codes over R. If the pair (C, D) is LCP. Then
the pair (π(C), π(D)) is LCP.

Proof Since the pair (C, D) is an LCP code. i.e., C + D = Rn and C ∩ D = {0}. By
the Lemma 3.3, we obtain that π(C) ∩ π(D) = {0}. Since, π is surjective, for each
x ∈ F

n
q , there exists a ∈ Rn such that x = π(a).Also, a = c+d, for some c ∈ C and

d ∈ D. Thus x = π(c) + π(d) ∈ π(C) + π(D). Since π(C) + π(D) is a subspace
of Fn

q , then, π(C) + π(D) = F
n
q . Thus, the pair (π(C), π(D)) is an LCP. ��

Towards this, naturally, one question arrives in our mind: What condition of LCP
of codes exists? Now, we will find the answer to our question as follows. Now, we
found a lemma, which is as follows:

Lemma 3.5 [12, Theorem 2] Any projective module over a local ring (not necessarily
commutative) is free right R-module.

Lemma 3.6 Let C and D be two linear codes over R. If the pair (C, D) is an LCP of
codes in Rn, then C and D both are free right R-module.

Proof Since the pair (C, D) forms an LCP of codes, that meansC⊕D = Rn it follows
that C ⊕ D is free right R-module. This implies that C and D both are projective right
R-module. As R is local, then by Lemma 3.5, C and D both are free right R-module.

��
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If we consider C and D to be both free right R-module, the pair (C, D) may or
may not be LCP of codes in general. For this, we illustrate an example as follows

Example 1 Let R be the collection of 2 × 2 matrices, and the element is of the form
as follows. (

a x
0 a

)

,

where a, x ∈ Fq . The Jacobson radical of R consists of matrices of the form

(
0 x
0 0

)

,

where x ∈ Fq . One can check that R/J(R) � Fq under the mapping

(
a x
0 a

)

�→ a.

Hence, R is a non-commutative local ring. Let C and D be two linear codes over R

of length 4. The generator matrices of C and D are G1 =
(
1 0 1 0
0 1 0 1

)

and G1 =
(
1 1 1 1
0 1 1 1

)

, where 1 =
(
1 0
0 1

)

is unit in R. It is easy to see that C + D = Rn but

C ∩ D �= {0} as (1, 1, 1, 1) ∈ C ∩ D. However, C and D are free.

Theorem 3.7 Let C and D be two free linear codes over R. Then the pair (C, D) is
LCP if and only if the pair (π(C), π(D)) is LCP.

Proof From Theorem 3.4, follows that if the pair (C, D) is LCP, then the pair
(π(C), π(D)) is LCP.

For the converse part, let us suppose that the pair (π(C), π(D)) is LCP, that means
π(C) ⊕ π(D) = F

n
q , i.e., π(C) + π(D) = F

n
q and π(C) ∩ π(D) = {0}. Now by the

Lemma 3.3, we obtain that C ∩ D = {0}. Let {π(x1), π(x2), . . . , π(xk)} be a basis
of π(C) and {π(xk+1), π(xk+2), . . . , π(xn)} be a basis of π(D). By Proposition 2.6,
we have {x1, x2, . . . , xk} is a minimal generating set of C and {xk+1, xk+2, . . . , xn} is
a minimal generating set of D. By hypothesis, C and D both are free, so we get that
|C ||D| = |Rn|. Thus, the pair (C, D) is LCP. ��

Note that if C is a linear code over R, with generator matrix G and parity check
matrix H then by Proposition 2.6, we have π(G) and π(H) is a generator and parity
check matrix of π(C), respectively. Now, we made a proposition, which is found in
[3]

Proposition 3.8 [3, Corollary 4] Let C and D are free codes over finite commutative
Frobenius ring R with generator matrices G1, G2 and parity check matrices H1, H2,

respectively, with the condition |C ||D| = |Rn|. Then the following statements are
equivalent

(1) the pair (π(C), π(D)) is an LCP codes in Fn
q ;

(2) π(H2)π(G1)
� is invertible or π(H1)π(G2)

� is invertible;

(3)

(
π(G1)

π(G2)

)

is invertible over Fq ;
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(4)

(
π(H1)

π(H2)

)

is invertible over Fq .

Theorem 3.9 Let C and D be two free linear codes in Rn with generator matricesG1,

G2 and parity check matrix H1, H2 respectively, with the condition |C ||D| = |Rn|.
Then the pair (C, D) is LCP if and only if H2G�

1 or H1G�
2 are invertible.

Proof Suppose the pair (C, D) is an LCP of codes, i.e.,C∩D = {0} andC+D = Rn .

If possible let H2G�
1 is not invertible over R. From Definition 3.2, π(H2G�

1 ) is not
invertible over Fq . Since, π is a ring homomorphism, which implies π(H2G�

1 ) =
π(H2)π(G1)

�. Using the Proposition 3.8, we obtain that (π(C), π(D)) can not be an
LCP of codes. Therefore, by the Theorem 3.7, we get that (C, D) can not be an LCP
of codes, which is a contradiction. Thus, H2G�

1 or H1G�
2 are invertible.

Conversely, let us assume that H2G�
1 or H1G�

2 are invertible. By the Definition
3.2, π(H2G�

1 ) is invertible over Fq . Since, π is a ring homomorphism, which implies
π(H2G�

1 ) = π(H2)π(G1)
�. This implies that (π(C), π(D)) is LCP by using Propo-

sition 3.8. By the Theorem 3.7, we obtain that the pair (C, D) forms an LCP of codes
over R. ��
Theorem 3.10 Let C and D be two free linear codes in Rn with generator matrices
G1,G2 and parity checkmatrixH1,H2 respectively, with the condition |C ||D| = |Rn|.
Then the following are equivalent

(1) the pair (C, D) form LCP;

(2)

(
G1
G2

)

is invertible over R;

(3)

(
H1
H2

)

is invertible over R.

Proof We shall prove this theorem in the following sequence (1) implies (2), (2)
implies (1) and (1) implies (3), (3) implies (1).We only need to show that (1) implies
(2) and vice-versa. The reader can prove another consequence similarly.

For the proof, (1) implies (2), let us suppose that the pair (C, D) forms LCP. If

possible, let us suppose that

(
G1
G2

)

is not invertible over R. From Definition 3.2,

π

(
G1
G2

)

is not invertible over Fq . Since, π is a ring homomorphism, which implies

π

(
G1
G2

)

=
(

π(G1)

π(G2)

)

. Then the matrix

(
π(G1)

π(G2)

)

is not invertible over Fq . Hence

the pair (π(C), π(D)) can not be an LCD, follows from Proposition 3.8. This contra-
dict to the fact the Theorem 3.7.

For the proof of (2) implies (1), let us suppose that

(
G1
G2

)

is invertible over R.From

Definition 3.2,π

(
G1
G2

)

is invertible overFq .Since,π is a ring homomorphism,which

implies π

(
G1
G2

)

=
(

π(G1)

π(G2)

)

. Then the matrix

(
π(G1)

π(G2)

)

is invertible over Fq .

Hence the pair (π(C), π(D)) forms an LCD, follows from Proposition 3.8. Therefore,
by the Theorem 3.7, the pair (C, D) is an LCP. ��
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4 LCP codes over a finite non-commutative Frobenius ring

In this section, we used the symbol R as a finite non-commutative Frobenius ring. For
the codes C and D, the pair (C, D) is called LCP if C ⊕ D = Rn . This gives that C
and D both are projective right R-module. Towards this, C and D are injective right
R-module, it follows from Proposition 2.3. Consequently, if a pair (C, D) is LCP,
then C and D both are injective right R-module. If C and D both are injective right
R-module, the pair (C, D)may or may not be LCP. Readers can find an easy example.
But, we claim that if injective hull of C ⊕ D is Rn, then the pair (C, D) forms LCP.
We will answer this question later. Now we will introduce an example of LCP codes
(C, D) over R. Note that both the code C and D are non-free right R-submodule of
Rn .

Example 2 Let Fq be a finite field with q elements. Let R be the 4-dimensional Fq -ring
consisting of matrices of the form

⎛

⎜
⎜
⎝

a x 0 0
0 a 0 0
0 0 b y
0 0 0 b

⎞

⎟
⎟
⎠ ,

where a, b, x, y ∈ Fq . The Jacobson radical of R is the collection of matrices of the
form ⎛

⎜
⎜
⎝

0 x 0 0
0 0 0 0
0 0 0 y
0 0 0 0

⎞

⎟
⎟
⎠ .

Reader can check that R/J(R) � Fq ×Fq , under themapping

⎛

⎜
⎜
⎝

a x 0 0
0 a 0 0
0 0 b y
0 0 0 b

⎞

⎟
⎟
⎠ �→ (a, b).

Therefore, R is a finite non-commutative Frobenius ring. Let us consider e1, e2 ∈ R

such that e1R and e2R forms a linear codes over R, where e1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ and

e2 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ . Let us choose C = e1R and D = e2R. Since e1 and e2 both

are idempotent and e1 + e2 = 1, where 1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ is identity in R. Thus,

C ⊕ D = R. Hence the pair (C, D) forms an LCP. But neither C nor D are free.
Otherwise, C = R, which is absurd.
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In Example 2, we have seen that non-free LCP codes exist over finite Frobenius
rings. Now, we will characterize LCP codes over finite non-commutative Frobenius
rings using advanced module theory.

Definition 4.1 Let C be a right R-submodule of Rn . C is said to be an essential
submodule of Rn if for every non-zero right R-submoduleM of Rn such thatC∩M �=
0.

Lemma 4.2 Let C and D be two linear codes in Rn . If the pair (C, D) is an LCP, then
C ⊕ D is essential submodule of Rn .

Proof Since, the pair (C, D) forms an LCP, i.e., C ⊕ D = Rn . It means if there exists
a right R-sbmodule M of Rn such that (C ⊕ D) ∩ M = {0}, which implies M = 0.
Thus, C ⊕ D is essential submodule of Rn . ��

For reader convenience, we will find converse of the above lemme later. Before,
we will recall some preliminary that have an important role in finding the answer.

Definition 4.3 Let C be a right R-submodule of Rn . A right R-submodule I is said to
be an injective hull of C if I is injective module and C is an essential submodule of
I . We denote injective hull of C as E(C) = I

Theorem 4.4 Let C and D be two linear codes in Rn . Then the pair (C, D) is LCP if
and only if C and D both are injective with E(C ⊕ D) = Rn .

Proof Let us suppose that the pair (C, D) is an LCP, i.e., C ⊕ D = Rn . Therefore,
C and D are injective. By the Lemma 4.2, C ⊕ D is essential submodule of Rn, thus
E(C ⊕ D) = Rn .

Conversely, let us suppose that C and D both are injective with E(C ⊕ D) = Rn .

i.e., E(C) = C and E(D) = D also C ⊕ D = E(C) ⊕ E(D) = E(C ⊕ D) = Rn .

Thus, (C, D) forms LCP. ��
Definition 4.5 LetC and D be two right R-submodule of Rn . D is said to be a comple-
ment submodule of C in Rn if D is a right R-submodule of Rn maximal with respect
to C ∩ D = {0}.

By the routine application of Zorn’s lemma, we see that for a given right R-
submodule C of Rn there always exists a maximal submodule D of Rn such that
C ∩ D = {0}. Consequently, C ⊕ D is a right R-submodule of Rn .

Lemma 4.6 Let C and D be two linear codes in Rn . If the pair (C, D) is an LCP, then
C is a complement submodule of D in Rn and D is a complement submodule of C in
Rn .

Proof Since, the pair (C, D) forms an LCP, i.e., C ⊕ D = Rn . It means C + D = Rn

and C ∩ D = {0}. This shows that C is a complement submodule of D in Rn and D
is a complement submodule of C in Rn . ��

Note that for a right R-submoduleC of Rn is essential submodule of Rn if and only
if 0 is a maximal submodule of Rn .
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Definition 4.7 Let C be a right R-submodule of Rn . C is said to be a closed in Rn if
C is the complement of some submodule of Rn .

A right R-submodule of Rn is closed, provided C has no proper essential submodule
in Rn . Moreover, if D is any right R-submodule of Rn, then there exists, by Zorn’s
Lemma, a submodule K of Rn maximal with respect to the property that D is an
essential submodule of C and in this case, C is a closed submodule of Rn .

Lemma 4.8 Let C be a right R-submodule of Rn . If C is essential submodule of Rn

and closed submodule of Rn . Then C = Rn .

Proof Since C is an essential submodule of Rn, then for every non-zero right R-
submodule of Rn such that C ∩ M �= {0}. Again, C is closed then there exist some
right R-submodule N such that N is a complement of C . This force that C = Rn . ��
Lemma 4.9 Let C and D be two linear codes in Rn . If the pair (C, D) is an LCP, then
C and D both are closed submodule of Rn .

Proof Since, the pair (C, D) forms an LCP, i.e.,C⊕D = Rn . It means |C ||D| = |Rn|
and C ∩ D = {0}. Thus, C is a complement of D and D is also complement of C .

This shows that C and D both are closed submodule of Rn . ��
Theorem 4.10 Let C and D be two linear codes in Rn . Then the pair (C, D) is LCP
if and only if D is complement of C such that C ⊕ D is closed.

Proof Let us suppose that the pair (C, D) is LCP. Therefore, C ∩ D = Rn . and
C ∩ D = {0}. Then by the Lemma 4.6, D is complement of C . Since C ⊕ D = Rn,

it follows that C ⊕ D is a complement of {0}. From Definition 4.7, we get C ⊕ D is
closed.

Conversely, let us assume that D is a complement of C such that C ⊕ D is closed.
We shall show that C ⊕ D is an essential submodule of Rn . Let M be a non-zero right
R-submodule of Rn . We have to see that (C ⊕ D)∩M �= {0}. This is clear if M ⊆ D.

Otherwise, the maximality condition of D that C ∩ (D + M) �= {0}, which implies
there exists a non-zero x ∈ C ∩ (D + M), this gives that x = d + m, where d ∈ D
and m ∈ M . Hence m( �= 0) ∈ (C ⊕ D) ∩ M, as C ∩ D = {0}. By the hypothesis,
C ⊕ D is a closed. From the Lemma 4.8, we have C ⊕ D = Rn . This gives that the
pair (C, D) forms an LCP codes over R. ��
Theorem 4.11 Let C and D be two linear codes in Rn such that C⊕D is closed. Then
the following are equivalent

(1) the pair (C, D) is LCP;
(2) C ⊕ D is an essential submodule of Rn;
(3) 0 is a complement of C ⊕ D.

Proof (1) ⇒ (2) It follows from Lemma 4.2.
(2) ⇒ (1)By the hypothesis,C⊕D is closed andC⊕D is an essential submodule

of Rn, thus, by Lemma 4.8, (C, D) forms an LCD code.
(2) ⇔ (3) It is trivial. ��
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Theorem 4.12 Let C and D be two linear codes in Rn such that |C ||D| = |Rn|. Then
the following are equivalent

(1) the pair (C, D) is LCP;
(2) C ⊕ D is an essential submodule of Rn;
(3) 0 is a complement of C ⊕ D;
(4) D is complement of C;
(5) C ⊕ D is closed.

Proof (1) ⇒ (2) It follows from Lemma 4.2.
(2) ⇒ (1) By the hypothesis, |C ||D| = |Rn| and C ⊕ D is a submodule of Rn,

thus (C, D) forms an LCD code.
(2) ⇔ (3) It is trivial.
(1) ⇒ (4) It is follows from Lemma 4.6.
(4) ⇒ (2) Let N be a non-zero right R-submodule of Rn . We have to see that

(C ⊕ D) ∩ N �= {0}. This is clear if N ⊆ D. Otherwise, the maximality condition of
D that C ∩ (D + N ) �= {0}, which implies there exists a non-zero x ∈ C ∩ (D + N ),

this gives that x = d + y, where d ∈ D and y ∈ N . Hence y( �= 0) ∈ (C ⊕ D) ∩ N ,

as C ∩ D = {0}.
(1) ⇒ (5) Since (C, D) is LCP, i.e., C ⊕ D = Rn . It gives that C ⊕ D is a

complement of {0} in Rn . By Definition 4.7, C ⊕ D is close submodule of Rn .

(5) ⇒ (1) It is trivial. ��

Remark 4.13 LetC and D be two linear codes over a finite non-commutative ring R. If
the pair (C, D) satisfies the Theorem 4.12, then (C, D) forms a non-free LCP codes.
For example:

Example 3 In Example 2, C = e1R and D = e2R both are non-free linear codes over
R. One can check that the pair (C, D) satisfies the all condition of Theorem 4.12.
Hence (C, D) is an example of non-free LCP codes over R.

5 Equivalent codes

In this section, our main aim is to find conditions for a pair of LCP codes (C, D) such
that D⊥ is equivalent to C . We denote R as a finite non-commutative Frobenius ring.
Since R is finite, any right R-submodule of Rn is finitely generated. Let us suppose
that {α1, α2, . . . , αk} be a minimal generating set of C . Let G be a generator matrix
of C and G is of the form

G =

⎛

⎜
⎜
⎜
⎝

α1
α2
...

αk

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

α11 α12 · · · α1n
α21 α22 · · · α2n
...

...
. . .

...

αk1 αk2 · · · αkn

⎞

⎟
⎟
⎟
⎠

.
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Thus, G is an k × n matrix, where k ≤ n. Any linear code C is a right R-submodule
of Rn, with generator matrix G. Then C can be written as follows

C = {G�α� | α ∈ Rk}.

Now we consider e such that

e =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α11 α12 · · · α1n
α21 α22 · · · α2n
...

...
. . .

...

αk1 αk2 · · · αkn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now, C can be rewritten as follows

C = {G�α� | α ∈ Rk} = {e�α� | α ∈ Rn}.

Lemma 5.1 If C = {e�α� | α ∈ Rn} is a linear code over R, then the dual code of C
is

C⊥ = Annl(C).

Moreover, C⊥ is a left R-submodule of Rn .

Proof C is a right R-submodule of Rn . Now, definition of Annl(C) = {x ∈
Rn | [x, c] = 0 ∀ c ∈ C}, follows that Annl(C) ⊆ C⊥. From the Proposition
2.4, we get

|C⊥| = |Rn|
|C | = |Annl(C)|.

Hence, C⊥ = Annl(C). ��
Lemma 5.2 If e2 = e ∈ Mn(R) and C = {e�α� | α ∈ Rn}, then C⊥ = {β(1 −
e�) | β ∈ Rn}.
Proof By the Lemma 5.1, we have C⊥ = {β(1− e�) | β ∈ Rn}, as e2 = e ∈ Mn(R).

��
Theorem 5.3 Let C and D be two linear codes over R such that the pair (C, D) forms
an LCP. If there exists an idempotent element e ∈ Mn(R) such that C = {e�α� | α ∈
Rn} and D is equivalent to {(1 − e)β� | β ∈ Rn}. Then C⊥ is equivalent to D.

Moreover, D⊥ is equivalent to C .

Proof Since e is idempotent element in Mn(R), and C = {(e�β� | β ∈ Rn}, then
by Lemma 5.2, C⊥ = {δ(1 − e�) | δ ∈ Rn}. Since (αe)� = e�α�. Thus, C⊥ is
equivalent to D. ��
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Remark 5.4 In Theorem 5, we see that if C and D are two linear code over finite
non-commutative Frobenius ring R such that C = {e�α� | α ∈ Rn} and D =
{(1 − e)β� | β ∈ Rn}, where e2 = e. Then C⊥ is equivalent to D. If we replace a
finite non-commutative Frobenius ring with a finite commutative Frobenius ring. The
proof is similar. Moreover, Theorem 5 is applicable for R is a finite field and also for
a finite chain ring or finite local ring.

Example 4 Let C and D be two linear code over R (Define in Example 1) and q = 3
of length 3 with generator matrices

G =
(
1 2 0
0 1 2

)

, G2 = (
1 2 1

)
,

respectively, where 1 =
(
1 0
0 1

)

∈ R and 2 =
(
2 0
0 2

)

∈ R. It is easy to see that

C ⊕ D = Rn . Let us consider

e =
⎛

⎝
1 0 2
0 1 2
0 0 0

⎞

⎠

such that e2 = e ∈ M3(R) and C = {e�α� | α ∈ Rn} and D is equivalent to
{(1− e)β� | β ∈ Rn}. By the Theorem 5, we obtain C⊥ is equivalent to D.Moreover,
D⊥ is equivalent to C .

Example 5 Let C and D be two linear code over R (Define in Example 2) and q = 3
of length 4 with generator matrices

G1 =
(
1 0 1 1
0 1 1 1

)

, G2 =
(
1 1 1 0
1 1 0 1

)

,

respectively. It is easy to see that C ⊕ D = Rn . Let us consider

e =

⎛

⎜
⎜
⎝

1 0 1 1
0 1 1 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

such that e2 = e ∈ M4(R) and C = {e�α� | α ∈ Rn} and D is equivalent to
{(1− e)β� | β ∈ Rn}. By the Theorem 5, we obtain C⊥ is equivalent to D. This gives
d(C⊥) = d(D) Moreover, D⊥ is equivalent to C . i.e., d(D⊥) = d(C).
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