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Abstract
To study the impact of infection delays in human and mosquito populations, vacci-
nation with waning immunity and reinfection on the malaria transmission process,
a malaria transmission model with these factors is developed and investigated. The
local stability of disease-free and endemic equilibria have been discussed explicitly.
By taking the delay as the bifurcation parameter, the existence of Hopf bifurcation
is analyzed in four cases. Using normal form theory and center manifold theorem,
direction and stability of Hopf bifurcation are discussed. Numerically, the bifurca-
tion diagrams show that both delays can destabilize the endemic equilibrium and
cause Hopf bifurcation and irregular oscillations, and that stability switches can occur
mainly because of the delay in human. In addition, the malaria transmission case of
Nigeria is studied. Numerical analysis reveals that ignoring the waning of immunity
and reinfection may underestimate the infection risk and enlarge the critical value of
Hopf bifurcation. Moreover, combined with sensitivity analysis, we can see that even
though vaccination is not so effective in reducing the basic reproduction number, it is
efficient for controlling the disease.
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1 Introduction

Malaria, caused by protozoan parasites, is a mosquito-borne disease affecting health
systems and economies greatly. The World Health Organization (WHO) reports that
249 million cases of malaria and 608 thousand malaria deaths occurred globally in
2022 [1]. There are five parasite species that induce malaria in human: Plasmodium
falciparum (P. falciparum), Plasmodium vivax (P. vivax), Plasmodium malariae (P.
malariae), Plasmodium ovale (P. ovale), and Plasmodium knowlesi (P. knowlesi).
Of which P. falciparum and P. vivax pose the greatest threat. In the WHO African
Region, P. falciparum accounts for 99.7% of estimated malaria cases, while P. vivax
is responsible for 74.1% of malaria cases in the WHO Region of Americas. Besides,
a large proportion of malaria deaths worldwide is in four African countries in 2021:
Nigeria (31.3%), the Democratic of the Congo (12.6%), United Republic of Tanzania
(4.1%) and Niger (3.9%). Take Nigeria, for example. The death rate caused by malaria
of this country is about 0.04% in 2021, and the number of population infected with
malaria keeps increasing from 4% in 2014 to about 10% in 2021 (See Table 1 and
Fig. 1).

We know that malaria is transmitted to human through the bitten by an infected
female anopheline mosquito. And a susceptible mosquito get infected after it takes
a blood meal from an infectious human. There are incubation periods in the two
transmission processes [4–6]. In general, the time needed for mosquito to get infected
is described as extrinsic incubation period (EIP) [7].And the period for host population
to get infected is intrinsic incubation period (IIP) [8].

To prevent and control the transmission of infectious diseases, vaccination is an
effective way [9, 10]. Since October 2021, the WHO recommend the broad use of,
RTS,S/AS01, the first malaria vaccine, among children living in regions withmoderate
to high P. falciparum malaria transmission [1]. In October 2023, the WHO recom-
mended a second vaccine, R21/Matrix-M. Both are shown to be safe and effective
and expected to have high health influence when implemented broadly. In fact, the

Table 1 Reported cases (from
[1]) and the population (from
[2]) of Nigeria

Year Reported cases Death cases Population(×104)

2014 8,572,322 6082 17,937

2015 8,068,583 9330 18,399

2016 13,598,282 7397 18,866

2017 13,087,878 8720 19,349

2018 16,972,207 14,936 19,838

2019 19,806,915 26,540 20,330

2020 18,325,240 13,072 20,832

2021 21,325,186 7828 21,340
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immunity acquisition process is not easy and years or decades may be needed [11].
And waning of immunity and reinfection may happen since the immunity may wan-
ing over time in some extent. Therefore, it is necessary to investigate the influence of
the extrinsic incubation period, intrinsic incubation period, vaccination with waning
immunity and reinfection on malaria transmission process.

Mathematical modelling have being an important way for investigating the dynam-
ics of infectious diseases long time ago. The first mathematical model depicting the
transmission process ofmalariawas introduced byRoss [3], and refined byMacDonald
[4]. From then on, the malaria transmission models were developed extensively [12–
16]. In [17], considered waning immunity of vaccination and treatment, the authors
established an ordinary malaria transmission model and studied the optimal control.
Considering the reinfection of recovered class, Xu and Zhou [18] developed a malaria
model with EIP and studied the Hopf bifurcation and stability. Wan and Cui [19]
studied a malaria model with both EIP and IIP. Zhang et. al. extended their result by
adding the reinfection effect in [8]. However, the influence of the vaccinated class
wasn’t considered in these delayed models.

In this paper, we divide the human population into four classes: the susceptible
Sh(t), vaccinated V (t), infected Ih(t), recovered Rh(t) and divide the mosquito popu-
lation into two classes: susceptible Sm(t), infected Im(t). Taking the delays of malaria
in human and mosquito, vaccination with waning of immunity and reinfection into
account, we construct model (see Fig. 2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)

dt
= bh(1 − p) − βh Sh(t − τh)Im(t − τh) − (μh + η)Sh(t),

dV (t)

dt
= bh p + ηSh(t) − εβhV (t − τh)Im(t − τh) − μhV (t),

d Ih(t)

dt
= βh(Sh(t − τh) + εV (t − τh) + σ Rh(t − τh))Im(t − τh)

−(μh + α + γ )Ih(t),
dRh(t)

dt
= γ Ih(t) − σβh Rh(t − τh)Im(t − τh) − μh Rh(t),

dSm(t)

dt
= bm − βmSm(t − τm)Ih(t − τm) − μmSm(t),

d Im(t)

dt
= βmSm(t − τm)Ih(t − τm) − μm Im(t),

(1.1)

where all parameters are positive and their meanings are described as follows: τh :
the incubation period in human (IIP), τm : the incubation period in mosquito (EIP),
bh : recruitment rate of the human population, bm : recruitment rate of the mosquito
population, βh : human transmission rate, βm : mosquito transmission rate, μh : natural
death rate of human,μm : natural death rate of mosquitoes, γ : recovery rate of infected
human, α: disease induced death rate, σ (0 ≤ σ ≤ 1): degree of partial protection
for recovered individuals, ε (0 ≤ ε ≤ 1): the efficacy of vaccine, p (0 ≤ p ≤ 1):
vaccination proportion of new borns, η: vaccination rate for susceptible class.

From the last two equations of model (1.1) we obtain that Nm = Sm + Im satisfies
dNm
dt = bm − μmNm . This implies that limt→∞ Nm(t) = bm

μm
. Therefore, we can

assume that Nm(t) = Sm(t) + Im(t) ≡ bm
μm

. Thus, by the limit system theory of
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Fig. 1 The reported cases of malaria normalized by the population and the death rate during 2014–2021

Fig. 2 Schematic diagram for the transmission of malaria

differential equations [21], the dynamical behavior of model (1.1) is equivalent to the
following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)

dt
= bh(1 − p) − βh Sh(t − τh)Im(t − τh) − (μh + η)Sh(t),

dV (t)

dt
= bh p + ηSh(t) − εβhV (t − τh)Im(t − τh) − μhV (t),

d Ih(t)

dt
= βh(Sh(t − τh) + εV (t − τh)

+σ Rh(t − τh))Im(t − τh) − (μh + α + γ )Ih(t),
dRh(t)

dt
= γ Ih(t) − σβh Rh(t − τh)Im(t − τh) − μh Rh(t),

d Im(t)

dt
= βm(

bm
μm

− Im(t − τm))Ih(t − τm) − μm Im(t).

(1.2)

This paper is arranged as follows.Basic properties are presented inSect. 2. In Sect. 3,
the local asymptotic stability of disease-free and endemic equilibria is established
firstly. Then existence of Hopf bifurcation is investigated in four cases: (1) τh = 0
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and τm > 0; (2) τh > 0 and τm = 0; (3) τh = τm := τ > 0; and (4) τh ∈ (0, τ ∗
h )

and τm > 0, where (2)-(4) are studied under special condition. What’s more, direction
and stability of Hopf bifurcation also are examined. In Sect. 4, Hopf bifurcation of
these four cases for original model and special case are both simulated numerically.
Besides, we apply our model to the transmission of malaria in Nigeria numerically.
Finally, conclusions are summarized in Sect. 5.

2 Basic properties

Let R5+ = {(x1, x2, x3, x4, x5) : xi ≥ 0, i = 1, 2, 3, 4, 5} and τ = max{τh, τm}.
For Banach space C+ := C([−τ, 0],R5+) consist of continuous functions from
[−τ, 0] to R

5+, define the norm of φ = (φ1, φ2, φ3, φ4, φ5) ∈ C+ by ‖φ‖ =
maxs∈[−τ,0]

(∑5
i=1 |φi |2

) 1
2
. Define X = {φ ∈ C+ : φi (0) > 0, i = 1, 2, 3, 4, 5}.

For any continuous function u : [−τ, σ ) → R
5+ with σ > 0, define ut ∈ C+ for

t ∈ [0, σ ) as ut (θ) = u(t + θ),∀θ ∈ [−τ, 0]. From the fundamental theory of
functional differential equations [22], we have the following well-posedness result of
system (1.2), and the proof is presented in Appendix A.

Theorem 2.1 For any φ ∈ X, system (1.2) admits a unique solution u(t, φ) with
u0 = φ and ut (·, φ) ∈ X for all t ≥ 0, and solutions are uniformly and ultimately
bounded.

Obviously, system (1.2) always has a disease-free equilibrium P0(S0h , V
0, 0, 0, 0)

with S0h = bh(1−p)
μh+η

, V 0 = bh(μh p+η)
μh(μh+η)

. By linearizing the equations of Ih and Im of
model (1.2) at point P0, we can obtain the Jacobia matrices as follows

F =
(

0 βh S0h + εβhV 0

βm
bm
μm

0

)

, V =
(

μh + α + γ 0
0 μm

)

.

According to [23], define the basic reproduction number by

R0 = ρ(FV−1) =
√

βhbhβmbm (μh(1 − p) + ε(μh p + η))

μ2
mμh(μh + η)(μh + α + γ )

,

where ρ(·) presents the spectral radius of matrix.
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Fig. 3 Sketch profiles for F1(y) and F2(y)

Assume that P∗(S∗
h , V

∗, I ∗
h , R∗

h , I
∗
m) is the endemic equilibrium of system (1.2).

Then we have

S∗
h = bh(1 − p)

βh I ∗
m + μh + η

, V ∗ = bh pβh I ∗
m + bh pμh + bhη

(εβh I ∗
m + μh)(βh I ∗

m + μh + η)
, R∗

h = γ I ∗
h

σβh I ∗
m + μh

,

I ∗
h = (εβ2

hbh I
∗
m + βhbh (μh(1 − p) + ε(pμh + η)))(σβh I ∗

m + μh)I ∗
m

(εβh I ∗
m + μh)(βh I ∗

m + μh + η)
(
(μh + α)(σβh I ∗

m + μh) + μhγ
) ,

I ∗
m = βmbm I ∗

h

βmbm I ∗
h + μ2

m
.

Substituting the expression of I ∗
m into I ∗

h , we can get:

F1(I
∗
h ) = F2(I

∗
h ) (2.1)

with

F1(y) = βm

(
εβ2

hbh y + βhbh(μh(1 − p) + ε(pμh + η))
)

(σβh y + μh)(bm − μm y),

F2(y) = μ2
m(εβh y + μh)(βh y + μh + η) ((μh + α)σβh y + μh(μh + α + γ )) .

Therefore, the existence of endemic equilibrium of system (1.2) is equivalent to
the existence of positive intersection point of functions F1(y) and F2(y). From the
sketches in Fig. 3,we can see that there is a positive intersection point if F1(0) > F2(0),
and there is no positive intersection if F1(0) ≤ F2(0). Moreover, F1(0) > F2(0) ⇔
R0 > 1. Thus, there is a unique endemic equilibrium when R0 > 1 and there is no
endemic equilibrium when R0 ≤ 1.

3 Stability and Hopf bifurcation

3.1 Stability of equilibria

The community matrix of system (1.2) at P = (Sh, V , Ih, Rh, Im) is given by J (P) =
L(P) + H(P)e−λτh + M(P)e−λτm , where
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L(P) =

⎛

⎜
⎜
⎝

l11 0 0 0 0
l21 l22 0 0 0
0 0 l33 0 0
0 0 l43 l44 0
0 0 0 0 l55

⎞

⎟
⎟
⎠ , H(P) =

⎛

⎜
⎜
⎝

h11 0 0 0 h15
0 h22 0 0 h25
h31 h32 0 h34 h35
0 0 0 h44 h45
0 0 0 0 0

⎞

⎟
⎟
⎠ ,

M(P) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 m53 m55

⎞

⎟
⎟
⎟
⎟
⎠

with l11 = −μh − η, l21 = η, l22 = −μh, l33 = −(μh + α + γ ), l43 =
γ, l44 = −μh, l55 = −μm, h11 = −βh Im, h15 = −βh Sh, h22 = −εβh Im, h25 =
−εβhV , h31 = βh Im, h32 = εβh Im, h34 = σβh Im, h35 = βh(Sh + εV +
σ Rh), h44 = −σβh Im, h45 = −σβh Rh, m53 = βm( bm

μm
− Im), m55 = −βm Ih . The

characteristic equation of J (P) is |J (P) − λE | = 0, i.e.,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ 0 0 0 h15e−λτh

l21 a22 − λ 0 0 h25e−λτh

h31e−λτh h32e−λτh l33 − λ h34e−λτh h35e−λτh

0 0 l43 a44 − λ h45e−λτh

0 0 m53e−λτm 0 a55 − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

where aii = lii+hii e−λτh (i = 1, 2, 4) and a55 = l55+m55e−λτm . For the disease-free
equilibrium P0, the characteristic equation is

(l11 − λ)(l22 − λ)(l44 − λ)
(
λ2 − (l33 + l55)λ + l55l33(1 − R2

0e
−λτh e−λτm )

)
= 0.

(3.1)

For the endemic equilibrium P∗(S∗
h , V

∗, I ∗
h , R∗

h , I
∗
m), the characteristic equation is

λ5 +
0∑

j=4

u0 jλ
j +

0∑

j=4

u1 jλ
j e−λτm +

0∑

j=4

u2 jλ
j e−λτh

+
0∑

j=3

u3 jλ
j e−λ(τh+τm ) +

0∑

j=3

u4 jλ
j e−2λτh +

0∑

j=2

u5 jλ
j e−λ(τm+2τh)

+
0∑

j=2

u6 jλ
j e−3λτh +

0∑

j=1

u7 jλ
j e−λ(τm+3τh) + u80e

−λ(τm+4τh) = 0, (3.2)

where coefficients ukj (k = 0, 1, 2, 3, j = 0, 1, 2, 3, 4), u71, u70 and u80 are given
in Appendix B.

Remark 3.1 Onaccount of the appearanceof twoefficientmalaria vaccineRTS,S/AS01
and R21/Matrix-M, the vaccinated component is considered. Besides, factors of vac-
cination with waning immunity, reinfection and delays in human and mosquitoes
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are taken into consideration in our malaria model, which extends previous malaria
models [8, 18]. In fact, he form of the characteristic equation (3.2) is quite different
and generalizes previous ones, and therefore, Theorems 3.2–3.6 in the following are
generalizations of corresponding results in [8, 18].

According to the characteristic equations (3.1) and (3.2), we have the following
stability results for the disease-free and endemic equilibria, respectively.

Theorem 3.2 (i) For any τm ≥ 0 and τh ≥ 0, if R0 < 1, then disease-free equilibrium
P0 is locally asymptotically stable.

(ii) When τh = τm = 0, if R0 > 1, then endemic equilibrium P∗ is locally asymptot-
ically stable if D j > 0 ( j = 1, 2, 3, 4), where D j ( j = 1, 2, 3, 4) are presented
in Appendix B.

The proof of Theorem 3.2 is given in Appendix C.

3.2 Existence of Hopf bifurcation

We know that all zero points of Eq. (3.1) have negative real parts if R0 < 1. Roots of
Eq. (3.1) are continuously dependent on delays [24], and only when a root crossing
the imaginary axis its real part of a root can become positive. On account of λ = 0 is
not a root of Eq. (3.1), the real part of roots for Eq. (3.1) can become positive when
λ = iκ, κ �= 0.

For various delays τm and τh , we have the following theorems about the existence
of Hopf bifurcation.

Theorem 3.3 Assume the delay τh = 0 in model (1.2). When R0 > 1, then there is a
τ ∗
m > 0 such that (1) P∗ is locally asymptotically stable if τm ∈ [0, τ ∗

m); (2) system
(1.2) undergoes a Hopf bifurcation at P∗ when τm = τ ∗

m, and a family of periodic
solutions bifurcate from P∗.

The proof of Theorem 3.3 is given in Appendix C.
However, for the cases τh > 0, τm = 0 and τh > 0, τm > 0, characterization Eq.

(3.2) is too complicated to analyze. Therefore, we suppose ε = σ = 0 for simple.
When ε = σ = 0, we have h25 = h22 = h32 = h34 = h44 = h45 = 0. And then
characteristic equation (3.2) is reduced to

λ5 +
0∑

j=4

p0 jλ
j +

0∑

j=4

p1 jλ
j e−λτm +

0∑

j=4

p2 jλ
i e−λτh +

0∑

j=3

p3 jλ
j e−λ(τh+τm ) = 0,

(3.3)

where pkj (k = 0, 1, 2, j = 0, 1, 2, 3, 4) and p3 j ( j = 0, 1, 2, 3) are presented in
Appendix B.

Theorem 3.4 Assume ε = σ = 0 and τm = 0 in model (1.2). When R0 > 1, then
there is a τ ∗

h > 0 such that (1) P∗ is locally asymptotically stable if τh ∈ [0, τ ∗
h );

(2) system (1.2) undergoes a Hopf bifurcation at P∗ when τh = τ ∗
h , and a family of

periodic solutions bifurcate from P∗.
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Theorem 3.5 Assume ε = σ = 0 and τm = τh := τ > 0 in model (1.2). When
R0 > 1, then there is a τ ∗ > 0 such that (1) P∗ is locally asymptotically stable if
τ ∈ [0, τ ∗); (2) system (1.2) undergoes a Hopf bifurcation at P∗ when τ = τ ∗, and
a family of periodic solutions bifurcate from P∗.

Theorem 3.6 Assume ε = σ = 0 and a fixed τh ∈ (0, τ ∗
h ) in model (1.2). When

R0 > 1, then there is a τ̂m > 0 such that (1) P∗ is locally asymptotically stable if
τm ∈ [0, τ̂m); (2) system (1.2) undergoes a Hopf bifurcation at P∗ when τm = τ̂m,
and a family of periodic solutions bifurcate from P∗.

The proofs of Theorems 3.4-3.6 are given in Appendix C.

3.3 Direction and stability of Hopf bifurcation

Previously, we have proved that system (1.2) admits a family of periodic solutions
bifurcating from the endemic equilibrium P∗ in various critical values of delay param-
eters. In this subsection, we derive explicit formula to determine the direction as well
as stability of Hopf bifurcation at critical value τ̂m applying the normal form theory
and the center manifold theorem by Hassard et al. [25]. In the following, for special
case ε = σ = 0, we assume τh ∈ (0, τ ∗

h ) with τ ∗
h < τ̂m and.

Theorem 3.7 (i) The direction of the Hopf bifurcation is determined by the sign of
μ2. If μ2 > 0 (μ2 < 0), then it is a supercritical (subcri tical) bifurcation. (i i) The
stability of the bifurcated periodic solution is determined by β2. The periodic solution
is stable (unstable) if β2 < 0 (β2 > 0). (i i i) The period of bifurcated periodic
solutions is determined by T2. The size of period increases (decreases) if T2 > 0
(T2 < 0).

The expressions of parameters μ2, β2 and T2 in Theorem 3.7, and the proof of
Theorem 3.7 are given in Appendix B.

4 Numerical simulatons

In this section, we first simulate the phenomenon of Hopf bifurcation in four cases.
Then we simulate the reported cases of Nigeria with model (1.2). Based on the esti-
mated parameters, we get that the basic reproduction number of Nigeria is about
5.1448. Therefore, the disease in Nigeria will be endemic. To present some control
suggestions for Nigeria, sensitivity analysis is shown by partial rank correlation coef-
ficient (PRCC).

4.1 Simulations of Hopf bifurcation

Choosing βh = 0.01, βm = 0.01, bh = 70, bm = 10, α = 0.1, μh = 0.4,
μm = 0.1, γ = 1, η = 0.1, p = 0.02, σ = 0.2 and ε = 0.2, then P∗ =
(53.51, 12.13, 35.89, 64.5, 78.21) and R0 = 3.1066 > 1. When σ = ε = 0, then
P∗ = (55.73, 17.43, 27.16, 67.89, 73.08) and R0 = 3.0243 > 1.
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Fig. 4 Case (1): the first column is for ε, σ > 0, the second column is for ε = σ = 0

In Sect. 3.2, we have shown the existence of Hopf bifurcation for cases (1): τh = 0,
τm > 0; (2): τh > 0, τm = 0; (3): τh = τm = τ > 0; (4): τh ∈ (0, τ ∗

h ), τm > 0, where
cases (2)-(4) are analyzed under special condition ε = σ = 0. In this subsection,
we demonstrate the Hopf bifurcation theorems through numerical simulations in four
different cases. In particular, we also simulate the dynamical behaviors of cases (1)-(4)
for ε, σ > 0 and ε = σ = 0.

Case (1): τh = 0, τm > 0. By calculating, we obtain ν0 = 0.081, κ0 = 0.29 and
τ ∗
m = 6.71, L′

(ν0) = 0.49 �= 0. We can see from the first column of Fig. 4 that P∗ is
locally asymptotically stable when τm ∈ [0, τ ∗

m), and unstable for larger τm , leading
to irregular oscillations. In addition, system (1.2) undergoes a Hopf bifurcation when
τm cross τ ∗

m and a family of periodic solutions bifurcate from P∗ near τ ∗
m . Last but not

the least, comparing the first column and second column in Fig. 4, we can obtain that
when ε and σ go to zero, the critical value of τ ∗

m becomes larger.
Case (2): τm = 0, τh > 0. We can see from Fig. 5 that P∗ is locally asymptotically

stablewhen τh ∈ [0, τ ∗
h ), andunstable for larger τh . In addition, system (1.2) undergoes

a Hopf bifurcation when τh = τ ∗
h and a family of periodic solutions bifurcate from

P∗ near τ ∗
h . Similarly, comparing the first column and second column we can obtain

that when ε and σ go to zero, the critical value becomes larger.
Case (3): τh = τm = τ > 0.When ε = σ = 0,we obtain κ2 = 0.56 and τ ∗ = 2.69,

e2e3 − e1e4 = 0.45 �= 0. We can see from Fig. 6 that P∗ is locally asymptotically
stable when τ ∈ [0, τ ∗), and unstable for larger τ . In addition, system (1.2) undergoes
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Fig. 5 Case (2): the first column is for ε, σ > 0, the second column is for ε = σ = 0

a Hopf bifurcation when τ = τ ∗, and a family of periodic solutions bifurcate from P∗
near τ ∗. Similarly, when ε and σ go to zero, the critical value of τ ∗ becomes larger.

Case (4): τh ∈ (0, τ ∗
h ), τm > 0. When τh = 2.8, Eq. (5.16) has three positive roots

κ̂1 = 0.89, κ̂2 = 0.625, κ̂3 = 0.20. When κ̂ = κ̂1 = 0.89, we get three critical values
τ̂m1 = 0.55, τ̂m2 = 5.03, and τ̂m3 = 9.99 with q1q4 − q2q3 equals 2.84, 2.42, 0.019
nonzero respectively. Under this condition, stability switches occur see second column
of Fig. 7. Similarly, comparing the first row with second row in Fig. 7, we can obtain
that when ε and σ go to zero, the critical values becomes larger. In addition, we can
see from Fig. 7 that the delay in human has great influence on behaviors of the infected
class and vaccinated class. Besides, from the first two rows and the third row one can
see that influences of human delays on infected class and vaccinated class are different
and that with the increase of incubation period of human the dynamical behaviors of
both classes become more complex. Finally, if compare Fig. 7 with Fig. 4, 5, we know
the delays in mosquito and human are both non-negligible for malaria transmission
model (1.2).

4.2 Application to Nigeria

In this subsection, model (1.2) is used to simulate the reported malaria cases in Nigeria
[1]. Some parameters values are chosen based on references and some are to match
the data. We explain part of them in the following.
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Fig. 6 Case (3): the first column is for ε, σ > 0, the second column is for ε = σ = 0

The Birth rate of Nigeria is 3.38% [26], and the total population of Nigeria in 2021
is 2.134× 108. Therefore, the recruitment is taken by 6.06× 106 year−1. We assume
the birth rate of mosquitoes is 106. The Life span of human in Nigeria is 61–64 [27].
So the corresponding death rate μh is taken 0.016. The average disease induced death
rate is 7.39× 10−4 by data in Table 1. The average life expectancy of adult mosquito
is about 15 to 20 days. Here we take μm to be 22 year−1. Incubation period in human
beings is 7–15 days [7], here we take τh to be 0.027. Incubation period in mosquito is
10-30 days [7], here we take τm to be 0.082.

We choose 2014 as the initial time, and suppose initial value to be (2 × 108, 2 ×
107, 8572322, 107, 3 × 105). Based on these parameter values and data in Table 1,
applying Markov-chain Monte-Carlo (MCMC), we can obtain, βh = 1.1139 ×
10−6, βm = 5.0381 × 10−7, γ = 0.0997, σ = 0.0201, ε = 0.4233, p = 0.0505
and η = 0.0033 respectively (see Fig. 8). Besides, there is an appropriate match
between malaria cases of Nigeria and model (1.2) (see Fig. 8).

Based on the estimated parameters, we get that the basic reproduction number
of Nigeria is about 5.1448 and there is an endemic equilibrium P∗ = (2.2644 ×
107, 3.2996×106, 6.0226×107, 2.8980×108, 2.108×105). Besides, we have coef-
ficients in Theorem 3.2 are D1 = 0.2203, D2 = 0.7652, D3 = 15.8331, D4 =
833.92 > 0. Therefore, P∗ is locally asymptotically stable when τm = τh = 0, as
shown in Fig. 9. In addition, when βh = 1.1139 × 10−8, then R0 = 0.5145 < 1 and
the disease-free equilibrium is locally asymptotically stable, see Fig. 9.
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Fig. 7 Case (4): the first column is for ε, σ > 0, the second column is for ε = σ = 0

Fig. 8 Left is theMCMCanalysis of parameters βh , βm , γ, σ, ε, p, η; Right is the simulation and prediction
of of the reported malaria cases for Nigeria from 2014 to 2021

Fig. 9 Solution curves of system (1.2) for R0 > 1 and R0 < 1
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Fig. 10 Partial rank correlation coefficients (PRCCs) for R0

Fig. 11 The dependence of R0 on βh , βm , μm , γ, bm , p, η

Fig. 12 The dependence of p, η, ε, σ on Ih(t)

4.3 Sensitivity analysis

To investigate the sensitivity of the basic reproduction number R0 with respect to
parameters, we calculate the partial rank correlation coefficient (PRCC),which reflects
the dependence correlation between each parameter and R0. We take a normal distri-
bution for each of the six parameters: βh, βm, p, ε, η, γ . Every parameters is sampled
3000 times. The correlation between input parameter and output values of R0 is sig-
nificant if p < 0.01. The PRCC bar chart is in Fig. 10, which indicates that parameters
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βh, βm, ε are positively correlatedwith R0 and parameters p, η, γ are negatively corre-
lated with R0. Therefore, reducing contact rate between human and mosquito, waning
of immunity as well as increase vaccination rate and treatment of infected humans can
reduce the value of R0 effectively. In addition, from Fig. 11, we can see the influence
of parameters βh, βm, bm, μm, γ, p on the basic reproduction number more directly.

The influence of vaccinated rate of newborns and susceptible as well as the rein-
fection rate and waning of immunity rate on the disease can be seen more directly in
Fig. 12. It shows that neglecting the reinfection rate and immunity rate, the risk will
be underestimated. and that the vaccination strategy should be enforced regardless of
its direct efficacy in reducing the basic reproduction number.

5 Conclusions and discussions

In this paper, a malaria transmission model with delays, vaccination with waning
immunity and reinfection is developed and investigated. Dynamical behaviors includ-
ing stability of equilibria, the existence of Hopf bifurcations and direction and stability
of delay induced Hopf bifurcation are analyzed. As an example, our model is used
to simulate the reported cases of malaria in Nigeria. Based on our analysis, some
suggestions are given on the control of malaria in Nigeria. (i) Using the long-lasting
insecticide-treated mosquito net extensively; (ii) Using indoor spraying, biocontrol
(such as Wolbachia) [28, 29] to control the mosquito population; (iii) Make sure
infected people treated timely; (iv) Screening the recovered and vaccine class regu-
larly; (v) Let newborns and susceptible class inoculate malaria vaccine in the country.

However, how to allocate the limited vaccine resources in the country isn’t studied
in this paper. We will consider this problem in the future.

Appendix A. Proof of Theorem 3.3

For any φ ∈ X, define a functional g(φ) := (g1(φ), g2(φ), g3(φ), g4(φ), g5(φ))T :
X → R

5 as

g(φ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

bh(1 − p) − βhφ1(−τh)φ5(−τh) − (μh + η)φ1(0)
bh p + ηφ1(0) − εβhφ2(−τh)φ5(−τh) − μhφ2(0)

βh(φ1(−τh) + εφ2(−τh) + σφ4(−τh))φ5(−τh) − (μh + α + γ )φ3(0)
γ φ3(0) − σβhφ4(−τh)φ5(−τh) − μhφ4(0)

βm(
bm
μm

− φ5(−τm))φ3(−τm) − μmφ5(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since g(φ) is continuous and Lipschitz in each compact set in X, it follows from
Theorems 2.2.1 and 2.2.3 in [22] that there exists a unique solution u(t, φ) =
(Sh(t, φ), V (t, φ), Ih(t, φ), Rh(t, φ), Im(t, φ)) with respect to initial value φ. So the
system (1.2) has a unique solution u(t, φ) on its maximal existence interval [0, σφ).
It is easy to see that gi (φ) ≥ 0 if φi (0) ≥ 0, for i = 1, 2, 3, 4, 5. Therefore, we can
get the unique solution u(t, φ) on ∀t ∈ [0, σφ) which is non-negative.

123



3932 J. Li et al.

Furthermore, let Nh(t) := Sh(t) + V (t) + Ih(t) + Rh(t), it is easy to get from
system (1.2) that dNh(t)

dt = bh −μh Nh −α Ih , which implies lim supt→∞ Nh(t) ≤ bh
μh

.

Besides, lim supt→∞ Nm(t) = bm
μm

. Therefore, u(t, φ) is bounded. And then σφ = ∞
by Theorem 2.3.1 in [22]. The proof is completed.

Appendix B. Coefficients of the characteristic equations

u04 = −l11 − l22 − l33 − l44 − l55,

u03 = l11l22 + l11l33 + l11l44 + l22l33 + l11l55 + l22l44 + l22l55 + l33l44 + l33l55 + l44l55,

u02 = −l11l22(l33 + l44 + l55) − l11l33(l44 + l55) − l22l55(l33 + l44)

− l44l55(l33 + l11) − l22l33l44,

u01 = l11l22l33l44 + l11l22l33l55 + l11l22l44l55 + l11l33l44l55 + l22l33l44l55,

u00 = −l11l22l33l44l55, u14 = −m55, u13 = l11m55 + l22m55 + l33m55 + l44m55,

u12 = −m55(l11l22 + l11l33 + l11l44 + l22l33 + l22l44 + l33l44),

u11 = m55(l11l22l33 + l11l22l44 + l11l33l44 + l22l33l44),

u10 = −l11l22l33l44m55, u24 = −h11 − h22 − h44,

u23 = h11(l22 + l33 + l44 + l55) + h22(l11 + l33 + l44 + l55)

+ h44(l11 + l22 + l33 + l55) − h34l43,

u22 = −h11(l22(l44 + l33 + l55) + l33(l44 + l55) + l44l55) − h22(l33(l44 + l55)

+ l44l55 + l11(l33 + l44 + l55))

− h44(l11(l22 + l33 + l55) − l33(l55 + l22) − l22l55) + h34l43(l22 + l55 + l11),

u21 = h11l22(l33l44 + l33l55 + l44l55) + l33l44l55(h11 + l33l44l55)

+ h22l11(l33l44 + l33l55 + l44l55)

− h34l11l43(l22 − l55) − h34l22l43l55 + h44l11l22(l33 + l55)

+ h44l33l55(l11 + l22),

u20 = h34l11l22l43l55 − h22l11l33l44l55 − h11l22l33l44l55 − h44l11l22l33l55,

u33 = h11m55 + h22m55 − h35m53 + h44m55,

u32 = −h11m55(l22 + l33 + l44) − h22m55(l11 + l33 + l44) + h34l43m55

− h44m55(l11 + h44m55 + l33) + h35m53(l44 + l11 + l22),

u31 = h11m55(l22l33 + l22l44 + l33l44) + h22m55(l11l33 + l11l44 + l33l44)

− h35m53(l11l22 + l11l44 + l22l44)

+ h44m55(l11l22 + l11l33 + l22l33) − h34l43m55(l11 + l22),

u30 = −(l33l44m55(h11l22 + h22l11) − h34l11l22l43m55 − h35l11l22l44m53

+ h44l11l22l33m55),

u43 = h11h22 + h11h44 + h22h44,

u42 = h11(h34l43 − h22(l44 + l55 + l33) − h44(l22 + l33 + l55))

+ h22(h34l43 − h44(l33 + l11 + l55)),

u41 = h11h22l44(l33 + l55) − h11h34l43(l22 + l55) + h11l33l55(h44 + h22)
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+ h11h44l22(l33 + l55)

− h22h34l43(l11 + l55) + h22h44l11(l33 + l55) + h22h44l33l55,

u40 = h11l55(h34l22l43 − h22l33l44) − h11h44l22l33l55

+ h22h34l11l43l55 − h22h44l11l33l55,

u52 = −h11(m55(h22 + h44) − h35m53) − m53(h15h31 − h35(h22 + h44)

+ h25h32 + h34h45) − h22h44m55,

u51 = m53(−h11h35(l22 + l44) + h15h31(l22 + l44) − h15h32l21 − h22h35(l11 + l44),

+ h25h32(l11 + l44) + h34h45l11 − h35h44(l11 + l22) + h34h45l22) + m55(h11h22(l33 + l44),

+ h11(h44l22 − h34l43 + h44l33) + h22(h44l11 − h34l43 + h44l33)),

u50 = −h11m55(h22l33l44 − h34l22l43 + h44l22l33) + m53(h11h35l22l44

+ h25h32l11l44 − h35h44l11l22)

− h15l44m53(h31l22 − h32l21) + h22l44m53(h35l11 − h44l33)

− h34(h45l11l22m53 − h22l11l43m55),

u62 = −h11h22h44, u61 = h11h22h44l33 − h11h22h34l43 + h11h22h44l55,

u60 = h11h22h34l43l55 − h11h22h44l33l55,

u71 = h11h25h32m53 − h11h22h35m53 + h15h22h31m53 + h11h22h44m55

+ h11h34h45m53

− h11h35h44m53 + h15h31h44m53 + h22h34h45m53

− h22h35h44m53 + h25h32h44m53,

u70 = −h11h22(h44l33m55 − h35l44m53 − h34l43m55) − h11m53(h25h32l44

+ h34h45l22 − h35h44l22)

− h15m53(h22h31l44 + h31h44l22 − h32h44l21)

− h22l11m53(h34h45 − h35h44) + h25h32h44l11m53,

u80 = −m53(h11h22h34h45 − h11h22h35h44 + h11h25h32h44 + h15h22h31h44).

p04 = −l11 − 2l22 − l33 − l55, p03 = 2l11l22 + l11l33 + 2l22l33 + l11l55

+ 2l22l55 + l33l55 + l222,

p02 = −l11l
2
22 − l222l33 − l222l55 − l222m55 − 2l11l22l33 − 2l11l22l55 − l11l33l55 − 2l22l33l55,

p01 = l11l
2
22l33 + l11l

2
22l55 + l222l33l55 + 2l11l22l33l55, p00 = −l11l

2
22l33l55,

p14 = −m55, p13 = l11m55 + 2l22m55 + l33m55, p12 = −2l11l22m55

− l11l33m55 − 2l22l33m55,

p11 = l11l
2
22m55 + l222l33m55 + 2l11l22l33m55, p10 = −l11l

2
22l33m55,

p24 = −h11, p23 = 2h11l22 + h11l33 + h11l55, p22 = −h11l
2
22 − 2h11l22l33

− 2h11l22l55 − h11l33l55,

p21 = h11l
2
22l33 + h11l

2
22l55 + 2h11l22l33l55, p20 = −h11l

2
22l33l55,

p33 = h11m55 + h15m53, p32 = −h15l11m53 − 2h11l22m55 − 2h15l22m53 − h11l33m55,

p31 = h11l
2
22m55 + h15l

2
22m53 + 2h15l11l22m53 + 2h11l22l33m55,

p30 = −h15l11l
2
22m53 − h11l

2
22l33m55.
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Appendix C. Proofs of Theorems 3.2–3.7

Proof of Theorem 3.2. When R0 ≤ 1, and τh = τm = 0, the disease-free equilibrium
P0 is locally asymptotically stable. When τh > 0, τm > 0, it is obvious that Eq. (3.1)
has roots with positive real part if and only if equation

λ2 + a1λ + a2(1 − R2
0e

−λτh e−λτm ) = 0 (5.1)

with a1 = −(l33 + l55), a2 = l55l33 has roots with positive real part. By substituting
λ = iκ into Eq. (5.1) and separating the real and imaginary parts, we have

a1κ = −a2R2
0 sin κ(τh + τm), −κ2 + a2 = a2R2

0 cos κ(τh + τm). (5.2)

Squaring and taking the sum of Eq. (5.2) yields κ4 + (a21 −2a2)κ2 +a22(1− R4
0) = 0,

with a21 − 2a2 = (l33)2 + (l55)2 > 0 and 1 − R4
0 > 0 since R0 < 1. Hence, all roots

of Eq. (3.1) have negative real parts. Here completes the proof. ��
When R0 > 1, for τm = τh = 0, Eq. (3.2) reduced to the following equation

λ5 + n4λ
4 + n3λ

3 + n2λ
2 + n1λ + n0 = 0

with n4 = ∑2
j=0 u j4, n3 = ∑4

j=0 u j3, n2 = ∑6
j=0 u j2, n1 = ∑7

j=0 u j1, n0 =
∑8

j=0 u j0. According to the Routh-Hurwitz criteria gives Re(λ) < 0 if and only if

D1 = n1 > 0, D2 =
∣
∣
∣
n1 n0
n3 n2

∣
∣
∣ > 0, D3 =

∣
∣
∣
∣
∣

n1 n0 0
n3 n2 n1
1 n4 n3

∣
∣
∣
∣
∣
> 0, D4 =

∣
∣
∣
∣
∣
∣

n1 n0 0 0
n3 n2 n1 n0
1 n4 n3 n2
0 0 1 n4

∣
∣
∣
∣
∣
∣
> 0.

Proof of Theorem 3.3. For τh = 0, Eq. (3.2) reduced to the following equation

λ5 + E4λ
4 + E3λ

3 + E2λ
2 + E1λ + E0 +

(
W4λ

4 + W3λ
3 + W2λ

2 + W1λ + W0

)

e−λτm = 0 (5.3)

with E4 = u04 + u24, E3 = u03 + u23 + u43, E j = u0 j + u2 j + u4 j + u6 j ( j =
0, 1, 2), W4 = u14, W3 = u13 + u33, W2 = u12 + u32 + u52,W1 = u11 + u31 +
u51 + u71, W0 = u10 + u30 + u50 + u70 + u80. Suppose that λ = iκ is a root of Eq.
(5.3), then we have

b11(κ) sin κτm + b12(κ) cos κτm = b13(κ), b12(κ) sin κτm − b11(κ) cos κτm
= b23(κ),

(5.4)

where b11(κ) = W4κ
4−W2κ

2+W0, b12(κ) = W3κ
3−W1κ, b13(κ) = κ5−E3κ

3+
E1κ, b23(κ) = E4κ

4 − E2κ
2 + E0, which implies

κ10 + c4κ
8 + c3κ

6 + c2κ
4 + c1κ

2 + c0 = 0 (5.5)
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with c4 = −2E3 + E2
4 − W 2

4 , c3 = 2E1 + E2
3 − 2E4E2 + 2W4W2 − W 2

3 , c2 =
E2
2 − W 2

2 − 2E3E1 + 2E4E0 − 2W4W0 + 2W3W1, c1 = E2
1 − 2E0E2 + 2W2W0 −

W 2
1 , c0 = E2

0 − W 2
0 . For simplicity denote ν = κ2, then Eq. (5.5) turns into

L(ν) := ν5 + c4ν
4 + c3ν

3 + c2ν
2 + c1ν + c0 = 0. (5.6)

If the assumption: (H1) : Eq. (5.6) has a positive root ν0 is satisfied, then, Eq. (5.5)
has a positive root κ0 = √

ν0. Eliminating sin κτm in Eq. (5.4) and letting κ = κ0, we
can obtain that

τ ∗
m = 1

κ0
arccos

(
b13(κ0)b12(κ0) − b23(κ0)b11(κ0)

b212(κ0) + b211(κ0)

)

.

Substituting λ(τm) into Eq. (5.3), taking derivative with respect to τm , we obtain

⎛

⎝5λ5 +
1∑

j=4

j E jλ
j−1 + (

1∑

j=4

jW jλ
j−1 − τm

0∑

j=4

Wjλ
j )e−λτm

⎞

⎠
dλ

dt

= λ

0∑

j=4

Wjλ
j e−λτm

Therefore,

(
dλ

dτm

)−1

= (5λ4 + ∑1
j=4 j E jλ

j−1)eλτm + ∑1
j=4 jW jλ

j−1

λ
∑0

j=4 Wjλ j
− τm

λ
.

Thus, when λ = iκ0, we can get Re
(

dλ
dτm

)−1

λ=iκ0
= g

′
(ν0)

b212(ν
2
0 )+b211(ν

2
0 )

. It can be seen that

Re
(

dλ
dτm

)−1

λ=iκ0
�= 0 if the assumption: (H2) : L′

(ν0) = dL(ν)
dν

|ν=ν0 �= 0 is satisfied.

Therefore, by the Hopf bifurcation theorem [25], Theorem 3.2 can be obtained if (H1)

and (H2) hold. ��

Proof of Theorem 3.4. For τm = 0, Eq. (3.3) reduced to the following equation

λ5 + F4λ
4 + F3λ

3 + F2λ
2 + F1λ + F0 +

(
X4λ

4 + X3λ
3 + X2λ

2 + X1λ + X0

)

e−λτh = 0 (5.7)

with Fj = p0 j + p1 j ( j = 0, 1, 2, 3, 4), X4 = p24, X j = p2 j + p3 j ( j =
0, 1, 2, 3).

Suppose that λ = iκ is a root of Eq. (5.7), then we have
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d11(κ) sin κτh + d12(κ) cos κτh = d13(κ), d12(κ) sin κτh − d11(κ) cos κτh = d23(κ),

(5.8)

where d11(κ) = X4κ
4 − X2κ

2 + X0, d12(κ) = X3κ
3 − X1κ, d13(κ) = κ5 − F3κ3 +

F1κ, d23(κ) = F4κ4 − F2κ2 + F0, which implies

κ10 + r4κ
8 + r3κ

6 + r2κ
4 + r1κ

2 + r0 = 0 (5.9)

with r4 = −2F3+F2
4 −X2

4, r3 = 2F1+F2
3 −2F4F2+2X4X2−X2

3, r2 = F2
2 −X2

2−
2F3F1+2F4F0−2X4X0+2X3X1, r1 = F2

1 −2F0F2+2X2X0−X2
1, r0 = F2

0 −X2
0 .

For simplicity denote ν = κ2, then Eq. (5.9) turns into

L1(ν) := ν5 + r4ν
4 + r3ν

3 + r2ν
2 + r1ν + r0 = 0. (5.10)

If the assumption: (H3) : Eq. (5.10) has a positive root ν1 is satisfied, then, Eq. (5.9)
has a positive root κ1 = √

ν1. Eliminating sin κτh in Eq. (5.8) and letting κ = κ1, we

can obtain that τ ∗
h = 1

κ1
arccos

(
d13(κ1)d12(κ1)−d23(κ1)d11(κ1)

d212(κ1)+d211(κ1)

)

.

Similar to the proof of Theorem 3.3, differentiating Eq. (5.7) with respect τh

and substituting λ = iκ1, we can get Re
(

dλ
dτh

)−1

λ=iκ1
= L′

1(ν1)

d212(ν
2
1 )+d211(ν

2
1 )

. Thus,

Re
(

dλ
dτh

)−1

λ=iκ1
�= 0 if the assumption: (H4) : L′

1(ν1) = dL1(ν)
dν

|ν=ν1 �= 0 is satis-

fied. Therefore, by the Hopf bifurcation theorem [25], Theorem 3.4 can be obtained
if (H3) and (H4) hold. ��
Proof of Theorem 3.5. For τm = τh = τ > 0, Eq. (3.3) reduced to the following
equation

λ5 +
0∑

j=4

g jλ
j +

0∑

j=4

y1 jλ
j e−λτ +

0∑

j=3

y2 jλ
j e−2λτ = 0 (5.11)

with g j = p0 j , y1 j = p1 j + p2 j , j = 0, · · · , 4, y2 j = p3 j , j = 0, · · · , 3.
Multiplying eλτ on both sides of Eq. (5.11), we can get

⎛

⎝λ5 +
0∑

j=4

g jλ
j

⎞

⎠ eλτ +
0∑

j=4

y1 jλ
j +

0∑

j=3

y2 jλ
j e−λτ = 0 (5.12)

Let λ = iκ be a root of Eq. (5.12), then we have e11(κ) sin κτ + e12(κ) cos κτ =
e13(κ), e21(κ) sin κτ + e22(κ) cos κτ = e23(κ), with e11(κ) = g4κ4 + (−g2 +
y22)κ2 + g0 − y20, e12(κ) = κ5 − (g3 + y23)κ3 + (g1 + y21)κ, e21 = −κ5 +
(g3 − y23)κ3 − (g1 − y21)κ, e22 = g4κ4 − (g2 + y22)κ2 + g0 + y20, e13(κ) =
y13κ3 − y11κ, e23(κ) = −y14κ4 + y12κ2 − y10, which implies

sin κτ = e13e22 − e12e23
e11e22 − e12e21

, cos κτ = e11e23 − e13e21
e11e22 − e12e21

. (5.13)
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Consequently, the following equation with respect to κ is obtained

κ20 +
0∑

j=9

s jκ
2 j = 0 (5.14)

with

s9 = −2g24 − y214 − 4g3, s8 = 4g1 + 2g4(g2 − y22) + (g24 + 2g3)
2 − (y13

− g4y14)
2 + 2y14(y12 + g4y13

+ y14(g3 + y23)),+2g4(g2 + y22) + 2(g3 + y23)(g3 − y23),

s7 = 2(y13 − g4y14)(y11 − g4y12 − y14(g2 − y22) + y13(g3 − y23)) − 2g4(g0 − y20)

− 2(g24 + 2g3)(2g1 + g4(g2 − y22) + g4(g2 + y22) + (g3 + y23)(g3 − y23))

− 2y14(y10 + g4y11 + y14(g1 + y21) + y13(g2 + y22) + y12(g3 + y23))

− 2g4(g0 + y20) − 2(g1 + y21)(g3 − y23) − 2(g2 + y22)(g2 − y22)

− 2(g3 + y23)(g1 − y21) − (y12 + g4y13 + y14(g3 + y23))
2,

s6 = 2(g24 + 2g3)(g4(g0 − y20) + g4(g0 + y20) + (g1 + y21)(g3 − y23) + (g2 + y22)(g2 − y22),

+ (g3 + y23)(g1 − y21)) − (y11 − g4y12 − y14(g2 − y22) + y13(g3 − y23))
2

+ 2(y12 + g4y13 + y14(g3 + y23))(y10 + g4y11 + y14(g1 + y21)

+ y13(g2 + y22) + y12(g3 + y23)) + 2(g0 + y20)(g2 − y22) + 2(g1 + y21)(g1 − y21)

+ 2(g2 + y22)(g0 − y20) + (2g1 + g4(g2 − y22) + g4(g2 + y22) + (g3 + y23)(g3 − y23))
2

+ 2(y13 − g4y14)(g4y10 + y14(g0 − y20) − y13(g1 − y21) + y12(g2 − y22) − y11(g3 − y23))

+ 2y14(y13(g0 + y20) + y12(g1 + y21) + y11(g2 + y22) + y10(g3 + y23)),

s5 = −2(y11 − g4y12 − y14(g2 − y22) + y13(g3 − y23))(g4y10 + y14(g0 − y20)

− y13(g1 − y21) + y12(g2 − y22) − y11(g3 − y23))

− 2(y12 + g4y13 + y14(g3 + y23))(y13(g0 + y20)

+ y12(g1 + y21) + y11(g2 + y22) + y10(g3 + y23))

− 2(2g1 + g4(g2 − y22) + g4(g2 + y22)

+ (g3 + y23)(g3 − y23))(g4(g0 − y20) + g4(g0 + y20) + (g1 + y21)(g3 − y23)

+ (g2 + y22)(g2 − y22) + (g3 + y23)(g1 − y21)) − (y10 + g4y11

+ y14(g1 + y21) + y13(g2 + y22)

+ y12(g3 + y23))
2 − 2y14(y11(g0 + y20) + y10(g1 + y21))

− 2(g24 + 2g3)((g0 + y20)(g2 − y22)

+ (g1 + y21)(g1 − y21) + (g2 + y22)(g0 − y20)) − 2(g0 + y20)(g0 − y20)

− 2(y13 − g4y14)(y12(g0 − y20) − y11(g1 − y21) + y10(g2 − y22)),

s4 = 2((g0 + y20)(g2 − y22) + (g1 + y21)(g1 − y21)

+ (g2 + y22)(g0 − y20))(2g1 + g4(g2 − y22)

+ g4(g2 + y22) + (g3 + y23)(g3 − y23)) − (g4y10 + y14(g0 − y20)

− y13(g1 − y21) + y12(g2 − y22),

− y11(g3 − y23))
2 + 2(y13(g0 + y20) + y12(g1 + y21)
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+ y11(g2 + y22) + y10(g3 + y23))(y10

+ g4y11 + y14(g1 + y21) + y13(g2 + y22) + y12(g3 + y23))

+ 2(y11(g0 + y20) + y10(g1 + y21))(y12

+ g4y13 + y14(g3 + y23)) + (g4(g0 − y20) + g4(g0 + y20) + (g1 + y21)(g3 − y23)

+ (g2 + y22)(g2 − y22) + (g3 + y23)(g1 − y21))
2 + 2(y12(g0 − y20) − y11(g1 − y21)

+ y10(g2 − y22))(y11 − g4y12 − y14(g2 − y22) + y13(g3 − y23))

+ 2(g0 + y20)(g0 − y20)(g
2
4 + 2g3)

+ 2y10(g0 − y20)(y13 − g4y14),

s3 = 2(y12(g0 − y20) − y11(g1 − y21) + y10(g2 − y22))(g4y10 + y14(g0 − y20) − y13(g1 − y21)

+ y12(g2 − y22) − y11(g3 − y23)) − 2((g0 + y20)(g2 − y22) + (g1 + y21)(g1 − y21)

+ (g2 + y22)(g0 − y20))(g4(g0 − y20) + g4(g0 + y20) + (g1 + y21)(g3 − y23)

+ (g2 + y22)(g2 − y22) + (g3 + y23)(g1 − y21)) − (y13(g0 + y20) + y12(g1 + y21)

+ y11(g2 + y22) + y10(g3 + y23))
2 − 2(y11(g0 + y20)

+ y10(g1 + y21))(y10 + g4y11 + y14(g1 + y21)

+ y13(g2 + y22) + y12(g3 + y23)) − 2y10(g0 − y20)(y11 − g4y12

− y14(g2 − y22) + y13(g3 − y23))

− 2(g0 + y20)(g0 − y20)(2g1 + g4(g2 − y22) + g4(g2 + y22) + (g3 + y23)(g3 − y23)),

s2 = 2(y11(g0 + y20) + y10(g1 + y21))(y13(g0 + y20) + y12(g1 + y21) + y11(g2 + y22)

+ y10(g3 + y23)) − (y12(g0 − y20) − y11(g1 − y21)

+ y10(g2 − y22))
2 + ((g0 + y20)(g2 − y22)

+ (g1 + y21)(g1 − y21) + (g2 + y22)(g0 − y20))
2 + 2(g0 + y20)(g0 − y20)(g4(g0 − y20)

+ g4(g0 + y20) + (g1 + y21)(g3 − y23) + (g2 + y22)(g2 − y22) + (g3 + y23)(g1 − y21))

− 2y10(g0 − y20)(g4y10 + y14(g0 − y20) − y13(g1 − y21)

+ y12(g2 − y22) − y11(g3 − y23)),

s1 = 2y10(g0 − y20)(y12(g0 − y20) − y11(g1 − y21) + y10(g2 − y22))

− 2(g0 + y20)(g0 − y20)((g0 + y20)(g2 − y22) + (g1 + y21)(g1 − y21)

+ (g2 + y22)(g0 − y20))

− (y11(g0 + y20) + y10(g1 + y21))
2, s0 = (g0 + y20)

2(g0 − y20)
2 − y210(g0 − y20)

2.

For simplicity denote ν = κ2, then Eq. (5.14) turns into

g(ν) := ν10 +
0∑

j=9

s jν
j = 0. (5.15)

If the assumption: (H5) : Eq. (5.15) has a positive root ν2 is satisfied. then Eq. (5.14)
has a positive root κ2 = √

ν2. Letting κ = κ2 in Eq. (5.13), we can obtain that

τ ∗ = 1

κ2
arccos

(
e13(κ2)e21(κ2) − e11(κ2)e23(κ2)

e11(κ2)e22(κ2) − e12(κ2)e21(κ2)

)

.
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Similar to the proof of Theorem 3.3, differentiating Eq. (5.11) with respect τ and
substituting λ = iκ2, we can get

Re

(
dλ

dτ

)−1

λ=iκ2

= e2e3 − e1e4
κ2(e23 + e24)

,

where e1 = −3y13κ3
2 + y11 + (5κ4

2 − 3g3κ2
2 + g1 − 3y23κ2

2 + y21) cos κ2τ
∗ +

(2y22κ2 + 4g4κ3
2 − 2g2κ2) sin κ2τ

∗, e2 = −4y14κ3
2 + 2y12κ2 + (5κ4

2 − 3g3κ2
2 + g1 +

3y23κ2
2 − y21) sin κ2τ

∗ +(2y22κ2−4g4κ3
2 +2g2κ2) sin κ2τ

∗, e3 = e11(κ2) cos κ2τ
∗−

e21(κ2) sin κ2τ
∗, e4 = e12(κ2) cos κ2τ

∗+e22(κ2) sin κ2τ
∗.Therefore,Re

( dλ
dτ

)−1
λ=iκ2

�=
0 if the assumption: (H6) : e2e3 − e1e4 �= 0 is satisfied. Consequently, by the Hopf
bifurcation theorem [25], Theorem 3.4 can be obtained if (H5) and (H6) hold. ��
Proof of Theorem 3.6. For τm > 0 and τh ∈ (0, τ ∗

h ), Eq. (3.3) can be written as

λ5 +
0∑

j=4

(
p0 j + p2 j e

−λτh
)
λ j +

⎛

⎝p14λ
4 +

0∑

j=3

(
p1 j + p3 j e

−λτh
)
λ j

⎞

⎠ e−λτm = 0.

Considering τh as a parameter and letting λ = iκ , we can obtain

f11(κ) sin κτm + f12(κ) cos κτm = f13(κ), f12(κ) sin κτm − f11(κ) cos κτm = f23(κ),

with f11(κ) = −p13κ3 + p11κ − (p33κ3 − p31κ) cos κτh − (−p32κ2 + p30) sin κτh,

f12(κ) = p14κ4−p12κ2+p10−(p33κ3−p31κ) sin κτh+(−p32κ2+p30) cos κτh, f13(κ) =
−(p04κ4−p02κ2+p00)+(p23κ3−p21κ) sin κτh−(p24κ4−p22κ2+p20) cos κτh, f23(κ) =
(κ5 − p03κ3 + p01κ) − (p23κ3 − p21κ) cos κτh − (p24κ4 − p22κ2 + p20) sin κτh,

which implies

κ10 +
0∑

i=4

q0 jκ
2 j +

(
0∑

i=4

q1 jκ
2 j

)

cos κτh +
(

0∑

i=4

q2 jκ
2 j

)

κ sin κτh = 0

(5.16)

with

q04 = p204 − p214 + p224 − 2p03, q03 = p203 − p213 + p223 − p233 + 2p01

− 2p02 p04 + 2p12 p14 − 2p22 p24,

q02 = p202 − p212 + p222 − p232 + 2(p00 p04 − p01 p03 − p10 p14 + p11 p13

+ p20 p24 − p21 p23 + p31 p33),

q01 = p201 − p211 + p221 − p231 − 2p00 p02 + 2p10 p12 − 2p20 p22 + 2p30 p32,

q00 = p200 − p210 + p220 − p230, q14 = 2p04 p24 − 2p23,

q13 = 2p21 − 2p02 p24 + 2p03 p23 − 2p04 p22 − 2p13 p33 + 2p14 p32,

q12 = 2p00 p24 − 2p01 p23 + 2p02 p22 − 2p03 p21 + 2p04 p20 + 2p11 p33
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− 2p12 p32 + 2p13 p31 − 2p14 p30,

q11 = 2(p01 p21 − p00 p22 − p02 p20 + p10 p32 − p11 p31 + p12 p30),

q10 = 2p00 p20 − 2p10 p30, q24 = −2p24, q23 = 2p22 + 2p03 p24 − 2p04 p23 + 2p14 p33,

q22 = 2p02 p23 − 2p01 p24 − 2p20 − 2p03 p22 + 2p04 p21 − 2p12 p33 + 2p13 p32 − 2p14 p31,

q21 = 2p01 p22 − 2p00 p23 − 2p02 p21 + 2p03 p20 + 2p10 p33 − 2p11 p32 + 2p12 p31 − 2p13 p30,

q20 = 2p00 p21 − 2p01 p20 − 2p10 p31 + 2p11 p30.

If the assumption: (H7) : Eq. (5.16) has a positive root κ̂ is satisfied, then, from Eq.

(5.8) we can obtain that τ̂m = 1
κ̂
arccos

(
f13(κ̂) f12(κ̂)− f23(κ̂) f11(κ̂)

f 212(κ̂)+ f 211(κ̂)

)

.

Similar to the proof of Theorem 3.3, differentiating Eq. (5.7) with respect τm

and substituting λ = i κ̂ , we can get Re
(

dλ
dτm

)−1

λ=i κ̂
= q1q4−q2q3

κ̂(q21+q22 )
, where q1 =

(p14κ̂4 − p12κ̂2 + p10 + p30 − p32κ̂2) cos κ̂ τ̂m + (p11κ̂ − p13κ̂3 + p33κ̂3 −
p31κ̂) sin κ̂ τ̂m, q2 = −(p14κ̂4 − p12κ̂2 + p10 + p30 − p32κ̂2) sin κ̂ τ̂m + (p11κ̂ −
p13κ̂3 + p33κ̂3 − p31κ̂) cos κ̂ τ̂m, q3 = 5κ̂4 − 3p03κ̂2 + p01 + (p21 − 3p23κ̂2 −
τh((p24κ̂4− p22κ̂2+ p20))) cos κ̂τh+(2p22κ̂−4p24κ̂3−τh(p23κ̂3− p21κ̂)) sin κ̂τh+
(p11−3p13κ̂2) cos κ̂ τ̂m +(2p12κ̂ −4p14κ̂3) sin κ̂ τ̂m +(p31−3p33κ̂2−τh(−p32κ̂2+
p30)) cos κ̂(τh + τ̂m)+(2p32κ̂ −τh(p31κ̂ − p33κ̂3)) sin κ̂(τh + τ̂m), q4 = −4p04κ̂3+
2p02κ̂ + (3p23κ̂2 − p21 + τh(p24κ̂4 − p22κ̂2 + p20)) sin κ̂τh + (2p22κ̂ − 4p24κ̂3 −
τh(p23κ̂3 − p21κ̂)) cos κ̂τh + (3p13κ̂2 − p11) sin κ̂ τ̂m
+(2p12κ̂ − 4p14κ̂3) cos κ̂ τ̂m + (3p33κ̂2 − p31 + τh(p30 − p32κ̂2)) sin κ̂(τh + τ̂m) +
(2p32κ̂ − τh(p31κ̂ − p33κ̂3)) cos κ̂(τh + τ̂m). Thus, Re

(
dλ
dτm

)−1

λ=i κ̂
�= 0 if the assump-

tion: (H8) : q1q4 − q2q3 �= 0 is satisfied. Therefore, by the Hopf bifurcation theorem
[25], Theorem 3.4 can be obtained if (H7) and (H8) hold. ��
Proof of Theorem 3.7. Define C = C([−1, 0],R5) the space of continuous real valued
functions. Let τm = τ̂m +� and make time-scaling t → t/τ̂m . Let x1(t) = Sh(t)− S∗

h ,
x2(t) = V (t) − V ∗, x3(t) = Ih(t) − I ∗

h , x4(t) = Rh(t) − R∗
h , x5(t) = Im(t) − I ∗

m ,
then model (1.2) is transformed into

dx(t)

dt
= L�(xt ) + F(�, xt ), (5.17)

where x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T ∈ R
5 and xt (θ) = x(t + θ) ∈

C([−1, 0],R5). In (5.17), L� : C → R
5 and F : R × C → R

5 are given by

L�(ϕ) = (τ̂m + �)

(

A
′
ϕ(0) + C

′
ϕ(− τ ∗

h

τ̂m
) + B

′
ϕ(−1)

)

,

where

A
′ =

⎛

⎜
⎜
⎝

a11 0 0 0 0
a21 a22 0 0 0
0 0 a33 0 0
0 0 a43 a22 0
0 0 0 0 a55

⎞

⎟
⎟
⎠ , B

′ =

⎛

⎜
⎜
⎝

b11 0 0 0 b15
0 0 0 0 0
b31 0 0 0 b35
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎠ ,C

′ =

⎛

⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 c53 0 c55

⎞

⎟
⎟
⎠ .
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with a11 = −μh − η, a21 = η, a22 = −μh, a33 = −(μh + α + γ ), a43 =
γ, a55 = −μm, b11 = −βh I ∗

m, b15 = −βh S∗
h , b31 = βh I ∗

m, b35 = βh S∗
h , c53 =

βm( bm
μm

− I ∗
m), c55 = −βm I ∗

h , and

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−βh x1(−
τ∗
h

τ̂m
)x5(−

τ∗
h

τ̂m
)

0

βh x1(−
τ∗
h

τ̂m
)x5(−

τ∗
h

τ̂m
)

0
−βmx3(−1)x5(−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

According to the Riesz representation theorem, there exists a bounded variation
function ζ(θ, μ) in θ ∈ [−1, 0] such that L�(ϕ) = ∫ 0

−1 dζ(θ, �)ϕ(θ), ϕ ∈ C . We
select

ζ(θ, �) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(τ̂m + �)(A
′ + B

′ + C
′
), θ = 0,

(τ̂m + �)(B
′ + C

′
), θ ∈ [− τ̂m

τ∗
h
, 0),

(τ̂m + �)B
′
, θ ∈ (−1,− τ̂m

τ∗
h
),

0, θ = −1,

For ϕ ∈ C , define

A(�)ϕ =
⎧
⎨

⎩

dϕ(θ)

dθ
, θ ∈ [−1, 0),

∫ 0

−1
dζ(�, θ)ϕ(θ), θ = 0,

(5.18)

and R(μ)ϕ =
{
0, θ ∈ [−1, 0)

F(�, ϕ), θ = 0
. Then model (5.17) is equivalent to

dxt
dt

= A(�)xt + R(�)xt , (5.19)

where xt = u(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R5)∗), being the conjugated space of C1([0, 1],R5), define

A∗ψ(s) =
⎧
⎨

⎩

− dψ(s)

ds
, s ∈ (0, 1],

∫ 0

−1
dζ T (t, 0)ψ(−t), s = 0,

and the bilinear inner product

〈ψ, ϕ〉 = ψ̄(0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dζ(θ)ϕ(ξ)dξ, (5.20)
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where ζ(θ) = ζ(θ, 0). From the discussion in Sect. 4, we know that ±i κ̂ τ̂m are eigen-
values of A(0). Thus, ±i κ̂ τ̂m are also eigenvalues of A∗(0). We will calculate the
eigenvectors of A(0) and A∗(0) with respond to ±i κ̂ τ̂m .

Assume q(θ) = (1, q2, q3, q4, q5)T ei κ̂ τ̂mθ is the eigenvector of A(0) corresponding
to i κ̂ , namely, A(0)q(θ) = i κ̂ τ̂mq(θ) and let q∗(s) = D(1, q∗

1 , q∗
2 , q∗

3 , q∗
4 )T ei κ̂ τ̂ms is

the eigenvector corresponding to −i κ̂ , then we have

q1 = a21 + b25e−i κ̂τ∗
h q4

i κ̂ − a22
, q2 = (i κ̂ − c55e−i κ̂ τ̂m )q4

c53e−i κ̂ τ̂m
,

q3 = a43(i κ̂ − c55e−i κ̂ τ̂m )

c53e−i κ̂ τ̂m
q4, q4 = b15e−i κ̂τ∗

h

i κ̂ − a11 − b11e−i κ̂τ∗
h
,

q∗
1 = 0, q∗

2 = −i κ̂ − a11 − b11e−i κ̂τ∗
h

b31e−i κ̂τ∗
h

, q∗
3 = 0,

q∗
4 = (−i κ̂ − a33)(−i κ̂ − a11 − b11e−i κ̂τ∗

h )

c53b31e−i κ̂(τ∗
h +τ̂m )

,

where D is a constant satisfying 〈q∗(s), q(θ)〉 = 1. By (5.20), we get

〈q∗(s), q(θ)〉
= D̄(1 + q2q̄

∗
2 + q4q̄

∗
4 + τ ∗

h e
−i κ̂τ∗

h (b11 + b31q
∗
2 + q1b32q

∗
2 + q4(b15 + b35q

∗
2 ))

+ τ̂me
−i κ̂ τ̂h q∗

4 (c53q2 + c55q4))

Therefore, we can choose

D̄ = (1 + q2q̄
∗
2 + q4q̄

∗
4 + τ ∗

h e
−i κ̂τ∗

h (b11 + b31q
∗
2 + q1b32q

∗
2 + q4(b15 + b35q

∗
2 ))

+τ̂me
−i κ̂ τ̂h q∗

4 (c53q2 + c55q4))
−1

such that 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
To compute the center manifold C0 at � = 0. Define

z(t) = 〈q∗, xt 〉, W (t, θ) = xt (θ) − z(t)q(θ) − z̄(t)q̄(θ). (5.21)

On C0, we have

W (t, θ) = W (z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · . (5.22)

Note thatW is real if xt is real, so we deal the real solutions only. For solution xt ∈ C0
with ζ = 0, we have

dz(t)

dt
= iωz + q̄∗(0) f (0,W (z(t), z̄(t), 0)) + z(t)q(θ) + z̄(t)q̄(θ)) � iωz

+ q̄∗(0) f0(z, z̄).
(5.23)
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Denote f0(z, z̄) � fz2
z2
2 + fzz̄ zz̄ + fz2 z̄ z

2 z̄ + · · · , and write equation (5.23) as
dz(t)
dt = iωz + g(z, z̄). Besides, denote

g(z, z̄) = q̄∗(0) f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · · . (5.24)

Then we have

g20 = q̄∗(0) fz2 , g11 = q̄∗(0) fzz̄, g02 = q̄∗(0) fz̄2 , g21 = q̄∗(0) fz2 z̄ . (5.25)

From (5.21) and (5.22), it follows that

xt (θ) = (1, q1, q2, q3, q4)
T ei κ̂ τ̂mθ z + (1, q̄1, q̄2, q̄3, q̄4)

T e−i κ̂ τ̂mθ z̄

+ W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · .

We have

x1t (− τ ∗
h

τ̂m
) = ze−i κ̂τ∗

h + z̄ei κ̂τ∗
h + W (1)

20 (− τ ∗
h

τ̂m
)
z2

2
+ W (1)

11 (− τ ∗
h

τ̂m
)zz̄ + W (1)

02 (− τ ∗
h

τ̂m
)
z̄2

2
+ · · · ,

x5t (− τ ∗
h

τ̂m
) = q4ze

−i κ̂τ∗
h + q̄4 z̄e

i κ̂τ∗
h + W (5)

20 (− τ ∗
h

τ̂m
)
z2

2
+ W (5)

11 (− τ ∗
h

τ̂m
)zz̄ + W (5)

02 (− τ ∗
h

τ̂m
)
z̄2

2
+ · · · ,

x3t (−1) = q2ze
−i κ̂ τ̂m + q̄2 z̄e

i κ̂ τ̂m + W (3)
20 (−1)

z2

2
+ W (3)

11 (−1)zz̄ + W (3)
02 (−1)

z̄2

2
+ · · · ,

x5t (−1) = q4ze
−i κ̂ τ̂m + q̄4 z̄e

i κ̂ τ̂m + W (5)
20 (−1)

z2

2
+ W (5)

11 (−1)zz̄ + W (5)
02 (−1)

z̄2

2
+ · · · ,

fz2 =

⎛

⎜
⎜
⎜
⎜
⎝

−βhq4e
−2i κ̂τ∗

h

0
βhq4e

−2i κ̂τ∗
h

0
−βmq2q4e

−2i κ̂ τ̂m

⎞

⎟
⎟
⎟
⎟
⎠

, fzz̄ =

⎛

⎜
⎜
⎜
⎜
⎝

−βh(q4 + q̄4)
0

βh(q4 + q̄4)
0

−βm(q2q4 + q̄2q̄4)

⎞

⎟
⎟
⎟
⎟
⎠

, fz̄2 =

⎛

⎜
⎜
⎜
⎜
⎝

−βhq̄4e
2i κ̂τ∗

h

0
βhq̄4e

2i κ̂τ∗
h

0
−βmq̄2q̄4e

2i κ̂ τ̂m

⎞

⎟
⎟
⎟
⎟
⎠

,

fz2 z̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−βh(
1

2
W (1)

20 (− τ ∗
h

τ̂m
)q̄4e

i κ̂τ∗
h + W (5)

11 (− τ ∗
h

τ̂m
)e−i κ̂τ∗

h + 1

2
W (5)

20 (− τ ∗
h

τ̂m
)e−i κ̂τ∗

h )

0

βh(
1

2
W (1)

20 (− τ ∗
h

τ̂m
)ei κ̂τ∗

h q̄4 + W (5)
11 (− τ ∗

h

τ̂m
)e−i κ̂τ∗

h + 1

2
W (5)

20 (− τ ∗
h

τ̂m
)q̄4e

−i κ̂τ∗
h )

0

−βm(
1

2
W (3)

20 (−1)q̄4e
i κ̂ τ̂m + W (3)

11 (−1)q4e
−i κ̂ τ̂m + 1

2
W (5)

20 (−1)q̄2e
−i κ̂ τ̂m )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.26)

In order to get g11, we still need to compute W20(θ) and W11(θ). From (5.19) and
(5.21), we have

Ẇ = ẋt − żq(θ) − ˙̄zq̄(θ)

=
{
A(0)W − ḡq̄(θ) − gq(θ), θ ∈ [−1, 0),

A(0)W − gq(0) − ḡq(0) + f0(z, z̄), θ = 0.

(5.27)
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On the other hand, in C0, we can write (5.27) as

Ẇ = Wzż + Wz ˙̄z
= [W20(θ)z + W11(θ)z̄](i κ̂ τ̂m + g(z, z̄)) + [W11(θ)z + W02(θ)z̄]
(−i κ̂ τ̂m + ḡ(z, z̄)).

(5.28)

Then substituting (5.22) and (5.24) into (5.27) and (5.28), comparing the coefficients
of z2

2 and zz̄, one can get

(2i κ̂ τ̂m I − A)W20(θ) =
{

−g20q(θ) − ḡ02q̄(θ), s ∈ [−1, 0),

−g20q(0) − ḡ02q̄(0) + fz2 , s = 0,
(5.29)

−AW11(θ) =
{

−g11q(θ) − ḡ11q̄(θ), s ∈ [−1, 0),

−g11q(0) − ḡ11q̄(0) + fzz̄, s = 0,
(5.30)

From (5.18) and (5.29) we can see that when θ ∈ [−1, 0), W
′
20(θ) = 2i κ̂ τ̂mW02(τ )+

g20q(θ) + ḡ02q̄(θ), which has the solution

W20(θ) = ig02
κ̂ τ̂m

q(0)ei κ̂ τ̂mθ + i ḡ02
3κ̂ τ̂m

q̄(0)e−i κ̂ τ̂mθ + E1e2i κ̂ τ̂mθ . (5.31)

When θ = 0

∫ 0

−1
dζ(θ)W20(θ) = 2i κ̂ τ̂mW20 + g02q(0) + ḡ02q̄(0) − fz2 . (5.32)

Substituting equation (5.31) into (5.32), one can obtain

E1 =
(

2i κ̂ τ̂m I −
∫ 0

−1
e2i κ̂ τ̂mθdζ(θ)

)

fz2 . (5.33)

From (5.18) and (5.30) we can see that when θ ∈ [−1, 0), W
′
11(θ) = g11q(θ) +

ḡ11q̄(θ), which has the solution

W11(θ) = − ig11
κ̂ τ̂m

q(0)ei κ̂ τ̂mθ + i ḡ11
κ̂ τ̂m

q̄(0)e−i κ̂ τ̂mθ + E2. (5.34)

When θ = 0

∫ 0

−1
dζ(θ)W11(θ) = g11q(0) + ḡ11q̄(0) − fzz̄ . (5.35)

Substituting equation (5.34) into (5.35) one can obtain

E2 =
(∫ 0

−1
dζ(θ)

)

fzz̄ . (5.36)
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Therefore, from (5.25), (5.26), (5.33), (5.36) we can obtain

g20 = 2τ̂m D̄((−βhq4 + q̄∗
2βhq4)e

−2κ̂τ∗
h − βmq̄

∗
4q2q4e

−2κ̂ τ̂m ),

g11 = τ̂m D̄(βh(q̄4 + q4)(−1 + q̄∗
2 )e−2κ̂τ∗

h − βmq̄
∗
4 (q2q̄4 + q̄2q4)e

−2κ̂ τ̂m ),

g02 = 2τ̂m D̄((−βhq̄4 + q̄∗
2βhq4)e

−2κ̂τ∗
h − βmq̄

∗
4 q̄2q̄4e

−2κ̂ τ̂m )

g21 = 2τ̂m D̄[−βh(
1

2
W (1)

20 (− τ ∗
h

τ̂m
)q̄4e

i κ̂τ∗
h + W (5)

11 (− τ ∗
h

τ̂m
)e−i κ̂τ∗

h + 1

2
W (5)

20 (− τ ∗
h

τ̂m
)e−i κ̂τ∗

h )

+ q̄∗
2βh(

1

2
W (1)

20 (− τ ∗
h

τ̂m
)ei κ̂τ∗

h q̄4 + W (5)
11 (− τ ∗

h

τ̂m
)e−i κ̂τ∗

h + 1

2
W (5)

20 (− τ ∗
h

τ̂m
)q̄4e

−i κ̂τ∗
h )

− q̄∗
4βm(

1

2
W (3)

20 (−1)q̄4e
i κ̂ τ̂m + W (3)

11 (−1)q4e
−i κ̂ τ̂m + 1

2
W (5)

20 (−1)q̄2e
−i κ̂ τ̂m )].

After analysis and computation, we have the following quantities:

C1(0) = i

2ω

(
g20g11 − 2|g11|2 − 1

3
|g02|2

) + g21
2

, μ2 = − Re{C1(0)}
Re{λ′(τ̂m)} ,

β2 = 2Re{C1(0)}, T2 = − Im(C1(0)) + μ2 Im{λ′(τ̂m)}
ω

.
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