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Abstract

In this paper, we develop a computational approach for fractal-fractional integro-
differential equations (FFIDEs) in Atangana—Riemann-Liouville sense. This plan
focuses on the Chelyshkov polynomials (ChPs) and the utilization of the Legendre—
Gauss quadrature rule. The operational matrices (OMs) of integration, integer-order
derivative and fractal-fractional-order derivative are calculated. These matrices in com-
parison to OMs existing in other methods are more accurate. The method consists of
approximating the exiting functions in terms of basis functions. Using the provided
OMs alongside the Legendre collocation points, the original problem is converted
into a set of nonlinear algebraic equations containing unknown parameters. An error
analysis is presented to demonstrate the convergence order of the approach. We demon-
strate the effectiveness and reliability of the proposed technique by solving numerical
examples.

Keywords Fractal-fractional integro-differential equations - Mittag—Leffler kernel -
Operational matrix - Chelyshkov polynomials - Convergence analysis.

Mathematics Subject Classification 28A80 - 41A35 - 49K20

1 Introduction

Fractional integral and derivative can be used in characterizing hereditary properties of
dynamical systems. Lately, a novel concept for the fractional-order operator with two
orders has been introduced. The first-order is corresponding to the fractional derivative
and the second-order is corresponding to the fractal differentiation. Fractal-fractional
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(FF) equations are receiving considerable attention and interest and been proven to
model of many phenomena such as:

e FElectrical engineering (chaotic behavior of memory resistor to control the flow
of electrical current in a circuit and recollecting the amount of charge that has
previously flowed through it [1]).

e Heat transfer and fluid flow (chaotic behavior of convective fluid movement inside

the ellipsoid with heterogeneous external heating [2]).

Finance (dynamics of competition among rural and commercial banks [3], [4]).

Biology (epidemiological model of the Ebola virus [5]).

Dynamical systems (modeling attractors of chaotic dynamical systems [6]).

Drilling and petroleum engineering (dynamics of drilling system activated by

electric induction motor [7]).

Disease (malaria disease mathematical model [8]).

Energy ( mathematical model for emissions of carbon dioxide (CO 2) [9]).

Complex dynamics (chemostat model [10]).

Smoking models [11].

The wide range applications of fractional calculus in modeling and analysis of many
phenomena, together with the difficulty of computing analytical solutions of FF order
differential equations, have attracted substantial attention to study these equations.
In [12], a meshless scheme was introduced to solution of the FF advection—diffusion
equation. The authors in [13] have applied ChPs for solving the FF Emden Fowler equa-
tion. The Mott polynomials in conjunction with the Legendre-Gauss quadrature rule
(LGQR) have been employed for solving FF Fredholm-Volterra integro-differential
equations in [14]. In [15], the Pell-Lucas polynomials and the LGQR have been used
to solve FF optimal control and variational problems. Authors in [16, 17] derived
sufficient criteria for the existence and uniqueness of the solution to nonlinear FF
differential equations. Heydari [18, 19] explored the approximate solution of non-
linear FF optimal control problems. Araz [20] introduced a computational approach
for solving FF Volterra integro-differential equations. The authors in [5] suggested a
numerical simulation for the FF Ebola virus. Authors in [21] used Miintz-Legendre
polynomials for solving FF 2D optimal control problems. In [22], the fractional shifted
Morgan-Voyce neural network is applied to solve FF pantograph differential equations.
Fractional integro-differential equations find application in the modeling of diverse
physical phenomena, such as mechanics and plasma physics [23], and biological mod-
els [24, 25]. There have been proposed different numerical methods to solution this
class of equations. For example, Rahimkhani et al. [26] have utilized fractional-order
Bernoulli functions to solve integro-differential equations (IDEs) involving fractional
derivative. Also, they [27] applied the Hahn wavelets collocation method combined
with Laplace transform method for solving these problems. Khader and Sweilam [28]
proposed the pseudo-spectral scheme to solve system of fractional Volterra IDEs. Saa-
datmandi and Dehghan [29] have employed the Legendre collocation method together
with the Gaussian integration method, Nemati et al. [30] have considered the sec-
ond kind Chebyshev spectral method, Nemati et al. [31] have developed Legendre
wavelet collocation method, Rahimkhani and Ordokhani [32] have applied fractional
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alternative Legendre functions, Doha et al. [33] have considered the shifted Legendre-
Gauss-Lobatto collocation scheme for solving fractional IDEs.

In this article, we aim at designing a computational method based on Chelyshkov
collocation scheme and OMs for solving FFIDEs in Atangana-Riemann-Liouville (A-
R-L) sense. The orthogonal Chelyshkov polynomials are introduced in [34]. These
polynomials have the analogous properties to those of the classical orthogonal poly-
nomials. In fact, ChPs are an example of such alternative orthogonal ones, which are
not solutions of the hypergeometric type equations, but can be expressed in terms
of the Jacobi ones. These polynomials have been used for solving many different
kinds of problems [35-38]. By utilizing OMs of integration, integer-order derivative
and fractal-fractional-order derivative with the collocation points, the problem under
consideration can be simplified to solving a system of nonlinear algebraic equations.
Some of the main features of this scheme are listed as:

e The solution obtained by the proposed method is continuous and differentiable.

e A few terms of ChPs is required to obtain the high accuracy solutions.

e The established algorithm transforms solving the main problem into solving a
system of algebraic equations, which can be solved using a suitable numerical
technique.

e Approximation with the ChPs has short CPU time.

e Implementing this scheme is very convenient and effective for other kinds of FF
partial differential equations.

This paper is structured as follows: in Sect. 2, some preliminaries required in FF cal-
culus are given. In section 3, the OMs of integration, integer-order derivative and
fractal-fractional-order derivative based on ChPs are derived. In Sect.4, sufficient
conditions for the existence and uniqueness of solutions for the FFIDEs are provided.
Also, it is devoted to applying a numerical technique to solve the FFIDEs. We inves-
tigate the convergence analysis of our approximate technique in Sect.5. Section6 is
dedicated to multiple numerical simulations to show the precision of the presented
approach. The final section allocates to the concluding remarks of this investigations.

2 Preliminary notes

In this section, we will introduce valuable definitions and significant properties of FF
calculus, taken from [7, 18, 39].

Definition 1 We define the one and two—parameter Mittag—Leffler (M-L) functions
respectively by the following relations [39]:

]

t}’
Ey(ty= ) ——0, 0 e R, teR, 1
r () ;)F(mwrl) M
and -
tl‘
Ez?,z(l)=2m, 9,1€e RT,t € R. 2)
r=0
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Definition2 Letw, B € (0, 1) and the real valued function N (x, t) is continuous. We
define the following FF derivative of order (¢, 8) in the A-R-L sense with M-L kernel
as [7]

FFM pa.p _ A@) 4 (! —a(t —5)
0 Dt N(X,t)—mm 0 Ea ﬁ N(x,s)ds, (3)

where A(@) =1 —a + %

Definition 3 The FF integral 5 It“”s of order («, B) in the A-R-L sense is obtained
as [7]

B —a)tPIN(x, 1)
Aa)

t
frneen = zasts [N oo tas + .

Lemma 1 Suppose that a, B € (0, 1) and r € N U {0}. So, we obtain the following

relation [18]
—B+1 s
FFM naf.r  D@rlt” ot
D"t = —————F . 5
o Bl—a) 1=« ©)

Corollary By using Lemma 1, we can extract the following results [12]

A(ot)t1 P —at?
b D e = Zr Eare1(7—2),

o B —a)

B _ A(oc)t1 B —at®
FEMpePent — - Z( D't Earii (72,
FPM DEP sin(r) = MZ(—U’;”E (=
0 ¢ = /3(1—0() = o,2r+2 | —a s

Al =F & —at®

FFM no.fB _ _ 2
o D cos(t) = 50— ;( D't rEa,2r+1(1 —oz)' (6)

3 Properties of ChPs

In this section, we recall the definition and some properties of ChPs, OMs of FF
derivative, integer-order integration, and derivative of them.
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3.1 Chelyshkov polynomials (ChPs)

Let ®(r) = {¢j‘;(t)}?=0 be a set of the ChPs, where ¢; 7(¢) can be introduced on
t € [0, T'] by the following formula [38]:

",‘ .
i (F—J\(F+i+1) 1 .
$3(0) =Y (=1 f(?_j)(r;ij )7 j=01,...,M=1, (]
i=j

where 7 = M — 1. These polynomials are orthogonal functions and their orthogonality
condition is formulated as [38]

/ L (Ot = — ®)
0 Jsr L,r _J+l+1,

here §; ; is Kronecker delta.
Any arbitrary function N (r) € L?[0, T] can be approximated in terms of ChPs as

N(t) =Y nig p(t) = NTW (),

i=0

with

W) = [gop (1), p1,: (1), ..., (D1, ©)
and

N = [no, ni, ..., n;]T,

here we have

2i +1 (T .

n; = N(t)dt, n=0,1,...,r.
T Jo

Similarly, we shall approximate any bivariate function N (x, ¢) defined on L2 ([0, T']) x
([0, T']) with the ChPs as follows

N0 =Y nijy p (0,70 = ¥ NP (1),
i=0 j=0

where 7 = M' — 1 and N = [n;;]is a 7 x 7 matrix.
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3.2 FF derivative OM of ChPs
Theorem 1 Assume that Y (t) be the ChPs vector given by (9), then

FIMDEPw () ~ Qo BYW (), (10)
inwhicha, B € (0,1) and Q(a, B) is the F x F OM of FF derivative.

Proof From Eq. (9) we have

SRS R TOE [5 FMP&P gy (1), STMDEP g 2(0), ..., ETM D Py 1) |
(11)

Using Eq. (7), Lemma 1 and approximating the obtained elements in terms of the
ChPs, we get

y 1 FFMDaﬁ £
5D ) = ( D ( ) (’ P ) e
_ N Ptk +1) AT (k + D<A
Z( ) K—1I F—1i TKﬂ(l—a)
~ a.f
XEa,K+1<] —Ol) = zq,‘,j @7 (1), (12)
j=0
in which

a.p (2J+1) wei(F—=i\(F+Kc+1) AT K+1)
% = Z( b (K—l>< Fi > TB(1 —a)

T o
—ot
X / tK_ﬁ+1Ea,K+l (
0 1

)qu,;(t)dr. (13)
o

From Egs. (7) and (13), we have

T —at® T —at®
/ P Eypeq ¢ (0)dt = f P Eqy et
0 1—0( 0 l—Ol
7 A
v (T r —I—r + Ly
G (057
Z( 1), j }’ +I"+1 1
- r— ] F—j Tr

T —at®
x/ tKﬁ”“Ea,KH(l a)d;, (14)
o _
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substituting (14) into (13) and utilizing (12), we obtain that

;
FEM Dl 0 2> s (),

j=0

where

op (21+1)A(“) cirmicj (F=1) (F+r+1

qi,] - T,B(l ZZ( 1) o —i P

K=i r= j
F—j Frr+1\Tk+1)
X(r—j)( P ) e ot @ f), (15)

and

T —Olla
@(K,r,a,,f;):/ t"—ﬂ““Ea,Hl(l )dt.
0

—

By applying finite terms of the M-L series presented in Eq. (2), we can compute
Ok, r, a, B) from the following relation

T —Oll‘a
Ok, r,a, B) = / r“—ﬂ“*‘Ea,KH( a>d’
A -

1

_ /Ttk—ﬂ+r+1i (=Dfa‘r*t di
0 £ (1= o) Tl +x +1)

n

(=D (o)t Tt He—Ftr+2

To show the calculation procedure we choose 7 = 7 = 5, then we get

—1.36971 5.06126 —20.8451 39.0343  —74.5652
—0.995655 7.24907 —14.3655  11.8974 —16.0845
Q0903 _ | _0.043172 —0.124456  6.49917 —11.5771  4.30085
0.00358712 —0.00775258 —0.170063  8.08527 —13.3197
—0.000659327 0.00280109 —0.00722902 —0.0704058 9.16045

)

and
1.0458 —0.695908 —0.00172311 —0.365416 —0.0830235
—0.0294354  1.33872 —0.72447 —0.0598104 —0.298234
Q0608 _ | 0000994249 —0.0128173  1.45268  —0.751993 —0.103314

0.000725649 —0.00273143 —0.00155093  1.52118  —0.770821
—0.000078943 0.000351969 —0.00123675 0.0014097  1.57056

O
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3.3 Integration OM of ChPs

Theorem 2 The integration OM of ChPs can be obtained as

t
/jwamr:zwax (17)
0

where ¥ is the F X F OM of integration.

Proof From Eq. (9) we have

t t t t
| wa)dr:[ [ ewswar. [ oswar.... [ ¢;,;(r>dr] (s)
0 0 0 0

Using Eq. (7), fori =0, 1, ..., 7, we get

! _ ’ i (F=i\ [F4i+1)\[yrat
[T (1) (gt

_ ’ ei(F=i\[(F4+Kr+1 et

_KZ:;H) <K—i>( P )T“(KH)' (1

Now, approximating the elements of Eq. (19) using the ChPs yields

' P
fo G (dt = gi ¢ () = DW(),

j=0

where

2l i (Fei) (FrKt] 1 T s
8i,j = TZ(_D c—i P m/o t ¢j’;(t)dt
K=l

. A F—i\[(F+r+1
:=Q“+”TE:Z:m+1xx+w+m(x—i)< F—i )

k=i r=j

x<f_f)(ffrf1>. (20)
r—j )\ i
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As an illustrate example, we choose 7 = 5, thus we have

6 29 251 -
50 25 35 100 700

1 3 17 53 507
75 50 70 200 1400

16 7
175 350 10 200 200

=
S
S
—f
N
=
[=)
&l
94
(=)
Ull»—
(=) Ne}

I
[o))
[US)
<
S
—
N
[l
(=}
(%]
[N
(=]
o
W
3
wn
gle
1

O
3.4 Derivative OM of ChPs
Theorem 3 The derivative OM of ChPs can be obtained as
DW(1) ~ AV (1), 1)
where A is the 7 x ¥ OM of derivative.
Proof From Eq. (9) we have
DW(t) = [Dgo (1), Dy 3(1), ..., Dg; 7 (1)]. (22)
Using Eq. (7), fori =0, 1, ..., 7, we find
’ (=i Faw+1) k<!
. A —_— JR— K—l —
Deip(t) = ) (1) (K_l.) ( s ) o
K=l
~ NS¢ = AWQ), (23)

J=0

where by approximating the elements of Eq. (23) in terms of the ChPs, we can calculate
S,', j as

24l i (Fi\ (Pl ke [T
su="7= e () (58 7e [t
2+ 1 g wtr—i—j (T—0\ (T +Kk+1
— _ J
F—j r+r+1 K
AT 24
X(r—1>< P )(r+x> e
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As an illustrate example, we choose 7 = 5, thus we get

[—12-15 5 =7 9 7

4 3 L7 -9
_ 21 5 43
A=| 0 2 3 8 9
8 7 135
0 0 7 7 -3

4 A-R-L FFIDEs

In this section, first, we provide sufficient conditions for the existence and uniqueness
of solutions of the A-R-L FFIDEs. Then we develop the new numerical technique for
the A-R-L FFIDEs as

AN(x,1) 9*N(x,t)

FEMDEPN (6 1) = O(x, 1, N(x, 1), )
ox ox
1 1 i ~
I'N(3,
i [ ki s S hasap
o Jo 93

x oot I N (3,
+y2/ /Kz(x,r,s,p,—i.p)>dsdp, (25)
0o Jo RY

with the initial and boundary conditions
N(x,0) = ¢(x), (26)

and
N, 1) = po(2), N(1,t) = p1(2), 27

where ©, K and K, are continuous linear or nonlinear functions, o, 8 € (0, 1),
(x,t) eI =[0,1] x[0,1]and i, j =0, 1, 2.

4.1 Existence and uniqueness of the solutions
In this section, we show the existence and uniqueness of the solutions for Eq. (25).

For ease of exposition, we will analyze the existence and uniqueness of the solutions
and the error analysis for the case M = M’ = 7 + 1. Furthermore, we suppose that
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there exist Lipschitz constant A1, A2, A3, A, and A, such that
1©Cx, 1, u1, vi, wy) — O, £, uz, V2, w2) | Loy <
Alluy — uallpoo(ry + A2llvr — v2llpoo(ry + Azllwy — w2l poo(rys
2

K1 (x, 25w, v, wy) — Ky (x, 1, u, v, wo)llpooqry < Ay lwr — wallpeoy s (29)
K2 (x, 2, u, v, wi) — Ka(x, 1, u, v, wo)llpoo(ry < Aic, lwi — wallpeoy - (30)

Applying the fractal-fractional integral on both sides of Eq. (25), we can write:

N(x, 1) = N(x,0) + EFM P @ (x, 1, N(x, 1), 20D PNy

dx2
(31)
AnEFM P (&N, 1) + nEFM TP (BN (x, 1)),
where :
- 1 rl ~ "N (3, ~
EING, 1) = [y Jo Kitx, 1,3, 9, 9 1\;(3, DYdde,
EaN(x, 1) = [y Jo Katx. 1.3, 9, BEED)a3dp.
We define an operator 7 as follows:
(TN)@. 1) = N, 0) + £V IO x 1, N(x, 1), 2 ZHGD)
(33)

A E TP EIN () + 9 TP (BN (1))

Using this operator, Eq. (31) can be rewritten as 7N = N, in order to prove our
desired uniqueness result, we have to show that 7 has a unique fixed point. Let us
investigate the properties of the operator 7.

To illustrate our main results, we need the next theorem.

Theorem 4 (Banach’s contraction theorem [40]) Assume E be a Banach space with a
nonempty closed subset Q,«. Then any contraction mapping 7 : Q. — Q,« has a
unique fixed point.

In the next theorem, we prove the existence of the solutions for A-R-L FFIDEs using
Banach’s contraction theorem.

Theorem 5 Suppose that N, ©, K| and K, are continuous and bounded. Also we

assume that
<A NG t) = NGO gy s 7 =0,1,2,

(34
where A, is a constant and depends on r. Then, the A-R-L FFIDEs Eq. (25) has a
unique solution on Q» = {N(x, 1) e C3(I) : |N(x, Dllpeory < r*}.

"N(x,t) 9"N(x,1)
dax’ ax’

Lee(T)
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Proof To begin, we demonstrate that the operator 7 (Q,«) is a subset of Q,«. Let
N (x,t) be an element of Q,«. Clearly, the set Q,+ is bounded, closed, and convex.
Our goal is to prove that [|[(TN)(x, )| peo¢py < r*. Assume that

NG, 0)ll ooy < N,

AN 92N
H®(x’ta Na ax9 axz) Loo(]) 5827
(35)
< N3,
3)6’) Loo(1) =N3
Ka(x,t,5, ,—‘?l. H < Ry.
H 2(x, 1,3, 9, 5F) ey =

HIC1(x, 13, e,

Taking norm on both side of Eq. (33) and using Eqs. (35), we have the following
relation:

TN, Doy < INGE Oy + [EFMIEPO(x, 1, N(x, 1), 2N 82NGn
L) = L) ax

Leo(I)
gt @ne |, g @)L S IVE Ol
BB ooy BU=TB [P ooy ON 2N

" ( AT@p) T Al) - Ny e sz)‘LOO(I)

+ HIC1(x L3, 0, 50 )HLOO(1)+ HICz(x,t,s .5 me)
apT B * | oo BU=) T (B[ tP~] oo
< Nl + < A((‘)‘()F(ot+/f‘3)L e + A(‘(L Lo b (NZ + )/lN3 + VZN4) < r*.
(36)

Choosing

PPN (aﬂ O] EA . B(l—a)T(B)|tF! nm,))
A)T(a + B) A(x)
(R 4+ y183 + 1Ry),

is enough to imply that 7 (Q,+) C Q. In the next step, we will demonstrate that 7
is a contraction as an operator. For every N and N in Q,+, we have:

TN 1) = (TR D gy < [N 0) = NG 0)] ey

AN(x,1) 9*N(x,1) aN(x 1) 3*N(x,1)

M PO, 1, N(x, 1), )= M PO, 1, Nx, 1),

ax 1 9%x 02x Lo (D)
Mt @ N ) = @A
|l M @aN e ) = M @ N
(BT ey ﬂ(l—a)ros)!ltﬂ 1||m,) _
= <1 +x< rerass t A [N =N s (37)
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where & = (A1 + A2A1 + 2342 + V1A Ai 4+ Y2k, Aj). So we have
||(TN)(X,I) - (TN)()C, t)”LOO(I) =< L ||N - NHLOO(I)'

For L < 1, the contraction is obtained. Therefore, A-R-L. FFIDEs Eq. (25) has a
unique solution. O

4.2 Computational strategy

This section is dedicated to introducing a numerical formulation for solving the model
given in Eq. (25). For this purpose we approximate the highest order of derivative in
Eq. (25) by ChPs as
3N (x, 1)
0x20t

Upon integrating Eq. (38) with respect to variable t, we obtain

~ Wl CONW(). (38)

32N (x, 1)

ZN*(x, 1)
9x2 ’

~ U ONZU@) + " (x) = :
0x

(39)

Now, by integrating Eq. (38) twice with respect to variable x and by employing the
initial condition, we derive

INGLD 7 g
VD W s N (s
By x) O+ = ax

apo(t) 0 (ON(x,1)
()

x=0

To continue the process, we substitute x = 1in Eq. (40) to obtain the unknown function

d [ ON(x,t .

I (%) 0. Thus, we can rewrite Eq. (40) as
xX=!

% ~ W ()ET NG — x0T (ST N + (1= x)p)(t) + x| (1)
CAN*( 1)
== (41)

Next, integrating Eq. (39) with respect to variable x leads to the following relation

IN(x, 1)
dx x=07
(42)

N(x,t) >~ \IJT(x)ZTzNE\II(t) +¢(x) — ¢(0) — xZ'(0) + po(t) + x

where % can be evaluated by replacing x = 1 in Eq. (42). Therefore, we can
=0

rewrite Eq. (42x) as
N ) ~ U O STNEv@6)—x 0T (ST NEW @)+ (x, 1) = N*(x, 1), (43)
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in which
@ (x, 1) = po(t) + £ (x) = £(0) — x¢'(0) + x(p1(1) — po(1)) + x(=¢(1) + £(0) +¢'(0)).
By differentiating of Eq. (43) with respect to variable x, we deduce

IN(x,1)

3 ~WT AT NEw@) —w T (HETNEZW (@) +
X

dw (x,1) ON*(x, 1)
0x o 0x )
(44)

Moreover, it is necessary to derive an approximation for FF—derivative of N (x, t). By
applying the properties and OM of FF derivative and Eq. (43), we derive

FEMpaP N 1) ~ WT () ST NEQ(a, (1) — x0T (H)ETNEQ (e, )W(1)
+ FEMp®F oy (x, 1) = FEM DEP N*(x 1), (45)

Substituting Eqgs. (38)—(45) in Eq. (25), we gain

IN*(x,1) 9*N*(x,t)

FEM &P N*(x, 1) = O(x, 1, N*(x, 1), , )
0x ax2
3 N*(Q
+y1/ / Kix, 1,3, p, a((”; LN
3 N* (3,
Vz/ / Kz(x,t,%,@,w)dscl@. (46)
0 Jo ERY

To evaluate the double Fredholm and Volterra integral in Eq. [41]. Thus, we get
L IN* (. p)
ICl(x, t, 3, 2, T)de@

1 "
77+1 77+1 aN*(flz+’J )
—ZZw,wiclm 5 ) @D

i=1 j=I

and

N

rort 3/ N*(3,
f/i@(x,r,s,p,ﬂmwp
0 0

n n*
xt xni+x M+ NS, p)
~ ZZZwiw}lCz(x,t, ’2 ’2 ) @

i=1 j=I

Taking into consideration Egs. (47) and (48) in Eq. (46) yields

IN*(x,t) 9*N*(x,t
Nx, 1) = FEMDUPN*(x, 1) — O(x, t, N*(x, 1), a(x ), 5 (; ))
X X
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* . X /.+1
(R Ry mi+ 1 Ml N )
—Z;;wiijl(x,f, 5y T 5 PRG )
n n* / i
xt , xni+x ;1 3N S, p)
= =YY wio Kot : ). (49)
4 o 2 2 LAY

Finally, by utilizing the Legendre nodes in Eq. (49) the essential system of algebraic
equations is derived as

NR(xi, 1), i=0,1,...M—1,; ji=0,1,....,M —1. (50)

By employing Newton’s iterative method to solve the obtained system, one obtains an
approximate solution N (x, t).

5 Convergence and error analysis
This section is dedicated to assessing the error norm associated with the numerical

scheme introduced in Sect.4. For the coming discussions, we assume that

0"N(x,t) 9"N*(x,t)
ax” ox’

[N(x, 1) — N*(x, ’)Hzoc(l) = max H

,r=0,1,2¢.
Lee(T)

&1y
The following theorem will be useful in our analysis.

Theorem 6 Suppose that N(x,t) belongs to the Sobolev space H™ (1) associated

r r
withthe u > 0,and ) Y n; jL; ;(x)L; ;(t) is the the best approximation of N (x, t)
i=0 j=0
using the set of the shifted Legendre polynomials. Then, we have [42]

FoOF
A3
N, =0y nijLi s (0L () < PNl iy, (52)
i=0 j=0 LoD

where ¢ > 0 is a constant which is independent of function N and 7.

@ Springer



3426 P. Rahimkhani et al.

Since the best approximation of a given function N € H*(I) is unique [43], by
Theorem 6, we get

HN(X, ) — i Xr: n j¢; ;(X)P; #(t)

i=0 j=0

Loe()
P 3
= |N(x, 1) — Z Z ni,jLi,f(x)Lj,f(t) <cr4 'u|N|HM?(1)-
i=0j=0 L)
(53)
Definition 4 The beta function is defined by the integral as [44]
1
B(n,m) = / s = sy s, (54)
0

additionally, the definition of the beta function in terms of the gamma function is
provided as follows:
. I'(n)I"(m)

(55)

Lemma 2 Suppose that n, m € (0, 1). Subsequently, the following relation holds:

1 D) (m)

T'(n+m)’ (0

t
/ sn—l(t _ S)m_lds — ti’l+m—l B(n, m) — tn+m—
0

Proof It can be proved easily by using a simple change of variable and applying Egs.
(54) and (59).

Now, we will carry the convergence analysis of the suggested approach when applied
to A-R-L FFIDEs. O

Theorem 7 Consider the A-R-L FFIDEs presented in Eq. (25), where N(x,t) €
HH*(I) represents the exact solution of the problem and N*(x,t) be the approxi-
mate solution of the problem which is acquired through the proposed approach. Then,

we have

< X FEHIN] g (57)

[ NG 1) = N*(x, t)HLOC([) =

where

=1+ A <O‘ﬂ F(ﬁ)”tHﬁ_IHLmU) n p — 0‘)“tﬁ_1”Lw(1)) ’
A(o)T (o + B) Aa)

A= ()»1 + A2+ A3+ yiAg, + J/z)»]cz) )

provided that ¥ is sufficiently large.
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Proof Lete(x,t) = N(x,t) — N*(x, t) denote the error function. By subtracting Eq.
(46) from Eq. (25), fractal-fractional integration, and applying a norm to both sides,
yields

lleCx, D)l ooy < IN(x,0) — N*(X 0)”L°°(I)

o R T e SR A CODIE = 5] [
nErr et E NG ) - 5FM1f‘*ﬁ(slN*(x, 1.
P @ ) - EN )|
(58)
in which E; and & are given in Eq. (32). From Egs. (28) and (51), we find
2 2 A7
|G N1, e ERED) — @ (x, 1, N*(x, 1), 2500, 2R,
X X L®(I)

< MING, 1) = N*(x, ODllpeoy + KzH W) _ M)

Lee(T)

92N (x, 92N*(x,
+)”3H a;gl)_ ax(;”)

<A+ A+ A3)IIN(x, 1) — N*(x, f)”zoou) .
(59

Lee(I)

By using the definition of the fractional integral and Eq. (59) we obtain

2 * 2 A7
PV PO, 1 N 1), B 2R — FPM PO 1, Ne(r, 1), 0 2

af 11 -1 AN 2N AN*  92N*
f A()T (o) fo |S'B (t_s)a |‘®(X,S, Na x> W)—@(X,S,N*, ax ° 9x2 ) d

ENY _@(x, 1, N*(x, 1), 25 2N <

()X ’ 9x2 ox ° 9x2

A(ot)

[o7:] 1 p—1 -1 AN °N AN* 92N*

AT @) Jo [sP71 =) H@(x,s,N,W,m)—@(x,s,N*, 9x 0 ox2 )‘Lm(,)
1— _ 2 a AT 2 A7%

G ot N, BB - oL v @, BE B

_ _ (1—a)|tP~1
S (A(O[C;?(Ot) /‘(; |Sﬂ l(t - s)a l|dS + B Aa(o‘[) ‘> ()"] + )‘42 + )"3) ”N - N*”zoo([) 5
using 0 < s <t < 1 and Lemma 2 leads to

. AN 32N

§M IO Ne 0, G ) = O N ), S
T /3<1—a)t’3") o

< (o | P — ) s+ ) G+ 22+ 23 [N = N[

(A(a)rax) 0 A@) | lia

r max [r*tA-1 1 — ) max [tP1
- (aﬂ (ﬁ) f€(0,1)| ‘ ﬂ( a) te(O,l)} !

AN* 92N*
ax? )

A@T@+p A@) )(““2“3) IV =N
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_(BTBI T ey | BA =[P )
= A)T (e + B) Ale)

) (M +2r2+A3) [N - N*Mw(,),

so, we have

«, AN 9°N a, AN* 92N*
[ P O 1 NG 0, B PR — M PO, 1, N G, ), B 20

’Loo(l)

ap T(B)||e*+F~! ”LOO(]) B—a)|f~! HLDO(I)
(60)
It requires one to estimate HgFMI,a’ﬂ (E{N(x,1)) — (I)DF]"II,O”’Lj (E;N*(x, 1)) ”LOOU).
It follows from Eqgs. (29) and (32) that
[EIN(x, 1) — EIN*(x,1)]
1,1 ~ N, ~ IN* (3. ~
< o fo o n.3 0, EEEEY) iy, 3, 0, TG d3d
1,1 ~ BN ~ 3N
<L b HICl(x,t,;s,@, a(; 9 Ky (x, 1,3, o, dé,‘ p))HLw(I) Jdp
1l INE.p) _ IN*G.p) ~ INES.p) _ 9 N*( ©)
< JoJo b [ H5 — HERR | dsdp < e |5 oy
— fO fO Ki ERY FRY Lo°(I) Nap = K1 ERY Loo([é
(61)
consequently, from Definition 3, Lemma 2 and Eq. (61) we obtain
[FPMP @iV G 0) = PP @1V ()
< sk JosP e =) EIN(x, 5) — BIN*(x, 5)| ds
1—a)tP1 | -
+ B |BIN(x, ) — EIN*(x, 1)
oy B—1ls _ na—1[| NG  IN*Q.p)
S A@r@ JosP~H @ =) H FRY 97 HLOC(,)
+ BU—a)tP~Iax, ” FNG.p) _ IN .9 ”
A(ar) R ERY L(1)
at+p—1 - -1
BT (B) max |r }_i_ﬁ(l @) max |7 o NG NG
= AT (@th) A@) K1 PRI ERG Loo (1)
aBT B oy BA=) [P o) *
= ( AT (@+p) + A@) K ||N_N*”L°°(I)'
(62)
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Moreover, we need to estimate HgFMIIa"B(EzN(x, t))—gFMI,a’ﬁ(EzN*(x, t))”

L)
By using Eqgs. (30) and (32) we get
[EaN(x,t) — EoN*(x, 1)]
~ NG 3/ N*(Q
< o Jo 21,3, 9, BRGE — i (x, 1,3, 9, P00 a3
af1v~ ~ 3/ N*(Q
< 5 [t 5580 st 5G]
Xt PNR.p) VN Q.0 PNQ.p)  INR.0)
<Jo Jo* PRI 937 ”Lm(l)dddpf)»)gz 93/ ENY HLw((16>3)

thus we conclude with the assistance of definition of the fractal-fractional integral,
Lemma 2 and Eq. (63) that

PP @aN G ) = EPEP @V, )|
< ﬁ?(a) f(; Pl — ) EuN(x, ) — EaN*(x, 5)| ds

1—a)tP1 =
+ 20— |8 N (x, 1) — BaN*(x, 1)

VNQ.p) _ N Q.9)

apric, B—1 a—1
= A(a)F(a)fO (t—s) FRY) 937 HLOO(,)dS
(64)
BU—)P e, 10ING)  IN*3.p)
A(O‘) 33/. \SJ Loo([)
a+p—1 _ p-1
B et A Bl i N _ oI
= AT +h) Ale) Ko 1937 7 057 || ooy
“ﬁr(ﬂ)‘|ta+ﬂ71“L00(1) ﬂ(l_"‘)|"ﬂ71”L00(1) *
= ( A@T@+h) + A@) rc, IN = N*|I%, .

Now, by using Egs. (58)—(64) we obtain

leGr, Dllzqy < [N, 0) = N* @, 0] ooy

AT ( + B) Aa) A2 A3 L)

BLB)[1 ) BU—|P ] L

( AT @+ B) + A V1A, +22i,) ”N — N ”oo

«||* ap D) [P~ B —a) [P, .
-l ( A(a)r(a+ﬁ; - A(er) = v -n ||L°<><1>
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ap DB [P )y BA =[P ) -
:(HA( A@T@+p) A@) IV =8 iey. (65)

where
A= (A + A+ A3+ v, + ri,) -

By employing Theorem 6 for N (x, 1) € H/7(I), we can derive that

< C,:%—(u—r>|N|W([), r=0,1,2. (66

H NG, 1) " N*(x,1)
Lo(1)

ax’ ox’”

Finally, from Egs. (51), (65) and (66), we find the upper bound for [le(x, )| .0y as
following

1
lleGx, )l pocry < A F 4 IN|gui (),

where

=1 <01,3 Nl i TR N B —a) P! HLOO(I)) ,
A()l(a + B) Aa)

and this completes the proof. O

6 lllustrative examples

We now present several numerical tests in order to investigate the applicability and
accuracy of the mentioned approach.

Example 1 Take into account the following FFIDEs [14]:

32N (x,t ot
FEMpEP N (x, 1) — % +N(x, z)+/ / sin(t — )N (3, p)dpdS = F(x, 1),
x 0 Jo
(67)
where
3 2-p —at®
X Aa)t ot
F(x,1) = xt + —(2cos(r) + 1> =2 E :
(51 = 21+ 5 Qe0s(0) 2 = 2) + T Ea ()
incorporating the initial and boundary conditions
N(x,0) =0, N@©,1) =0, N(1,1) =1.

The precise solution to this issue is N (x, ) = xt. In this example, we have employed
the proposed strategy in this paper. The absolute errors (AEs) and CPU time used (in
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Fig.1 (a): NRs, (b): CP and (c): AE values for M = M’ =2 and @ = B = 0.99 (Example 1)

seconds) for M = M’ = 2 and various options of «, B are outlined in Table 1. The
findings indicate that when « is near 1, the numerical solution is close to the precise
solution. Numerical results (NRs), contour plot (CP) of NRs and absolute error with
M = M'=2anda = B = 0.99 are shown in Fig. 1. Plot of the NRs and AEs together
withthe CPfor M = M’ =2and o = B = 0.95 are displayed in Fig. 2. Furthermore,
the numerical outcomes obtained through the current approach for M = M’ = 1 and
diverse values of @, B, x are given in Fig.3. The results show that the approximate
solution has a high agreement with the exact solution.

Example 2 Examine the subsequent FFIDEs [14]

N(x, 1) = FFMDPP N (x, 1) 4 D 4 92 PN
2 (68)
—Jo Jo xeos(3 - @><M) dpdX = F(x,1),

where

A(a)tz’ > i 2 _ —at® Aa)t>P
Foxt) = -2 Z( D' Eadit (0% = 30 =g
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Fig. 2 (a): NRs, (b): CP of NR, (c): AE and (d): CP of AE values for M = M’ =2 anda = 8 = 0.95

(Example 1)

08
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5 e=08 ccosfl @ =08
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5 " soige — p08 02 — g=0s
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t
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@ (©) ®

Fig.3 The NRsfor (a): 8 =0.5,x =0.1,(b): B =0.5,x =0.5,(c):  =0.5,x =09, (d): ¢ =0.5,x =
0.1,(e):a=0.5,x=05and (f):« =0.5,x =09and M = M’ = 1 (Example 1)

o
) 4+t +sin(t) + x sin(?) +
o

—ot
Ea,Z( 1—

with the initial and boundary conditions as

N(x,0) =0, N@©,1) =1,

P VO
§(x Sm(z) )(Sm(z) 2),

N(1,t) =sin(¢) + t.
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The analytic solution is N(x,?) = xsin(t) 4+ ¢. The numerical outcomes for this
instance are documented in Table 2, and Figures 4-5. The AE values of ChPs method
for M = M’ = 1 and different choices of «, 8 are presented in Table 2. Figure 4
displays the NRs and AE values for M = M’ = 1 and ¢ = 0.99, 8 = 0.60. Also, plot
of the NRs for 8 = 0.1 with M = M’ = 1 and varied values of x and « are displayed
in Fig.5. The result shows that the approximate solution has a high agreement with
the exact solution.

Example 3 Take into account the FFIDEs presented below [14]

X t
FEM D®B N (x, 1) +N(x,t)—/ /(s+cos(5o))1v(%,p)dpd3
0 0

+/(;1 /0] N, p)dpdS = F(x,t), (69)
where
F(x,t) = xsin(t) — % + x CTZ(I) + x C;)S(t) — ? + sinz(%)
23‘”2 ﬂ Z( D B (20,
incorporating the initial and boundary conditions as
N(x,0) =0, N@©,1) =0, N(1,t) = sin(?).

The analytic solution is N (x, t) = x sin(z). The numerical outcomes for this instance
are documented in Table 3, Fig. 6 and Fig. 7. In Table 3, we compare the absolute errors
acquired through the suggested method, considering various selections of «, 8, M and
M’ with the results givenin [14]. Based on these findings, it is evident that the numerical
solutions approach the exact one with M = M’ = 2, 3 and different choices of «, 8.
Figure 6 displays NRs and CP of NRs with M = M’ =2 anda = 0.4, § =0.1.In
Fig.7, the NRs given for M = M’ = 1 and varied values of &, 8 and x.

7 Conclusion

We develop novel computational approach for solving fractal-fractional integro-
differential equations in A-R-L sense. To reach this goal, we have used Chelyshkov
collocation scheme based on OMs, we achieve these matrices with high accuracy, for
first time. By this method, the FFIDE is converted into a set of algebraic equations,
solvable through conventional numerical methods and due to the computational com-
plexity, it requires few computational efforts. We have derived sufficient conditions
for the existence and uniqueness of the solution by using the Banach’s contraction
theorem. An error analysis of this new scheme is given. Finally, we have examined
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06

04

02

=04 =04 0=04

w=08 =08 10 w=08

. a=08 .. Gz08 .. =08

— w=08 — =09 - w=08

Fig. 5 The NRs for = 0.1 (a): x = 0.1, (b): x = 0.5, (c): x = 0.9 with M = M’ = 1 and different
values of @ (Example2)

03

os

1K}

o2

Fig.6 (a): NRs, (b): CPfor M = M’ =2 and a = 0.4, 8 = 0.1 (Example 3)

and resolved three test problems to demonstrate the effectiveness and accuracy of the
proposed technique. We offer the following works in the future:

e This method can be used to solve different problems such as fractal-fractional
partial differential equations, fractal-fractional pantograph differential equations,
fractal-fractional stochastic equations and so forth.

e We can use the wavelets base instead of the polynomials base.

e We can apply neural network and least squares-support vector regression for solv-
ing the proposed problem.

e Stability analysis of the suggested schemes for the numerical approximation of
the problem under study is an interesting problem for future works.
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Fig.7 The NRs for (a): 8 =0.3,x =0.1, (b): 8 =0.3,x =0.5,(c): 8 =0.3,x =09, (d): 0 =0.3,x =
0.1,(e): ¢ =0.3,x =0.5,and (f): « = 0.3, x =0.9,and M = M’ = 1 (Example 3)
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