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Abstract
Let A and B be n × n positive semidefinite matrices, and let || · ||2 be the Hilbert-
Schmidt norm. Bhatia and then Hayajneh and Kittaneh, using different techniques,
proved that

||AvB1−v + BvA1−v||2 ≤ ||A + B||2

for v ∈ [ 1
4 ,

3
4

]
, which gives an affirmative answer to an open problem posed by Bourin

for the special case of the Hilbert–Schmidt norm. In this paper, we prove a general
unitarily invariant norm inequality from which we obtain a new proof of the above
Hilbert–Schmidt norm inequality. We also prove that if r ≥ 1, then

|||AvB1−v + BvA1−v||| ≤ |||(A1/r + B1/r )r |||

for 1
2r ≤ v ≤ 2r−1

2r , where ||| · ||| denotes any unitarily invariant norm.

Keywords Trace · Positive semidefinite matrix · Unitarily invariant norm · Bourin’s
question · Inequality
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1 Introduction

For any n × n complex matrix X , the eigenvalues and the singular values of X are
denoted by λi (X) and σi (X) for i = 1, 2, . . . , n, and arranged in such a way that
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|λ1(X)| ≥ |λ2(X)| ≥ · · · ≥ |λn(X)| and σ1(X) ≥ σ2(X) ≥ · · · ≥ σn(X). Thus,
σi (X) = λi (|X |) for i = 1, 2, ..., n, where |X | = (X∗X)1/2 is the absolute value of
X .

Recall that for any two n × n complex matrices X and Y , we have λi (XY ) =
λi (Y X) for i = 1, 2, . . . , n, and ‖X‖2 =

(
n∑

i=1
σ 2
i (X)

)1/2

= (
tr |X |2)1/2 and ‖X‖1 =

n∑

i=1
σi (X) = tr |X | are theHilbert–Schmidt norm and the trace normof X , respectively.

Moreover, any unitarily invariant norm is an increasing function of singular values.
Let A and B be positive semidefinite matrices, and let ||| · ||| be any unitarily

invariant norm. Bourin [5], in his paper on the subadditivity of concave functions of
positive semidefinite matrices, asked whether the inequality

|||AvB1−v + BvA1−v||| ≤ |||A + B|||, v ∈ [0, 1], (1.1)

is true.
In their works on the aforesaid conjecture, Bhatia [4] and Hayajneh and Kittaneh

[9] proved that

||AvB1−v + BvA1−v||2 ≤ ||A + B||2

is true whenever v ∈ [ 1
4 ,

3
4

]
.

A complete answer to Bourin,s question for the trace norm ‖·‖1 has been given by
Hayajneh and Kittaneh [7], that is,

∥∥∥AvB1−v + BvA1−v
∥∥∥
1

≤ ||A + B||1

is true for v ∈ [0, 1] . Several partial solutions to Bourin,s problem have been given
in [10] and references therein.

In this paper, we prove that if f is a nonnegative concave function on [0,∞) , then
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for v ∈ [0, 1]. We also prove the following inequality related to the inequality (1.1)

|||AvB1−v + BvA1−v||| ≤ |||(A1/r + B1/r )r |||

for 1
2r ≤ v ≤ 2r−1

2r , r ≥ 1.
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2 Main results

The following lemmas are required in order to support the main results.

Lemma 2.1 [12] Given any positive semidefinite block matrix

[
M K
K ∗ N

]
, where M

and N are m × m and n × n complex matrices, respectively, we have

2σi (K ) ≤ σi

([
M K
K ∗ N

])

for i = 1, . . . , r and r = min{m, n}.
Lemma 2.2 [3, p. 291] Let X be an n× n complex matrix, and let f be a nonnegative
increasing function on [0,∞) . Then

f (σi (X)) = σi ( f (|X |))

for i = 1, 2, ..., n.

Lemma 2.3 [6] Let X ,Y , and Z be n×n complex matrices such that the block matrix[
X Y
Y ∗ Z

]
is positive semidefinite, and let f be a nonnegative concave function on

[0,∞) . Then
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X Y
Y ∗ Z

])∣
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∣
∣∣∣ ≤ ||| f (X)||| + ||| f (Z)||| .

In particular,
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∣∣∣∣

[
X Y
Y ∗ Z

]∣∣∣∣

∣∣∣∣

∣∣∣∣ ≤ |||X ||| + |||Z ||| .

Using Lemma 2.1, Lemma 2.2, and Lemma 2.3, we prove our first main result.

Theorem 2.4 Let A and B be positive semidefinitematrices, and let f be a nonnegative
concave function on [0,∞) . Then
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for v ∈ [0, 1] .
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Proof Let r ≥ 0, and let X =
[
A

r
2 B

r
2

B
r
2 A

r
2

]
and Y =

[
A 0
0 B

]
. Then

X∗Y X =
[

Ar+1 + Br+1 A
r
2+1B

r
2 + B

r
2+1A

r
2(

A
r
2+1B

r
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r
2+1A

r
2

)∗
B

r
2 AB

r
2 + A

r
2 BA

r
2

]

is positive semidefinite, and hence by using Lemma 2.1, we have
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(2.1)

for i = 1, 2, ..., n.

Now, for i = 1, 2, ..., n, we have

σi

(
f
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(by Lemma 2.3).

Replacing A, B by A
1

r+1 , B
1

r+1 , respectively, and taking v = r
r+1 , we obtain
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for v ∈ [0, 1]. Here, we have used the fact that ||| f (|X |)||| = ||| f (|X∗|)||| for any
complex matrix X . This completes the proof of the theorem.

Taking v = 1 in the aforementioned Theorem 2.4, we have the following corollary.

Corollary 2.5 Let A and B be positive semidefinitematrices, and let f be a nonnegative
concave function on [0,∞) . Then
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As an application of Theorem 2.4, we give a different solution to Bourin,s question
for the Hilbert–Schmidt norm. To achieve this, we need the following lemmas.

Lemma 2.6 [9] Let A and B be positive semidefinite matrices, and let v ∈ [0, 1].
Then

tr

((
B

v
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v
2

)2 +
(
A

v
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v
2

)2) ≤ tr
(
A2 + B2

)
.

Lemma 2.7 [9] Let A and B be positive semidefinite matrices, and let v ∈ [ 1
2 , 1

]
.

Then

tr B
v
2 A1−vB

v
2 A

v
2 B1−vA

v
2 ≤ tr AB.

An equivalent form of the following lemma has been given in [9]. For the reader,s
convenience, we give a short proof of this lemma based on Lemma 2.6 and Lemma
2.7.

Lemma 2.8 Let A and B be positive semidefinite matrices, and let v ∈ [ 1
2 , 1

]
. Then
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≤ ||A + B||2. (2.2)

Proof We can easily check that the square of the left hand side of the inequality ( 2.2)
is equal to
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Hence, the inequality (2.2) is equivalent to the inequality
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v
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v
2
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v
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v
2
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v
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)
.

In view of Lemma 2.8 and Theorem 2.4, applied to the Hilbert–Schmidt norm and
the case f (t) = t, we have the following corollary.

Corollary 2.9 Let A and B be positive semidefinite matrices, and let v ∈ [ 1
2 , 1

]
. Then
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It should be mentioned here that Corollary 2.9 can be concluded from Theorem 2.7
in [8], using a completely different analysis.

Corollary 2.10 Let A and B be positive semidefinite matrices, and let v ∈ [ 1
4 ,

3
4

]
.
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∣∣
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∣∣
2

≤ ||A + B||2. (2.3)

Proof Using Corollary 2.9, we have
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≤ ||A + B||2

for v ∈ [ 1
2 , 1

]
. Hence, the inequality (2.3) is valid for v ∈ [ 1

4 ,
1
2

]
. Therefore,

||AvB1−v + BvA1−v||2 = ||(AvB1−v + BvA1−v)∗||2
= ||A1−vBv + B1−vAv||2
≤ ||A + B||2

is also valid for 1 − v ∈ [ 1
4 ,

1
2

]
, i.e., v ∈ [ 1

2 ,
3
4

]
. Hence, the inequality (2.3) is valid

for v ∈ [ 1
4 ,

3
4

]
.

To prove our second main result in this paper, we need the following lemmas.

Lemma 2.11 (Matrix Young Inequality) [1] Let A and B be n × n complex matrices.
Then

σi
(
AB∗) ≤ σi

(
1

p
|A|p + 1

q
|B|q

)

for i = 1, 2, ..., n, and p, q > 1 with 1
p + 1

q = 1.
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Lemma 2.12 [2] Let A and B be positive semidefinite matrices. Then

|||Ar + Br ||| ≤ |||(A + B)r ||| for r ≥ 1

and

|||(A + B)r ||| ≤ |||Ar + Br ||| for 0 < r ≤ 1.

Theorem 2.13 Let A and B be positive semidefinite matrices, and let r ≥ 1. Then

|||AvB1−v + BvA1−v||| ≤ |||(A1/r + B1/r )r |||

for 1
2r ≤ v ≤ 2r−1

2r .

Proof Let X =
[
Av Bv

0 0

]
and Y =

[
B1−v A1−v

0 0

]
. Then

XY ∗ =
[
AvB1−v + BvA1−v 0

0 0

]

and

|||AvB1−v + BvA1−v||| = |||XY ∗||| = ||| |X ||Y | |||
≤ |||v|X | 1v + (1 − v)|Y | 1

(1−v) |||
≤ v||| |X | 1v ||| + (1 − v)||| |Y | 1

(1−v) |||
= v||| |X∗| 1v ||| + (1 − v)||| |Y ∗| 1

(1−v) |||,

where thefirst inequality follows fromLemma2.11, the second inequality follows from
the triangle inequality, and the last equality follows using the fact that ||| |X |r ||| =
||| |X∗|r ||| for any complex matrix X and for r > 0. Hence,

|||AvB1−v + BvA1−v||| ≤ v|||(A2v + B2v)
1
2v |||

+(1 − v)|||(A2(1−v) + B2(1−v))
1

2(1−v) |||.

Assume that 1
2 ≤ v ≤ 2r−1

2r . Since 1
2v ≤ 1, it follows, by Lemma 2.12, that

|||(A2v + B2v)1/2v||| ≤ |||A + B|||.

It is known [3, p. 95] that |||X |||(r) := ||| |X |r |||1/r is a unitarily invariant norm for
r ≥ 1. Hence, again using Lemma 2.12, we have

|||(A2(1−v) + B2(1−v))
1

2(1−v) ||| = ||| |(A2(1−v) + B2(1−v))
1

2r(1−v) | |||r(r)
≤ |||A1/r + B1/r |||r(r) = |||(A1/r + B1/r )r |||.
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Hence, when 1
2 ≤ v ≤ 2r−1

2r , we obtain

|||AvB1−v + BvA1−v||| ≤ v|||A + B||| + (1 − v)|||(A1/r + B1/r )r |||.

Moreover, by Lemma 2.12, we have |||A + B||| ≤ |||(A1/r + B1/r )r ||| and this gives
the following inequality

|||AvB1−v + BvA1−v||| ≤ |||(A1/r + B1/r )r |||. (2.4)

Similarly, when 1
2r ≤ v ≤ 1

2 , i.e.,
1
2 ≤ 1 − v ≤ 2r−1

2r , we again have the inequality
(2.4). Therefore,

|||AvB1−v + BvA1−v||| ≤ |||(A1/r + B1/r )r |||

for 1
2r ≤ v ≤ 2r−1

2r .

We conclude the paper with the following remark.

Remark 2.14 The case v = 1
2 and r = 1 in Theorem 2.13 is the inequality

|||A1/2B1/2 + B1/2A1/2||| ≤ |||A + B||| ,

which can also be concluded from the triangle inequality and the arithmetic–geometric
mean inequality for unitarily invariant norms (see, e.g., [11]).
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