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Abstract
An improved conjugate gradient algorithm is proposed that does not rely on the line
search rule and automatically achieves sufficient descent and trust region qualities.
It is applicable to solve unconstrained problems and large-scale nonsmooth prob-
lems. Furthermore, it demonstrates global convergence properties without the need for
Lipschitz continuity conditions. Numerical experiments on nonconvex unconstrained
problems and large scale nonsmooth convex optimization problems demonstrate the
effectiveness and efficiency of the proposed algorithm compared with the same struc-
tural algorithm. Finally, the new algorithm is applied to Muskingum model solving
in engineering problems and image restoration, which shows the prospect of the new
algorithm.
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1 Introduction

Consider optimization problem:

min{q(x)|x ∈ R
n}, (1)
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where q(x) : R
n → R, is a convex function that possibly is nonsmooth. With

the rapid advancement of information technology, optimization techniques are being
applied to various aspects of production and daily life. The need to investigate large-
scale nonsmooth convex optimization problems has become increasingly urgent. This
paper presents an algorithm for addressing large-scale nonsmooth problems, using the
problem of image restoration in image processing as an illustrative example. Image
restoration refers to observed images are reconstructed into their original, yet unknown,
real forms by establishing image degradation models. In the practical processes of
image generation, storage, and transmission, image quality deterioration is an issue
that cannot be avoided due to technological constraints and objective factors. To obtain
more valuable information and ensure that images meet the high-quality research and
application standards, image restoration has become a necessary technique. The fol-
lowing are common image degradation models

β = Λx + ε,

where β ∈ R
m and x ∈ R

n respectively correspond to the observed and original
images, Λ is an m × n matrix responsible for blurring, ε ∈ R

m is the noise term. To
solve ε, We first solve problem

min
x∈Rn

‖Λx + β‖2 + λ‖Dx‖1, (2)

where λ as regularization parameter, D as linear operator. In this paper, ‖ · ‖ denotes
Euclidean norm, ‖·‖1 is l1 norm. Since l1 norm is nonsmooth, (2) described above falls
into the category of nonsmooth convex optimization problems, which are typically of
large scale.

Compared to unconstrained problems, the objective function of non-smooth
problems may include discontinuous components, which pose challenges to problem-
solving. Furthermore, in the current conjugate algorithms, the assumption of Lipschitz
continuity is required to ensure bounded gradient variations. This condition is a key
requirement in the convergence analysis of line search. However, in practice, there
are instances where the Lipschitz continuity hypothesis may not hold or cannot be
readily verified due to complexity of the objective function or limitations in obtaining
accurate gradient information. Some algorithms [1, 2] that do not require Lipschitz
continuity have been proposed. To overcome these constraints, we present a novel
algorithm in this paper. It tackles unconstrained and nonsmooth issues employing the
Moreau-Yosida regularization technique.The new algorithm possesses three charac-
teristics:

• It fulfills the prerequisites of a sufficient descent and trust region properties, elim-
inates need to specify a step size.

• The algorithm’s performance is improved by incorporating function value and
gradient information into the search direction.

• The algorithm integrates Wake-Wolfe-Powell (WWP) linear search(5)(6) and
exhibits global convergence for nonLipschitz continuous nonconvex problems and
nonsmooth functions.
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In Sect. 2, an algorithm is presented which has some good properties for solving
unconstrained optimization problems. In Sect. 3, the algorithm is used to solve non-
smooth problems. Section4 states numerical findings of algorithms for unconstrained
and nonsmooth problems. Additionally, we show the algorithm’s numerical perfor-
mance in image restoration problems. The paper ends with a summary in Sect. 5,
outlining possible directions for further investigation.

2 Unconstrained optimization

Regarding problem (1), we first discuss the situation under smooth conditions, i.e.

min{ f (x)|x ∈ R
n}, (3)

with f (x) : Rn → R is a continuously differentiable nonconvex function. For solving
(3), conjugate gradient(CG) algorithm proves to be highly effective, particularly when
its dimension n is of a large scale. CG algorithm generates an iterative sequence by
the following formula:

xk+1 = xk + αkdk, k = 0, 1, . . .

where αk > 0 is a steplength determined by line search, the search direction dk is
generated by

dk = −hk + βkdk−1, d0 = −g0,

where hk is the gradient of f (xk). CG algorithm can be classified according to the
choice of parameter βk , among them, Polak-Ribière-Polyak(PRP) methods has advan-
tages in dealingwith large-scale problems because of its high computational efficiency
and small storage capacity. Despite employing strong Wolfe line search, achieving
global convergence for PRP methods with general nonlinear functions remains chal-
lenging. And its primary applications are currently mostly limited to dealing with
smooth problems. The BFGS algorithm constructs an approximate Hessian matrix to
expedite the convergence of the objective function, the search direction dk is generated
by

dk = −B−1
k hk,

where Bk is the approximateHessianmatrix. BFGS algorithm hasmade some progress
on global convergence of general functions underWWP line search [3]. But its applica-
bility is challenged in large-scale computations due to storage constraints. An adaptive
memoryless BFGS method [4, 5] is proposed that adaptively adjusts Hessian matrix
approximation, avoiding the need to store Hessian matrix or its inverse. In an attempt
to advance the CG and BFGS techniques, a family of conjugate gradient algorithm is
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introduced, which dk can closely aligned with scaled memoryless BFGS method [6]

dDKk (γk) = −hk +
[

hTk yk−1

dTk−1yk−1
−

(
γk + ‖yk−1‖2

sTk−1yk−1
− sTk−1yk−1

‖sk−1‖2
)

hTk sk−1

dTk−1yk−1

]
dk−1,

where sk−1 = xk − xk−1, hk represents gradient of f (x), γk denotes the self-scaling
parameter and the optimal choice for efficiency is

γk = sTk−1yk−1

‖sk−1‖2
.

Li [7, 8] made somemodifications based on the Dai-Kou algorithm, resulting in dif-
ferent numerical outcomes. To enhance convergence, we implement a novel technique
ensuring that the search direction dk adheres to trust region property automatically.
This plays a crucial role for establishing global convergence.

Besides directly modifying iteration formula for dk it is also a viable approach
to make adjustments to the quasi-Newton equation. Yuan [9] designs a new quasi-
Newtonian equation so that ymk has information about the gradient of the function, and
also about the function itself

Bksk−1 = ymk−1,

where ymk−1 = yk−1 + max{�k−1,0}
‖sk−1‖2 sk−1, �k−1 = (hk + hk−1)

T sk−1 + 2( fk−1 − fk),

denote fk = f (xk). Compared with the previous yk , ymk enables the new algorithm to
obtain satisfactory results in less iterations and shorter operation time, and has better
numerical performance and theoretical results.

Drawing inspiration from the previously mentioned techniques, a novel hybrid
conjugate gradient algorithm is introduced. dk is as follows

dk = −hk +
(
hTk y

m
k−1

ωk
− ‖ymk−1‖2rk

ω2
k

)
dk−1 + tkrk

ωk
ymk−1, d0 = −h0, (4)

where ωk = c1‖dk−1‖‖ymk−1‖ + c2‖hk‖2, rk = hTk dk−1. By choosing the first term
of ωk , dk is endowed with a trust region property, and the second term sets a lower
bound for ωk , guaranteeing global convergence. Interestingly, ωk is never equal to
zero, which guarantees that dk is well-defined.

The algorithm is outlined below
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Algorithm 1 BPRP(unconstrained optimization)
Step 0. Input and Initialization. Select k = 0 and x0 ∈ R

n , d0 = −h0, ε > 0, 0 < μ < ν < 1, c1 > 0,
c2 > 0, and 0 ≤ tk ≤ τ < 1.
Step 1. Calculate ‖hk‖, if ‖hk‖ ≤ ε, Terminate the iteration; otherwise turn to Step 2 to continue the
iterative calculation.
Step 2. Select αk that satisfies the WWP line search

f (xk + αkdk ) ≤ fk + μαkh
T
k dk , (5)

h(xk + αkdk )
T dk ≥ νhTk dk , (6)

with 0 < μ < 1
2 , μ < ν < 1 are constants.

Step 3. Update iteration point xk+1 can be obtained using xk+1 = xk + αkdk .
Step 4. Calculate dk with (4).
Step 5. Turn to step 1 for the following iteration, let k = k + 1.

Assumption 1 Consider f (x) continuously differentiable, and

� = {x | f (x) ≤ f0}

is bounded.

Lemma 1 All dk follows sufficient descent property

hTk dk ≤ −z‖hk‖2, (7)

trust region property

‖dk‖ ≤ c‖hk‖, (8)

with z = 1 − (1+τ)2

4 and c = 1 + 1+τ
c1

+ 1
c21
.

Proof Given that d0 = −h0, we observe that hT0 d0 = −‖h0‖2, fulfilling (7) for k = 0.
In light of dk’s definition, we can confirm that for all k > 0,

hTk dk ≤ −‖hk‖2 + (1 + tk)2

4
‖hk‖2 + ‖ymk−1‖2r2k

ω2
k

− ‖ymk−1‖2r2k
ω2
k

≤ −
(
1 − (1 + τ)2

4

)
‖hk‖2,

which implies that (7) holds.
When k = 0, using d0 = −h0 as a starting point, we obtain ‖d0‖ = ‖h0‖, implying

(8). For k > 0,we can use (7) andCauchy-Schwarz inequality to establish (8). Assume
ymk−1 �= 0, consider

ωk ≥ c1‖dk−1‖‖ymk−1‖.
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Then, we have

∣∣∣∣∣h
T
k y

m
k−1

ωk
− ‖ymk−1‖2rk

ω2
k

∣∣∣∣∣ ≤ ‖hk‖‖ymk−1‖
ωk

+ ‖ymk−1‖2‖hk‖‖dk−1‖
ω2
k

≤ ‖hk‖‖ymk−1‖
c1‖dk−1‖‖ymk−1‖

+ ‖ymk−1‖2‖hk‖‖dk−1‖
(c1‖dk−1‖‖ymk−1‖)2

=
(
1

c1
+ 1

c21

)
‖hk‖

‖dk−1‖ ,

(9)

and

∣∣∣∣tk rkωk

∣∣∣∣ ≤ τ
‖hk‖‖dk−1‖

c1‖dk−1‖‖ymk−1‖
= τ

‖hk‖
c1‖ymk−1‖

. (10)

Combining (9) (10) (4), we yield

‖dk‖ ≤ ‖hk‖ +
(
1

c1
+ 1

c21

)
‖hk‖

‖dk−1‖‖dk−1‖ + τ
‖hk‖

c1‖ymk−1‖
‖ymk−1‖

≤
(
1 + 1 + τ

c1
+ 1

c21

)
‖hk‖.

The proof is completed. �	

Theorem 1 Combining Algorithm 2 and Assumption 1, then

lim inf
k→∞ ‖hk‖ = 0. (11)

Proof Proofs by contradiction. If (11) is incorrect, suggests that exist constant ε > 0
and have

‖hk‖ ≥ ε. (12)

Sequence {αk} is assumed to converge and denote α = lim supk→∞ αk . We observe
that α ≥ 0. Accordingly, the discussion follows.

Case (i):α > 0.When ki > k, exists subsequence {αki } and constant ξ > 0 satisfies

lim
i→∞ αki > ξ,

By applying (5) and summing up from k = 0 to ∞ yields

−μ

∞∑
k=1

αkh
T
k dk < f0 − lim

k→∞ fk < ∞,
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then

lim
i→∞ −αki g

T
ki dki = 0.

By (7) and (12), thus

lim
i→∞(1 − (1 + τ)2

4
)αki ‖ε‖2 ≤ lim

i→∞(1 − (1 + τ)2

4
)αki ‖hki ‖2 ≤ lim

i→∞ −αki h
T
ki dki = 0.

This implies

lim
i→∞ αki = 0,

which contradicts our assumption. Therefore, the (11) is true.
Case (ii) α = 0. From (6)

h(xkl + αkl dkl )
T dkl − νhTkl dkl ≥ 0.

So we obtain

lim
l→∞ h(xkl + αkl dkl )

T dkl − νh(xkl )
T dkl = (1 − ν)h(x∗)T d(x∗) ≥ 0. (13)

Combine with (7) and (12), then

h(x∗)T d(x∗) ≤ −z‖h(x∗)‖2 ≤ −zε < 0. (14)

This is contradictory to (32). �	

According to Theorem 1, we assume limk→∞ xk = x̂ . Then, under the following
additional assumptions, we further discuss the convergence rate of BPRP algorithm.

Assumption 2 Assuming f that is uniformly convex and has continuous second
derivatives in R

n , gradient h satisfies Lipschitz continuity. So f has unique mini-
mal point x̂ with minimum value f̂ , for all x ∈ R

n satisfying

1

2
ϕ

∥∥x − x̂
∥∥2 ≤ f (x) − f̂ ≤ 1

2
φ

∥∥x − x̂
∥∥2 , (15)

and

ϕ
∥∥xk − x̂

∥∥2 ≤ ‖hk‖2 ≤ φ
∥∥xk − x̂

∥∥2 , (16)

where 0 < ϕ < φ are constants.
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Lemma 2 {xk} is obtained by BPRP algorithm. If the conditions in Assumption 1 and
(15) (16) are satisfied, for all k ≥ 0 one can derive

αk ≥ ϑ, (17)

where ϑ > 0 a constant.

Proof Denote

�k−1 =
∫ 1

0
∇2 f (xk−1 + ζ sk−1)dζ,

By to mean-value theorem,

hk − hk−1 = �k−1sk−1 = �k−1αk−1dk−1.

From (6), we have

h (xk + αkdk)
T dk =

(
hk + αkdk

∫ 1

0
∇2 f (xk + ζαkdk) dζ

)T

dk ≥ νhTk dk,

which implies

αkd
T
k

∫ 1

0
∇2 f (xk + ζαkdk) dζdk ≥ (ν − 1) hTk dk . (18)

Based on Assumption 2, then ϕ‖d‖2 ≤ dT∇2 f (x)d ≤ φ‖d‖2, combining with (18)
have φαk‖dk‖2 ≥ (ν − 1) hTk dk . Based on (8), we have

αk ≥ (ν − 1) hTk dk
φ‖dk‖2 ≥ (1 − ν)

φ

(
1 − (1+τ)2

4

)
‖hk‖2

‖dk‖2

≥ (1 − ν)

φ

(
1 − (1 + τ)2

4

) (
1 + 1 + τ

c1
+ 1

c21

)−2

� ϑ.

(17) is obtained by setting ϑ = min{1, ϑ}. �	

Theorem 2 According to Assumption 2, {xk} converges to x̂ , satisfies

‖xk − x̂‖ ≤ b̂σ k, (19)

where b̂ > 0 and 0 < σ < 1 are constants.
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Proof From (5) in WWP, (7)(15) and (16)

fk+1 − f̂ ≤ fk + μαkh
T
k dk − f̂

≤ fk − (1 − (1 + τ)2

4
)μψ

2ϕ

φ

(
fk − f̂

)
− f̂

=
(
1 −

(
1 − (1 + τ)2

4

)
μψ

2ϕ

φ

)(
fk − f̂

)
.

Setting σ =
(
1 − (1 − (1+τ)2

4 )μψ
2ϕ
φ

) 1
2
, so have

fk − f̂ ≤ σ 2
(
fk−1 − f̂

)
≤ · · · ≤ σ 2k

(
f0 − f̂

)
.

Combining (15), then

∥∥xk − x̂
∥∥2 ≤ 2

ϕ

(
fk − f̂

)
≤ 2

ϕ

(
f0 − f̂

)
σ 2k,

which shows that (19) holds, where b̂ =
(
2
ϕ

(
f0 − f̂

)) 1
2
. �	

3 Nonsmooth problem

Adding regularization term to nonsmooth convex problem (1)

min
x∈Rn

F(x) � min
r∈Rn

{q(r) + 1

2χ
‖r − x‖2}, (20)

where F : Rn → R, χ > 0. (20) is considered equivalent to (1). Setting �(r , x) =
q(r)+ 1

2χ ‖r − x‖2, and �(x) = argminr �(r , x). For every x , �(·, x) exhibits strong
convexity. So F is denoted as

F(x) = q(�(x)) + 1

2χ
‖�(x) − x‖2.

F has the following properties:

(i) It is Finite-valued and convex. Denote gradient of F as

ĥ(x) = ∇F(x) = x − �(x)

χ
,

it exists in R
n and continuous
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(ii) When ĥ(x) = 0, i.e. �(x) = x , (1) has unique solution. By minimizing �(r), can
get �(x), which can expresses F(x) and ĥ(x). But finding exact minimizer �(r)
can be quite challenging or even unfeasible, F(x) and ĥ(x) are difficult to express
explicitly. We can use the finite-valued of F(x). For any δ > 0, exists �a(x, δ) that
satisfies

q
(
�a(x, δ)

) + 1

2χ

∥∥�a(x, δ) − x
∥∥2 ≤ F(x) + δ. (21)

Therefore, the estimates of F(x) and ĥ(x) are expressed as

Fa(x, δ) = q
(
�a(x, δ)

) + 1

2λ

∥∥�a(x, δ) − x
∥∥2 , (22)

ĥ(x)a(x, δ) = x − �a(x, δ)

χ
. (23)

For non-differentiable convex function, some useful algorithms are available to
obtain �a(x, δ), as introduced in [10].

Proposition 3 Assuming Fa(x, δ) and ĥ(x)a(x, δ) are obtained from (22)(23), where
�a(x, δ) satisfies (21), we can deduce [11]

F(x) ≤ Fa(x, δ) ≤ F(x) + δ,∥∥�a(x, δ) − �(x)
∥∥ ≤ √

2χδ,∥∥∥ĥa(x, δ) − ĥ(x)
∥∥∥ ≤ √

2δ/χ. (24)

This means that Fa(x, δ) and ĥa(x, δ) can be considered to be close enough approx-
imations of F(x) and ĥ(x).

Combine above conditions and discussion in Sect. 2, iterative formula for dk is as
follows:

dk = −ĥa(xk, δk) +
(
ĥa(xk, δk)T ymk−1

�k
− ‖ymk−1‖2h̃k

� 2
k

)
dk−1 + tk h̃k

�k
ymk−1, (25)

where�k = c1‖dk−1‖‖ymk−1‖+c2‖ĥk‖2, r̃k = ĥa(xk, δk)T dk−1,with 0 ≤ tk ≤ τ < 1.
dk also exhibits sufficient descent and trust region properties, i.e.

ĥa(xk, δk)
T dk ≤ −z̃‖ĥa(xk, δk)‖2,

‖dk‖ ≤ c̃‖ĥa(xk, δk)‖, (26)

where z̃ = 1 − (1+τ)2

4 , c̃ = 1 + 1+τ
c1

+ 1
c21
. The steps and properties of the algorithm

are as follows.

Theorem 4 {xk} and {ĥk} are generated by Algorithm 2, we have limk→∞ ‖ĥ(xk)‖ =
0, and any accumulation point of xk is an optimal solution of (1).
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Algorithm 2 BPRP(Nonsmooth problem)
Step 0. Choose x0, constant 0 < μ < ν < 1, c1 > 0, c2 > 0, ε > 0, 0 < δk < 1, limk→∞ δk = 0 and
tk ∈ (0, τ ), τ < 1. Let d0 = −ĥa(x0, δ0), and k = 0;
Step 1. When ‖ĥa(xk , δk )‖ ≤ ε, stop algorithm;
Step 2. Choose a suitable value of parameter αk by WWP line search

Fa(xk + αkdk , δk+1) ≤ Fa(xk , δk ) + μαk ĥ
a(xk , δk )

T dk , (27)

ĥa(xk + αkdk , δk+1)
T dk ≥ νĥa(xk , δk )

T dk . (28)

Step 3. Using xk+1 = xk + αkdk get next iteration point;
Step 4. dk is updated according to (25);
Step 5. Set k = k + 1, return to Step 1.

Proof The first part. Prove that

lim
k→∞ ‖ĥα(xk, δk)‖ = 0. (29)

Assuming (29) is incorrect, thus exist subsequence λ, constant δ∗ > 0, and k∗ ∈ Z

that satisfy

‖ĥa(xk, δk)‖ ≥ δ∗,∀λ � k > k∗. (30)

For sequence {xk}, x∗ is one of its limiting points, then have

lim
k∈K , k→∞ xk = x∗. (31)

Consider two cases for discussion.
Case(I). lim supk→∞ αk > 0. Thus, there exists subsequence {αk j } such that

lim j→∞ αk j > τ , τ > 0 is a constant, k j > k. By (27),

Fa(xk, δk) − Fa(xk + αkdk, δk+1) ≥ −μαk ĥ
a(xk, δk)

T dk .

Hence

−μ

∞∑
k=1

αk ĥ
a(xk, δk)

T dk ≤ Fa(x0, δ0) − lim
k→∞ Fa(xk, δk) < ∞.

Then

lim
j→∞ −αk j ĥ

a(xk j , δk j )
T dk j = 0.
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Combining (26), we can derive

lim
j→∞(1 − (1 + τ)2

4
)αk j ‖ε∗‖2 ≤ lim

j→∞ −αk j ĥ
a(xk j , δk j )

T dk j = 0.

It means that

lim
j→∞ αk j = 0,

which contradicts the assumption of this case.
Case (II). lim supk→∞ αk = 0. From (28) and (26),

ĥa(xk + αkdk, δk+1)
T dk − νĥa(xk, δk)

T dk ≥ 0

We can conclude:

lim
j→∞ ĥa(xk j +αk j dk j , δk j+1)T dk j − νĥa(xk j ,δk j )

T dk j =(1−ν)ĥ(x∗)T d(x∗) ≥ 0.

(32)

Combine with (26) and (30), then

h(x∗)T d(x∗) ≤ −z̃‖h(x∗)‖2 ≤ −z̃δ∗ < 0. (33)

This is contradictory to (32). So (29) holds, and (24) can see that

‖ĥα(xk, δk) − ĥ(xk)‖ ≤
√
2δk
χ

.

Combined with limk→∞ δk = 0, means

lim
k→∞ ‖ĥ(xk)‖ = 0. (34)

The second part.Verify xk that converge to a solution of problem (1). By definition of
ĥ(x), we get ĥ(xk) = xk−�(xk )

χ
. Then, by (34) and (31), x∗ = �(x∗) holds. Therefore,

x∗ is an optimal solution of (1). �	

4 Numerical experiments

Four experiments are used to evaluate the BPRP algorithm’s performance. These
results are from a series of experiments, including unconstrained optimization, large-
scale nonsmooth problems, Muskingum model in engineering, and Color image
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Fig. 1 Performance of algorithms in terms of number of iterations(NI)

restoration. Experimented on Windows 10 computer with 8 GB RAM and 2 GHz
CPU.

4.1 Test of unconstrained optimization

Efficacy of BPRP, TTCGPM, TPRP, and HTTCGP algorithms in addressing uncon-
strained optimization problems becomes evident through the examination of 74 such
problem instances. To facilitate a more intuitive comparison regarding the computa-
tional efficiency of these algorithms, the analytical tools proposed by Dolan and More
[12] are utilized. These tools offer insights into the algorithms’ performance metrics.

This investigation focuses specifically on evaluating the computational performance
across three dimensions (3000, 6000, and 9000) for the 74 problems. Throughout the
experiment, parameters c1 and c2 are assigned values of 0.001 and 0.01, respectively.

Additionally, the calculation of tk to the formula tk = min{τ,max{0, 1 − ymk−1
T sk−1

‖ymk−1‖2 }}
and τ = 0.1.

The outcomes are presented in Figs. 1, 2, and 3, where τ signifies the reciprocal of
the algorithm’s performance ratio (NI, NFG, and CPU time) when tackling a specific
problem, relative to the optimal performance among all algorithms. The parameter
P(p:r(p,s)≤τ) on the vertical axis succinctly denotes the proportion of problems suc-
cessfully resolved out of the total problem set when the algorithm’s ratio falls below
τ .

By observing the data in Figs. 1, 2, and 3, a trend emerges, the efficacy of the
BPRP algorithm in addressing a majority of the examined test problems. Figure1
shows that the BPRP algorithm has the least number of iterations in 70% problem
solving, and can solve 90% of the problems. It can be seen from Fig. 2 that BPRP
algorithm calculates function value and gradient value least in 60% of the problems,
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Fig. 2 Performance of algorithms in terms of total of function and gradient evaluations(NFG)

Fig. 3 Performance of algorithms in terms of CPU time

and adding function value information in the search direction does not cause too much
computation burden. Figure3 shows that the BPRP algorithm can solve 40% of the
problems first, and the computational efficiency is relatively high. The performance
curve include NI, NFG and CPU time, demonstrates the superior performance of the
BPRP algorithm over TTCGPM, TPRP, and HTTCGP algorithms. In summary, BPRP
constitutes an efficient and robust approach for addressing unconstrained optimization
problems.
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Table 1 Problem descriptions for large-scaled testing problems

No Problems

1 Generalization of MAXQ (convex)

2 Chained LQ (convex)

3 Chained CB3 (convex)

4 Chained CB3 2 (convex)

5 Number of active faces (nonconvex)

6 Nonsmooth generalization of Brown function 2 (nonconvex)

7 Chained Mifflin 2 (nonconvex)

8 Chained crescent (nonconvex)

9 Chained crescent 2 (nonconvex)

4.2 Nonsmooth problems

Given significant advantages of CG algorithm in handling large-scale problems, we
study BPRP algorithm’s efficacy for large-scale non-smooth problems. A comparative
analysis is conducted, juxtaposing the BPRP algorithmwith the structurally HTTCGP
algorithm in [13]. Compared to the BPRP algorithm, the primary distinction of the
HTTCGP algorithm is the selection of ωk and yk . This is precisely the area where
we have made modifications, and we can provide proof of their effectiveness.The test
issues listed inTable 1 are taken from [14]. The algorithm stopswhen Fa(xk−1, δk−1)−
Fa(xk, δk) < 10−7 is satisfied. The data are listed in Table 2. Parameters were chosen

as c1 = 100, c2 = 100 and tk = min{τ,max{0, 1 − ymk−1
T sk−1

‖ymk−1‖2 }} where τ = 0.1.

Observing data in Table 2, BPRP algorithm has certain competitiveness in the
number of iterations and the number of function evaluation, and the final function
value is more satisfactory. Additionally, as dimensionality increases, the number of
iterations do not exhibit a significant escalation. In summary, it can be conclusively
affirmed that the BPRP algorithm proves to be effective in this context.

4.3 TheMuskingummodel in engineering problems

In solvingmany practical problems in life, optimization plays a vital role, especially in
the field of engineering applications can not be ignored. In order to achieve excellent
performance in engineering problems, an excellent optimization algorithm is essential.
In the field of hydrologic engineering, Muskingum model is widely used to deal with
flood flow problems, and improving the accuracy of model parameters is of great sig-
nificance for problem solving.DetermineMuskingummodel’s parameters by applying
BPRP modified PRP algorithm, compare the performance of this approach with the
HTTCGP, TPRP, and TTCGPM algorithms. The Muskingum model, as defined by
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Fig. 4 The Muskingum model in 1960

Ouyang et al. [15], is as follows

min f (x1, x2, x3) =
n−1∑
i=1

((
1 − �t

6

)
x1

(
x2 Ĩi+1 + (1 − x2) Q̃i+1

)x3

−
(
1 − �t

6

)
x1

(
x2 Ĩi + (1 − x2) Q̃i

)x3 − �t

2

(
Ĩi − Q̃i

)

+�t

2

(
1 − �t

3

) (
Ĩi+1 − Q̃i+1

))2

.

where the variable n as total time, x1 as water storage time constant, x2 is weighting
coefficient, and x3 is supplementary parameter. �t signifies the length of the calcula-
tion period, Ĩi stands for observed inflow flow, Q̃i represents observed outflow flow.
Setting initial point as x = (0, 1, 1)T , calculation period �t is specified as 12h. The
observational data utilized in this experiment are from actual observations of flooding
processes along the South Canal of Tianjin Haihe River Basin, spanning the years
1960, 1961, and 1964. Detailed datasets are sourced from [16].

Various algorithms were employed to compute the flows for the years 1960, 1961,
and 1964. The calculated results were summarized and juxtaposed with the actual
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Fig. 5 The Muskingum model in 1961

observed flows, as illustrated in Figs. 4, 5, and 6. The analysis indicates that the data
obtained through the BPRPmethod exhibit no discernible deviation from the observed
data, shows comparable performance to other methods. The BPRP method demon-
strates no lagging behind in its effectiveness when compared to alternative approaches.

4.4 Image restoration problems

The classic application of optimization problem in real life is to restore the damaged
image. In this section, the color image damaged by pulse noise is restored using
the BPRP method. ColorCheckerTestImage(1542 × 1024), llama (1314 × 876), car2
(3504 × 2336) and car1 (3504 × 2336) were selected as test images, and 25%, 50%
and 75% pulse noise were applied to them. Then the BPRP, TPRP, HTTCGP, and
TTCGPM methods were applied to restore the noisy image. The outcomes of this
restoration process are showed in Figs. 7, 8, and 9.

To facilitate a more intuitive comparison of the recovery capabilities of various
algorithms, the relevant data of the restored images are detailed in Table 3. Peak
signal-to-noise ratio (PSNR) is used to evaluate the mean square error between the
original image and the restored image, and is one of the commonly used indicators
to measure the quality of the restored image. Structural similarity index (SSIM) is
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Fig. 6 The Muskingum model in 1964

Fig. 7 25% salt-and-pepper noise

123



A conjugate gradient algorithm without Lipchitz... 3277

Fig. 8 50% salt-and-pepper noise

Fig. 9 75% salt-and-pepper noise

a reference index to measure the similarity between images. We consider these two
indexes comprehensively to evaluate the image recovery quality. The findings from
Table 3 show that: (1) Bprp, TPRP, HTTCGP and TTCGPMmethods can all complete
image restoration, and the restoration effect is good, SSIM is greater than 0.8, PSNR
is similar, and image quality of all four is similar. (2) Among four algorithms, BPRP
algorithm has slightly lower CPU time and higher computational efficiency. (3) As the
level of noise increases, the quality and efficiency of recovery reduced significantly
for all four algorithms, indicating the impact of noise ratio on the overall recovery
effectiveness.
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5 Discussion

The proposed improved CG algorithm achieve sufficient descent and trust region
properties, doesn’t rely on choice of step size. For unconstrained optimization, the
algorithm’s global convergence is proven, removing the requirement for Lipschitz
continuity conditions. The global convergence of the algorithm is proved for nons-
mooth convex problems. The improved algorithm is competitive when compared to
other algorithms with comparable structures, according to numerical experiments.
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