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Abstract

In this article, we study the controllability of dynamical systems with (k, yr)-Hilfer
fractional derivative. The Gramian matrix is used to get a necessary and sufficient
controllability requirement for linear systems, which are characterized by the Mittag—
Leffler (M-L) functions, while the fixed point approach is used to arrive at adequate
controllability criteria for nonlinear systems. The novel feature of this study is to
inquire into the controllability notion by using (k, ¥)-Hilfer fractional derivative,
the most generalized variant of the Hilfer derivative. The advantage of this type of
fractional derivative is that it recovers the majority of earlier studies on fractional
differential equations (FDEs). Finally, we provide numerical examples to illustrate
our main results.
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1 Introduction

Nowadays, differential equations involving fractional order derivatives are receiv-
ing increasing interest in the scientific community due to numerous applications
in widespread areas of sciences and engineerings such as signal processing, wave
propagation, robotics and models of medicines, etc. [1]. The research publica-
tions [2-5] can be reviewed by the readers on the theory of fractional differen-
tial systems. The Hilfer fractional derivative [6] has the technical property that
makes it significantly more relevant than other fractional derivatives since it uni-
fies the Riemann-Liouville (R-L) and Caputo fractional derivatives. Due to this
reason, Hilfer fractional derivatives are stronger mathematical tools for study-
ing real-world occurrences and the resulting technical advancements [7]. Sousa
and Oliveira introduced a new fractional derivative [8] called “ir-Hilfer fractional
derivative”, which generalizes several earlier fractional derivatives. The advan-
tage of this type of fractional derivative is the flexibility to choose the kernel ¥,
which enables the unification and recovery of most earlier studies of FDEs. The
importance of ¥ -Hilfer FDEs has made studying these kinds of equations essen-
tial.

The concept of k-gamma function was introduced in 2007 by Diaz and Pariguan
[9]. They generalized the Euler gamma function I'(.) as

o
Lk
I'v(z) = /r“lerr, z€C,Re(z) >0,k >0 (keR).
0

For k — 1, we obtain ['y(z) — I'(z). Many definitions of fractional derivatives
and integrals depend on the Euler gamma function. Using the definition of k-gamma
function, Kucche and Mali [10] proposed a most generalized version of the Hilfer
derivative so-called (k, vy )-Hilfer fractional derivative. One can obtain the (k, ¥)-
R-L and (k, ¥)-Caputo fractional derivatives as a particular case of (k, ¥)-Hilfer
fractional derivative. We listed the various fractional derivatives [8, 10-13] that are
particular cases of (k, ¥)-Hilfer fractional derivative in Table 1.

Controllability is one of the fundamental concepts in mathematical control theory.
The controllability of a dynamical system means it steers a dynamical system from
an arbitrary initial state to a desired final state by using a set of admissible controls.
The controllability of nonlinear systems in finite dimensional spaces has been studied
extensively using fixed point theorems [14—17]. Many authors [18-20] have estab-
lished controllability results for linear and nonlinear fractional dynamical systems in
finite dimensional spaces using Gramian matrix and rank condition. More recently,
Selvam et al. [21] studied the controllability of fractional dynamical systems with -
Caputo fractional derivative. Yet, to our knowledge, no research on the controllability
of nonlinear fractional dynamical systems with (k, v)-Hilfer fractional derivative has
been published. Therefore, in this paper, we study the controllability of nonlinear frac-
tional dynamical systems with (k, yr)-Hilfer fractional derivative using the Gramian
matrix and Schauder fixed point theorem.
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Consider the nonlinear FDEs involving (k, 1)-Hilfer fractional derivative

CHDLY Y w(s) = Aw(s) + Bu(s) + (s, w(s). u(s). s € (Br. 2l k € (0, 00), i
T W) =g =84y (k). '
where k-7 Dif;w (+) is the (k, ¥ )-Hilfer fractional derivative of order § and type y with

8 €(0,k),0 <y <1,and klziﬂk;w(-) is the (k, ¥)-R-L fractional integral of order
k — k. The vectors w € R” and u € R are the state variable and control function
respectively, A is an n X n matrix, and B is n x m matrix. The continuous function g
is the R" valued function from [8;, B2] x R" x R™.

2 Preliminaries

In this section, we describe the notations, definitions, lemmas, and introductory infor-
mation that are necessary to establish our main results.

Definition2.1 [11] Letd e R, 1 < p < occand 0 < B; < B2 < oo. The space
Y5 [B1, B2]is collection of complex-valued Lebesgue measurable functions on [S1, 82]
for which || & ||Y§< 00, with

B2 P
|sh(s)|”
| hllyr= ———ds , (1 <p<oo, delR) 2.1)
d s
1
and
7 llyr=ess sup {s?1h(s)]}, (p = 00). (2.2)
s€(p1,.p2]
The space Yg[,Bl, B2] coincides with the space L,[B1, B2] when d = %, and
1
B2 P
7 llyr= /Ih(S)Ipds , (1 <p<oo,deR) (2.3)
1
and
72 llyr=ess sup {|a(s)]}, (p = 00). (2.4)
s€[p1,B2]

Let] = [B1, B2] be aninterval and v/ : ] — R be an increasing and positive function
for all s € J. The space C.y (J, R) denotes the weighted functions g defined on J, i.e.

Coyp(,R) = {g:] = RI(W() =¥ (B1) g() e CA, R}, 0<p <1,
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with norm

I8 licy:y 4.7 = max (W () = ¥ (B ()]

Definition 2.2 [11] Let ¥ (x) € C!(J) with ¥/ (x) > 0, Vx € (81, B2). For § > 0, the
¥-R-L fractional integral of a function w of order § is defined by

32 5—1
Iﬂf w(s) = o) /w MW (s) =¥ ) whrydr, s> pi, §>0.

Definition 2.3 [11] Let ¥ (x) € C!(J) with ¥/ (x) > 0, Vx € (B1, B2). For § > 0, the
¥-R-L fractional derivative of a function w of order § is defined by

RLS: Y _ 1 i " m—_8;y
Dﬂl ( ) <}[f’(s)d ) Iﬂ+ 'LU(S)

B 1
" I'(m—9)

(1/f(s)d > /Iﬂ(r)(l//(s) )" wrydr, s> B, §>0,

where m — 1 = [§].

Definition 2.4 [11] Let v (x) € C'(J) with ¥/ (x) > 0, Vx € (81, B2). For § > 0, the
y-Caputo fractional derivative of a function w of order 6 is defined by

Crdit s 1 d "
Dyt wis) = (—Ws)dJ w(s),

where m — 1 = [§].

Definition 2.5 [11] Let vy € C™(J) be positive function on (B;, B2] such that ¥/ (x)
is continuous and ¥/ (x) > 0,Vx € (B, B2). Let w € C"(J) then the left v -Hilfer
fractional derivative of w of order § and type y is defined by

1 d
DTV (s) = 17 < )

(1=y)m—8); v
i ph TONE 1L w(s), 2.5)

By
where m — 1 = [§].

Definition 2.6 [13] Let ¥ (x) € C'(J) with ¥/(x) > 0,Yx € (B1,B2) and w €
Yg [B1, B2]. Then, the (k, ¥)-Riemann—Liouville fractional integral of a function w
of order § is defined by

kI‘S 1”w(s)

KT (8)/ WO 6) — ) wr)dr, s > Br. 8 > 0.2.6)
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Table 1 List of particular cases of (k, ¥)-Hilfer fractional derivatives

k, HD(;’I”I/ Special cases

1

k>0 k=1

v(s) y (k, ¥)-RL derivative ¥-RL derivative
v(s) 1 (k, yr)-Caputo derivative w-Caputo derivative
s 0 k-RL derivative RL derivative
K 1 k-Caputo derivative Caputo derivative
s y k-Hilfer derivative Hilfer derivative
log s 0 k-Hadamard derivative Hadamard derivative
logs 1 k-Caputo—Hadamard derivative Caputo—Hadamard derivative
log s y k-Hilfer—-Hadamard derivative Hilfer-Hadamard derivative

Definition 2.7 [10] Let 6,k € Ry = (0,00), y € [0,1], ¥ € C"()(m €
N), ¥/(s) #0,s € Jand w € C"(J). Then, the (k, vr)-Hilfer fractional derivative of
a function w of order § and type y is defined by

m
k,HRNS VY k v (mk=8);¢ k—d k y(1=y)(mk—38);v¥ s
D — Ky - - )i =[2].(2.

ﬂf’ w(s) /3?' <f’(s) ls) '31+ w(s), m [k] 2.7

Definition 2.8 [23] Let f, ¢ : [B1, 00) — R be functions such that v is continuous
and ¥'(s) > 0 on (B1, B2). Also, let p,k > 0. The (k, 1) generalized Laplace
transform of f is defined as the following:

o0
-2
LES (IR = / e M RWO=VBD) £(5)y' (s)ds, Vi € R. 2.8)
Bi
Definition 2.9 [22] Let f and & be two functions which are piecewise continuous at

each interval [By, s] and of exponential order. We define the generalized convolution
of f and h by

(F 1) = [ FOR (57 @)+ v (B~ w0D) ¥ dr, s € .
Bi

The generalized convolution of two functions is commutative.

Lemma 2.10 [23] Let f and h be two functions which are piecewise continuous at
each interval [B1, s] and of exponential order. Then

L,f”;”l {f %y b} = ,c;j;,;”l {f}c,f;ﬂ‘/’l {h}.
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Lemma 2.1 [23] Ler f(1) € C}, 1(J R) such that fUl(j =0,1,---,m — 1) are

Yr-exponential order. Also, let f [/ be a piecewise continuous over every finite interval
J. Then the (k, r)-generalized Laplace transform of f" exists and

et o= w6 g - a6y |

j=0

2.9

Lemma 2.12 [23] Let w(t) be a piecewise continuous over every finite interval [ B1, s]
and of ¥ (t)-exponential order. Also, let § > 0 and ' (t) > 0. Then

k /31 {w(s)}
(/\k“?)zk%

Lemma 2.13 Let w(r) € C'(J) be a piecewise continuous and of v (t)-exponential
order. Then the generalized Laplace transform of the (k, \r)-Hilfer fractional deriva-
tive is given by

oyl { ﬂ+ w(s)} ) = (2.10)

k, 5,
cey {k'HDﬂl}: ‘”w(s)} )

@2.11)

= (F L (W)} () — & (klg;‘y)("“”””w> BD).

Proof Using (2.7), we get

_8): k d oV h—8): 0
ﬁiizl {k HDS ' ww(s)} *) Elijgl {klgfgk " <1/f/(s) ds) kl/;}’ e w(s)} @)
(2.12)

Also, using Lemma 2.11 and Lemma 2.12 for p = k in (2.12), we obtain

Ly {"*”DZ’I ””w(s)} *)
1

k. B1
1]
{( (=1 k= w) w(s)}(x)
[ { J0-p- ww(s)} - (kzg;—”“““””w) (ﬂl)]
[ ]
1

(1(1 V) k—8); )031)
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— k) k1) () T LYY {w()) 00)

k) (kI;;V)(k5)2¢w> B1)
= (DELEY (W) ()

_yl=d) 6=k 1= ) (k—8):
1R B <k1’;]+ ) “”w)(ﬂ]).

O
Definition 2.14 [5, 11] The two parameters Mittag-Leffler function is defined as
00 wh
Euo(w) = ,Z::o T o) (2.13)

for all Re(u), Re(o) > 0, w € C. The Mittag-Leffler function for a matrix A, x, is
given by

o An
Euo(A) = HZ:;) et (2.14)

Lemma 2.15 [23] Let Re(i) > 0 and }A%‘ < 1. Then

n—1

£ih (B (K s) — wp)] = o

and

AH—O
M — K"

o [ 6 = v B0 ™ B Kws) - v | =

3 Controllability of linear systems

Now we consider the linear FDEs involving (k, 1)-Hilfer fractional derivative

CHDLY Y w(s) = Aw(s) + Bu(s). s € (Br. fol. 0<8 <k 0=y <1,

1
kl’;lz“k"”ww]) = wp,, k=38 +yk—38),

3.1)

where ©-H DZ’I v (.) is the (k, ¥)-Hilfer fractional derivative of order § and type y and
1

kI];:“ k ”//(.) is the (k, ¥)-Riemann-Liouville fractional integral of order k — 1¢x. The
1

vectors w € R” and u € R™ are the state variable and control function respectively,
Ais an n x n matrix and B is n x m matrix.
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Lemma 3.1 The solution of (3.1) is given by

wis) = k) o) = ppi) EBy e (K F AW — v ) wp

ko

o

(K FAW () = v ()T ) Bur)dr Vs € (81, ).

ESES

+k’75fw/(r> W) = YN Ey
(3.2)

Proof Applying the generalized Laplace transform to both sides of the equation (3.1)
and then using Lemma 2.13, we get

() ELE () -0~ ) T <k1gi’“”“”w> )

= ALLY [w(s)] +BLYY ()] 4 > |A]F,

k,p1

k("T)MM) k1B
Li:gl [w(s)] = mwlgl + ﬁﬁi:% [u(s)].

(3.3)

Now taking the inverse generalized Laplace transform of equation (3.3) and using
Lemma 2.15

w(s) = K07 E) w5 — By EE

L
kK

i (KTEAW© = v (B ) wp,
kRl B (1 =k EA) Ty )7 e o)

_ k(l s )(w(s) I/f(ﬂl))T_lE% Wi (k_%A(W(S) - w(ﬂl))%) wg,

ko

ki / Y0 W) =) Ey y (AW () = () ) Bu(rdr,

L)
kK

m}

Definition 3.2 The system (3.1) is said to be controllable on J, if for arbitrary
wg,, wg, € R, there exists a control function u(.) € L2(J, R™) such that the solution

of (3.1) satisfies klzgﬂk;ww(ﬁl) = wg, and w(B2) = wg,.

Theorem 3.3 The system (3.1) is controllable on J if and only if the n x n Gramian
matrix

2
6= [ vy W - venteyy (Kawe) - vont)

8.8
ko k

x BB'Ey 3 (KFA™ (W (B) — v (r)F ) dr (3.4)

LR
kk
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is positive definite, here x denotes the matrix transpose.

Proof Suppose that G is positive definite, then it is non-singular and therefore its
inverse is well-defined. Then defining the control function

1o (KFA (B — vt ) g7
x [w,sz—k<1kk)w(ﬂz)—w(ﬁl))“f‘la u (KTAW B -¥ (B w,sl]
(3.5)

>

is well defined and using the equations (3.4) and (3.5) into (3.2) at s = 3, we get

P
k

w(pn) = k) g — w(p) B e (K EAW B — v B ) s

8 Mk
k&

B2
+ [worwe -vent ey, (i awe - vent)
Bi

x BB'Ey y (KEA* (0 (B2) — w(r)T) 67!
x [wﬂz e w(ﬂl))ﬂTk“E%uTk (k—%A(w(ﬂz) - 1/;(/31))%> wﬂl]

k) i) — w1y s (AW BD — w(B)E) g, + 90!

3
I3
x [wﬂz ) — v By (Kt A - wBt) wﬂl]

= Wep,-

Hence, the system (3.1) is controllable on J.
On the other hand, if G is not positive definite, then there exists a z # 0 satisfies

7*Gz =0,

that is,

B2
2 / V) BB — N Eg s (KEAW B — w01
B

xBBE; y (KTA* (W (B) — ¥ () ) drz =00
This implies, on J,
By 3 (KA (B) — ¥ ()P ) B=0.

88
ke k
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(1-%) By _s N

Letwg, = (KU H) (g —wB) T By w (K AW B —w(BE) | =

Since the system (3.1) is controllable on J, there exists a control function u(r) such

that the solution of (3.1) satisfies kIZ;““'pw(ﬂl) = wp, and w(By) = 0. It follows
1

that

w(p) =) (g — ) By (- AGH B — B ) w,
B2
+t [ @ vt ey (Cawe - v ) Bueiar
B

ko k

B2
0=z k7 [wor i - veni By g (Eaw e - wont) Buciar
B

1o (AW B = v 0D ) Budr.

B2
0=z +k# /w/(r) W (B2) — ¥ ()i~ B
B
So, we have z*z = 0, which is contradiction for z # 0. Thus G is positive definite. O

4 Controllability of nonlinear systems

LetY = C,(J) x C,,(J), where C,,(J) is the Banach space of continuous R” valued
functions defined on J. So, Y is a Banach space with the norm || (w, u)|| = ||wl| + ||u|l,
where ||lw| = sup{w(s) : s € J} and |ju|| = sup{u(s) : s € J}. For given any
(x,v) € Y, the system (1.1) is
LD u(s) = Aw(s) + Bu(s) + 805,15 06D, s € Brfal
k—g; .
R (Br) = wpy, =8+ y (k= 9).

Lemma 4.1 For a given control u(s) € L> (J, R™), the solution of dynamical system
(4.1) is

1— Pk

wis) = k07 ((s) — v (B E w (KFAWE) =y (B ) wy,

3
T

[0 ) = w0 By (CFAWE) = v o)t) Butds
B

(K FAW @ - wenk)

88
k' k

+k—%fw/(r> W(s) — ()i E
Bi
x g(r,x(r), v(r))dr Vs € (B1, B2]. “4.2)
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Proof Proof is similar to Lemma 3.1. O

Theorem 4.2 The nonlinear system (1.1) is controllable on J if g satisfies the condi-

tion, for |p = (x,v)| = |x| + |v|, lim lg-pl _ g uniformly in s € J, and its
|pl—o0 [Pl

corresponding linear system (3.1) is also controllable on J.

Proof Define L :Y — Y by L(x, v) = (w, u), where
u(s) =k VBEy 5 (KFATW (B — w0 E) G

x [w,sz —KTE W) — BT B (KEAW ) - w(ﬁl))%) wp,

B2
k7t [ - wentEy (A — pent) g0 0, 00) dr]
B

and

ws) =) ) =B By (k- F A = paint) wp

k
k

+E [ v @ - vt ey (AW - vent) Bueiar
B

ot [0 we vt e (FAwe - vent) s e o0
B

For our c%nvenience, we denote tk}se constants
ar = k"EY' ) (W (Ba) — () E ],

@ =1 Ey s (K TAWB) - vo)t) I,

a = sup{l, a1a2|B*[[|f2 — Bill},

by = ||k<]7%k>(lﬁ(ﬁ2) — (B TE
=4[ @ B9 (B2 B

¢ = 4[ada|pr — Bil].

di =4[ 1B 102G [lwg, + Bill]
dy =4[b1],

d = max{d,, d»},

sup |g| = sup{g(r, x(r), v(r)); r € J}.
Now,

e (KTAW B = v (B ) wy, I,

o

& _(d ¢

< = J— R
lw(s)| < , +a<45+45
g+5 ||+5 lg]
7 T gsuplel+ gsuple

2
sup lgl ) + 7 sup gl

=

+

|
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NIQ..I

sup |g]

l\)lﬁz

and

d| Cl

< — R

lu(s)| < 2 sup|g|+4&

d | |+ c

< —Ssu —.
= gsuple

Let & > 0 and d > 0, choose 7 > 0 such that ||g| < 7, by Theorem [24], we have
;

clg(s. @) +d < 7. Let X(7) = {(z, w) szl < 5, llull < —} be a convex subset of Y
which is also bounded by ; and closed. If (x, v) € X(7) then |x(s) + v(s)| < 7 which

implies ¢|g (s, ¢)| +d < 7. Therefore, for every s € J, |u(s)| < 7 ~ implies |Jul| < %

implies [|z]| < % From the Arzela-Ascoli theorem, L : X(r) — X(r) is continuous
and compact. By Schauder fixed point theorem, there exists a (x, v) € X(7) such that
L(x,v) = (x,v) = (w, u), where

(%) = - t
wes) =k @) =B F By (kAW ) = v B ) g,

"k

ki /wm W) =¥ By g (KTTAW ) = () ) Burdr

et o we - vt ey (CTawe - vt ) go.xevenar,
B

Then w(s) is the solution of the system (1.1) and
w(p =) i) — B By s (kAW - v ) u,

B2
+ / VO @B = v By g (KTAWBD) - v 00)F)
Bi
x BBEy 5 (k"FA (W (B) — ¥ ()T ) 67!
w (KEAW () = v (BT )

k=) () — wpy

x |w, =k (B —w BT By
B , ‘ ‘
—k fwr) W) = v DT Ey s (KEAW B — w D) g2, v(r))dr:|

Bi

+kE fw%r) W) =y DTTEy y (KFAW© =¥ D) g0, x(0), v())dr
B
8

k) — ypin By (kAW B — e ) w,
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Hi
k

+667! [w,sz ) i — pp By (AW — wBt )

B2
— K / VO B~ weNET By g (KEAWBD) = w0 ) 80, x(), v(r))dr}
B

5.0 (FEA@ B = 4 0F) g0 50, v dr

B
+k*%/vf’<r) W) — vt E
B
= Wp,.

w(B2) = wg,. Hence system (1.1) is controllable on J. O

5 Numerical examples

Example 5.1 Let us take the following nonlinear (k, v)-Hilfer fractional differential
control system:

1
75,12 11 2 —L
1'5’HD8+75'2'S w(s) = [ 1} w(s) + [1} u(s) + [ 1+“(’)5(S) } , s €(0,1],

0 (5.1
.2 0 .
1.518375,s w(O) = wy = |:O:| )

Comparing (5.1) with (1.1), we get k = 1.5, § = 0.75,y = %, v(s) = 2 A =

1
|:—01 }i| , B = [%],ﬂl =0,8=1,wy = |:8i| , 8(s,w(s), v(s)) = |:1+14())%(S)j|

and w(s) = |:w1(s)i|. Let us take w(l) = |:w1(s)i|

wa(s) wa(s)
matrix function for the given matrix A is

|:_11 i| . The Mittag-Leffler

1

The controllability Gramian matrix
1
G- / 2r(1 = )9 505 ((0.8169)A1 = 1)) BB*Eo05 ((0.8165)A%(1 = 2" ) dr
0

_ | 15.3665 8.1931
“ | 8.1931 9.4863 |’

is positive definite. Therefore, the linear system corresponding to (5.1) is controllable

on [0, 1]. Further, | l‘im % = 0 uniformly on [0, 1]. The system (5.1) is control-
pl—o0

lable on [0, 1] by Theorem 4.2. The controlled trajectories of the system (5.1) steering
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3046 I. Haque et al.

The steering of the control function

0.1
u(s)

0.05

Control function u(s)
S

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time s

Fig.1 The trajectory of u(s) of the system (5.1) on [0, 1]

from the initial state w(0) = to a desired state w(l) = |:_11:| during [0, 1] can

0
0
be approximated from the following algorithm

u" (5)=(0.44)B*Eq 5.0.5 ((0.8165)A*(1—s2)°~5) G110, 1][w(1)— /1(2r) (1—r2)_0'5
0
x E05.0.5 ((0.8165)A(1 - r2)0'5) g(r, w'(r), v(r))dr]
w1 (s) = (0.8165) / r) (s2 - rz)fo's Eo.5.05 ((0.8165)A(52 - r2)0‘5)
x (Bu"(r)0+ g, w" (), v(r) dr,

with w®(s) = wg, wheren =0, 1,2, - - - . Using MATLAB, the controlled trajectories
and steering control u(s) are computed and are depicted in Figs. 1 and 2.

Example 5.2 Let us take the following nonlinear (k, v)-Hilfer fractional differential
control system:

. [a1y2
I’HDé;l’sw(s) = [(1)(1)} w(s) + [?} u(s) + [ wl(g”ﬂ, s € (0,2],

0
w(0) = [o]
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15 The steering of the trajectories

w,(s)

w, ()

e
3,

\

State w(s)

|

/

N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time s

Fig.2 The trajectory of the system (5.1) steers from [8] to the final state [_1 1 ] during the interval [0, 1]

The steering of the control function

8
u(s)

Control function u(s)

-2

/

-4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time s

Fig.3 The trajectory of u(s) of the system (5.2) on [0, 2]
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The steering of the trajectories

2 x x

w,(s)

15 1 W,() /

0.5

State w(s)

\_/

-1.5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time s

Fig.4 The trajectory of the system (5.2) steers from [ § ] to the final state [ } | during the interval [0, 2]

10
B = |:(1):|’/31 =0,6 =2, wy = I:gi|, g(s,w(s), v(s)) = [W} and

wi(2)
w2(2)

Comparing (5.2) with (1.1), we getk =1, § = %, y=1v()=s, A= [O 1} ,

w(s) = [g;g;] Let us take w(2) = [

function for the given matrix A is

:| = |:;:| . The Mittag-Leffler matrix

N _ [ Ni(s) Na(s)
s E%’%(AS) = I:Nz(s) N1(S)i| '
=1
where N (s) = [E1 1(8) +E§ 1(=s)] and Na(s) = TT[Ei 1) =By 1 (=9l

The controllablhty Gramlan matrix

2

S 1
G[1,2] = / (2_r)El | (k_?A(z—rﬁ)BB*

202

(kAT e =) ar

N\
N\

2
2/[ N3 (/2 =) Nl(v(Z—r)Nz(\/@—r)}
) N1 (V2 -))No(v/(2 - 1)) NI (V2 =1)
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_ | 32.7898 33.6254
~ | 33.6254 34.6631 |’

is positive definite. Therefore, the linear system corresponding to (5.2) is controllable

on [0, 2]. Further, | l‘im 'g(lsp—"”)‘ = 0 uniformly on [0, 2]. The system (5.2) is control-
pl—o0

lable on [0, 2] by Theorem 4.2. The controlled trajectories of the system (5.2) steering

from the initial state w(0) = to a desired state w(2) = |:éi| during [0, 2] can be

0
0
approximated from the following algorithm

u"(s) = B*E; 1 (k—%A*(z - s)‘3> G7'10,2]

3

(S]]
(S]]

20

[N}

2
x w(2)—/(2—r)_7 Ei | (k—%A(z—r)%) g(r, w'(r), v(r)dr
0

s

w1 (5) =/(s — /) ZEs (k*%A(s —r)%) (Bu" (r) + g(r, w"(r), v(r))) dr

22
0

with wo(s) = wo, wheren =0, 1,2, - - - . Using MATLAB, the controlled trajectories
and steering control u(s) are computed and are depicted in Figs.3 and 4.

6 Conclusion

In this article, we studied the controllability of fractional dynamical systems involv-
ing (k, ¥)-Hilfer fractional derivative. This study of controllability of (k, y¥r)-Hilfer
fractional derivative gives the controllability results for many other distinct fractional
derivatives stated in Table 1. Here, we have used the controllability Gramian matrix
and Schauder fixed point technique to establish sufficient conditions for the controlla-
bility of fractional dynamical systems. Numerical examples are provided to illustrate
the main results.
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