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Abstract
In this paper, we propose two new self-adaptive relaxed CQ algorithms to solve the
split feasibility problem with multiple output sets, which involve the computation
of projections onto half-spaces instead of the computation onto the closed convex
sets. Our proposed algorithms with selection technique reduce the computation of
projections.And then, as a generalization,we construct twonewalgorithms to solve the
variational inequalities over the solution set of split feasibility problem with multiple
output sets.More importantly, strong convergence of all proposed algorithms is proved
under suitable conditions. Finally, we conduct numerical experiments to show the
efficiency and accuracy of our algorithms compared to some existing results.

Keywords Split feasibility problem · Multiple output sets · Strong convergence ·
Relaxed CQ algorithm · Self-adaptive algorithm

Mathematics Subject Classification 47H09 · 47H10 · 49J53 · 90C25

Tong Ling and Luoyi Shi have contributed equally to this work.

B Luoyi Shi
shiluoyi@tiangong.edu.cn

Xiaolei Tong
tongxiaoleimath@163.com

Tong Ling
lingtongmath@163.com

1 School of Mathematical Sciences, Tiangong University, Tianjin 300387, China

2 School of Software, Tiangong University, Tianjin 300387, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-024-02008-4&domain=pdf
http://orcid.org/0000-0001-6922-7850


1442 X. Tong et al.

1 Introduction

LetC and Q be nonempty closed convex subsets of Hilbert spaces H1 and H2, respec-
tively. Let A : H1 → H2 be a bounded linear operator with its adjoint operator A∗.
The split feasibility problem (SFP) is formulated as finding a point x∗ ∈ H1 satisfying

x∗ ∈ C and Ax∗ ∈ Q. (1)

The SFPwas first proposed by Censor and Elfving [6] in 1994 for solving modeling
inverse problems which arise from the phase retrieval problems and medical image
reconstruction [4]. It has been found that the SFP can also be used to model problems
with applications in different domains, for instance, intensity-modulated radiation
therapy and gene regulatory network inference [5, 7, 8, 17].

For solving the SFP, Byrne [4] introduced the applicable and best-known CQ algo-
rithm, which involves the computations of the projections PC and PQ onto C and Q.
In addition, the step size of CQ algorithm depends on the operator norm, which is not
easy to compute (or at least estimate). In 2004, Yang [19] generalized the CQ method
to the so-called relaxed CQ algorithm, needing computation of the metric projection
onto (relaxed sets) half-spaces Cn and Qn . Since PCn and PQn are easily calculated,
this method appears to be very practical. To overcome the criterion for computing the
norm ofA (which is both complicated and costly), in 2012, López et al. [11] introduced
a relaxed CQ algorithm for solving the SFP with a new adaptive way of determining
the sequence of steps τn , defined as follows:

τn := ρn fn(xn)

‖∇ fn(xn)‖2 ,

where ρn ∈ (0, 4),∀n ≥ 1 such that lim infn→∞ ρn(4 − ρn) > 0. It was proved that
the sequence {xn} with τn converges weakly to a solution of the SFP.

Some generalizations of the SFP have been studied by many authors. Recently,
Reich andTuyen [12] considered and studied the split feasibility problemwithmultiple
output sets (SFPMOS). Let H , Hi , i = 1, 2, ..., N , be real Hilbert spaces and let Ai :
H → Hi , i = 1, 2, ..., N be bounded linear operators. Let C and Qi , i = 1, 2, ..., N
be nonempty, closed, and convex subsets of H and Hi , i = 1, 2, ..., N , respectively.
The SFPMOS is formulated to find a point x∗ such that

x∗ ∈ � := C ∩ (∩N
i=1A

−1
i (Qi )) �= ∅. (2)

The solution set of problem (SFPMOS) is denoted by �.
Furthermore, Reich and Tuyen [12] proposed the following two algorithms for

solving the SFPMOS by extending the CQ algorithm:

xn+1 = PC (xn − λn

N∑

i=1

A∗
i (I − PQi )Ai xn), (3)
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xn+1 = αn f (xn) + (1 − αn)PC (xn − λn

N∑

i=1

A∗
i (I − PQi )Ai xn), (4)

where f : C → C is a strict contraction mapping, {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1).
It is proved that if the sequence λn satisfies the condition:

0 < a ≤ λn ≤ b <
2

N maxi=1,2,...N {‖Ai‖2} ,

for all n ≥ 1, then the sequence {xn} obtained weak and strong convergence results
for (3) and (4), respectively.

However, we note that each iteration step of Algorithm (3) and Algorithm (4)
requires the computation ofmetric projections onto setsC and Qi and have to calculate
or estimate the operator norm ‖Ai‖. In general, this is not an easy task in practice.

Next, we consider several self-adaptive projection methods that would avoid the
above case. In 2019, Yao et al. [14] presented two self-adaptive iterative algorithms
for solving the multiple-sets split feasibility problem (MSSFP) and proved the weak
and strong convergence results. MSSFP is to find a point x∗ such that

x∗ ∈
s⋂

i=1

Ci and Ax∗ ∈
t⋂

j=1

Q j . (5)

where {Ci }si=1 and {Qi }tj=1 are two finite families of closed convex subsets of H1 and
H2.

Yao et al. [14] proposed the following self-adaptive method with selection tech-
nique:

⎧
⎨

⎩

zn = PCin
xn,

yn = A∗(I − PQ jn
)Axn,

xn+1 = xn − τn(xn + yn − zn),
(6)

where

in ∈ {i |max
i∈I1

‖xn − PCi xn‖, I1 = {1, 2, ..., s}},
jn ∈ { j |max

j∈I2
‖Axn − PQ j Axn‖, I2 = {1, 2, ..., t}},

τn = λn
‖xn − zn‖2 + ‖yn‖2
2‖xn + yn − zn‖2 ,

in which λn > 0.
In 2022, Reich et al. [14] introduced a split inverse problem called split common

fixed point problem with multiple output sets. To solve this problem, they proposed
a self-adaptive algorithm which is based on the viscosity approximation method and
prove a strong convergence theorem. More details in [14].
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Very recently, Taddele et al. [16] propose two new self-adaptive relaxed CQ algo-
rithms for solving SFPMOS. The algorithms they proposed are as follows:

xn+1 = xn − ρn
1 (I − PCn )xn − τn

N∑

i=1

ϑi A
∗
i (I − PQn

i
)Ai xn,

xn+1 = αnu + (1 − αn)(xn − ρn
1 (I − PCn )xn − τn

N∑

i=1

ϑi A
∗
i (I − PQn

i
)Ai xn),

where τn := ρn
2

∑N
i=1 ϑi‖(I−PQn

i
)Ai xn‖2

τ̄n
2 , τ̄n := max{‖∑N

i=1 ϑi A∗
i (I − PQn

i
)Ai xn‖, β}.

They establish a weak and a strong convergence theorems for the proposed algorithms.
We note that although the step size of the algorithms of Taddele are adaptive, the
computational effort required to compute the sum of the first N terms with respect to
the projection PQn

i
is undoubtedly enormous.

In addition, variational inequalities are crucial for both optimization theory and its
applications. More importantly, we also turn our attention to the variational inequality
problem over the solution set of the SFPMOS (in short, P2). Let F : H → H be
a given operator. Suppose that the solution set � of SFPMOS is nonempty, P2 is
described as follows:

Find a point x∗ ∈ � such that 〈Fx∗, x − x∗〉 ≥ 0, ∀ x ∈ �. (7)

The solution set of problem (P2) is denoted by VIP(F, �).
Motivated and inspired by [14] and [20], we further improve Reich’s algorithms

(4) for solving the SFPMOS (2). Especially, we develop and improve some previously
discussed results in the following ways:

1. In contrast to Reich’s algorithms (4), we propose two new relaxed CQ algorithms
with adaptive step size to solve SFPMOS. It is worth noting that the parameters of
these two algorithms are chosen without the prior knowledge of the norm of the
transfer mappings. Our proposed algorithms employ selection techniques that reduce
the computational effort of projection.

2. Based on these two algorithms in [14] and [20], we present compute the projec-
tions onto half-spaces instead of onto a closed convex set. Strong convergence results
of the proposed Halpern-Type algorithms are proved.

3. As a generalisation of our proposed algorithms, we propose two new adaptive
algorithms for solving the variational inequality problem over the solution set of the
SFPMOS (7), which may not have been solved by others until now.

The paper is organized as follows: In Sect. 2, we recall some existing results, lem-
mas, and definitions for subsequent use. In Sect. 3, we present algorithms for solving
SFPMOS and as a generalisation problem P2 in turn, and analyse the convergence of
the proposed algorithms. To demonstrate that our proposed approach is implementable,
several numerical examples are provided in Sect. 4.
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2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and ‖ · ‖. Let the symbols “⇀"
and “→" denote the weak and strong convergence, respectively. For any sequence
{xn} ⊂ H , ωw(xn) = {x ∈ H : ∃{xnk } ⊂ {xn} such that xnk⇀x} denotes the weak
w-limit set of {xn}.
Definition 1 [2] Let C be a nonempty, closed and convex set of H . For every element
x ∈ H , there exists a unique nearest point in C, denoted by PCx such that

‖x − PCx‖ = min{‖x − y‖ : y ∈ C}.

The operator PC is called a metric projection from H onto C .
It has the following well-known properties which are used in the subsequent con-

vergence analysis.

Lemma 2 [10] Let C ⊂ H be a nonempty, closed and convex set. Then, the following
assertions hold for any x, y ∈ H and z ∈ C :

(i) 〈x − PCx, z − PCx〉 ≤ 0;
(ii) ‖PCx − PC y‖ ≤ ‖x − y‖;
(iii) ‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉;
(iv) ‖PCx − z‖2 ≤ ‖x − z‖2 − ‖x − PCx‖2.
Next, we give some inequalities required for proving convergence analysis. For

each x, y ∈ H , we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (8)

Lemma 3 (Peter-Paul Inequality) If a and b are non-negative real numbers, then

ab ≤ a2

2ε
+ εb2

2
, ∀ ε > 0.

Definition 4 [2] Let f : H → (−∞,+∞] be a proper function, and let x ∈ H . Then
f is called

(i) Lower semicontinuous at x if xn → x implies f (x) ≤ lim infn→∞ f (xn);
(ii) Weakly lower semicontinuous at x if xn⇀x implies f (x) ≤ lim infn→∞ f (xn).

Definition 5 [2] Let f : H → (−∞,+∞] be proper. The subdifferential of f is the
set-valued operator

∂ f : H → 2H : x �→ {u ∈ H |〈y − x, u〉 + f (x) ≤ f (y),∀y ∈ H}.

Let x ∈ H . Then f is subdifferentiable at x if ∂ f (x) �= ∅; the elements of ∂ f (x) are
the subgradients of f at x .
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Lemma 6 [11] A mapping T : H → H is said to be:

(i) L-Lipschitz continuous if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖, ∀ x, y ∈ H ;

(ii) κ-strongly monotone if there exists a constant κ > 0 such that

〈T x − T y, x − y〉 ≥ κ‖x − y‖2, ∀ x, y ∈ H .

Lemma 7 [15] Let {ϒn} be a positive sequence, {bn} be a sequence of real numbers,
and {αn} be a sequence in the open interval (0, 1) such that

∑∞
n=1 αn = ∞. Assume

that

ϒn+1 ≤ (1 − αn)ϒn + αnbn, ∀ n ≥ 1.

If lim supk→∞ bnk ≤ 0 for every subsequence {ϒnk } of {ϒn} satisfying lim infk→∞
(ϒnk+1 − ϒnk ) ≤ 0, then limn→∞ ϒn = 0.

3 Results

In this section, we consider a general case of the SFPMOS, in which C and Qi are
level sets of convex and subdifferential functions c : H1 → R and qi : Hi → R

defined as follows:

C = {x ∈ H : c(x) ≤ 0} and Qi = {y ∈ Hi : qi (y) ≤ 0}.

Let ∂c and ∂q denote the subdifferential of c and q. Then c and q are also weakly
lower semicontinuous. We define the half-spaces Cn and Qn

i (i = 1, 2, ..., N ) of C
and Qi , respectively:

Cn := {x ∈ H : c(xn) + 〈ξn, x − xn〉 ≤ 0}, ξn ∈ ∂c(xn),

Qn
i := {y ∈ Hi : qi (Ai xn) + 〈ηni , y − Ai xn〉 ≤ 0}, ηni ∈ ∂qi (Ai xn).

(9)

By the definition of the subgradient, it is easy to see that C ⊆ Cn and Qi ⊂ Qn
i ( [9]).

Now, we introduce two self-adaptive relaxed CQ algorithms for solving the SFP-
MOS (2) in the case where the SFPMOS is consistent (i.e. � �= ∅).

3.1 Two iterative algorithms for solving SFPMOS

Theorem 8 Suppose the sequences {λn}, {ρn} and {αn} are in (0, 1) satisfying the
following conditions:

(i) 0 < a ≤ λn ≤ b < 1, 0 < c ≤ ρn ≤ d < 1;
(ii) lim

n→∞ αn = 0 and
∑∞

n=0 αn = ∞.
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Algorithm 1 Self-adaptive relaxed CQ algorithm I for SFPMOS
Step 0. Choose initial points x0 arbitrary. Set n = 1.
Step 1. Set

d̂n = ‖xn − PCn xn‖,
d̄n = max{‖Ai xn − PQn

i
Ai xn‖, i = 1, 2, ..., N },

in ∈ {i = 1, 2, ..., N : ‖Ai xn − PQn
i
Ai xn‖ = d̄n}.

Step 2. Let �n = max{d̂n , d̄n}.
Case 1: d̂n = �n . If xn = PCn xn , then stop; else compute

yn = xn − λn(xn − PCn xn). (10)

Case 2: d̄n = �n . If Ain xn = PQn
in
Ain xn , then stop; else compute

yn = xn − τn A
∗
in

(Ain xn − PQn
in
Ain xn),

where

τn = ρn

‖Ain xn − PQn
in
Ain xn‖2

‖A∗
in

(Ain xn − PQn
in
Ain xn)‖2 . (11)

Step 3. Compute

xn+1 = αnu + (1 − αn)yn . (12)

Set n = n + 1 and go back to step 1.

Then {xn} generated by Algorithm 1 converges strongly to a solution x∗, where x∗ =
P�u.

Proof Let x∗ ∈ �. The proof is divided into four steps as follows.
Step 1. The sequence {xn} is bounded. We consider the following two cases:

Case 1: d̂n = �n .

From the definition of {yn}, we have

‖yn − x∗‖2 = ‖xn − λn(xn − PCn xn) − x∗‖2

= ‖xn − x∗‖2 + λ2n‖xn − PCn xn‖2 − 2λn〈xn − x∗, xn − PCn xn〉
= ‖xn − x∗‖2 + λ2n‖xn − PCn xn‖2 − 2λn〈xn − PCn xn, xn − PCn xn〉

− 2λn〈PCn xn − x∗, xn − PCn xn〉
= ‖xn − x∗‖2 + λ2n‖xn − PCn xn‖2 − 2λn‖xn − PCn xn‖2

− 2λn〈PCn xn − x∗, xn − PCn xn〉.
(13)
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Since x∗ ∈ C ⊂ Cn , it follows from lemma 2 (i) that

〈xn − PCn xn, PCn xn − x∗〉 ≥ 0.

This implies that

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − 2λn(1 − λn)‖xn − PCn xn‖2. (14)

Case 2: d̄n = �n .
Using (11) and lemma 2 (i), we have

‖yn − x∗‖2 = ‖xn − τn A
∗
in (Ain xn − PQn

in
Ain xn) − x∗‖2

= ‖xn − x∗‖2 + τ2n ‖A∗
in (Ain xn − PQn

in
Ain xn)‖2

− 2τn〈xn − x∗, A∗
in (Ain xn − PQn

in
Ain xn)〉

= ‖xn − x∗‖2 + τ2n ‖A∗
in (Ain xn − PQn

in
Ain xn)‖2

− 2τn〈Ain xn − Ain x
∗, Ain xn − PQn

in
Ain xn〉

= ‖xn − x∗‖2 + τ2n ‖A∗
in (Ain xn − PQn

in
Ain xn)‖2

− 2τn〈Ain xn − PQn
in
Ain xn, Ain xn − PQn

in
Ain xn〉

− 2τn〈PQn
in
Ain xn − Ain x

∗, Ai xn − PQn
in
Ain xn〉

≤ ‖xn − x∗‖2 + τ2n ‖A∗
in (Ain xn − PQn

in
Ain xn)‖2 − 2τn‖Ain xn − PQn

in
Ain xn‖2

= ‖xn − x∗‖2 + (
ρn‖Ain xn − PQn

in
Ain xn‖2

‖A∗
in

(Ain xn − PQn
in
Ain xn‖2

)2‖A∗
in (Ai xn − PQn

in
Ai xn)‖2

− 2(
ρn‖Ain xn − PQn

in
Ain xn‖2

‖A∗
in

(Ain xn − PQn
in
Ain xn‖2

)‖Ain xn − PQn
in
Ain xn‖2

≤ ‖xn − x∗‖2 − 2ρn(1 − ρn)
‖Ain xn − PQn

in
Ain xn‖4

‖A∗
in

(Ain xn − PQn
in
Ain xn)‖2

. (15)

By (13) and (15), we obtain

‖yn − x∗‖ ≤ ‖xn − x∗‖. (16)

We next demonstrate that the sequence {xn} is bounded. Indeed, using (8) and (16),
we get

‖xn+1 − x∗‖2 = ‖αnu + (1 − αn)yn − x∗‖2
= ‖αn(u − x∗) + (1 − αn)(yn − x∗)‖2
≤ ‖(1 − αn)(yn − x∗)‖2 + 2αn〈u − x∗, xn+1 − x∗〉
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≤ (1 − αn)‖yn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉
≤ (1 − αn)‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉. (17)

It follows from lemma 3 and (17) that

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉
≤ (1 − αn)‖xn − x∗‖2 + 2αn‖u − x∗‖‖xn+1 − x∗‖
≤ (1 − αn)‖xn − x∗‖2 + 4αn‖u − x∗‖2 + 1

4
αn‖xn+1 − x∗‖2

≤ 1 − αn

1 − 1
4αn

‖xn − x∗‖2 +
3
4αn

1 − 1
4αn

16

3
‖u − x∗‖2

≤ max{‖xn − x∗‖2, 16
3

‖u − x∗‖2} (18)

...

≤ max{‖x0 − x∗‖2, 16
3

‖u − x∗‖2}. (19)

This implies that the sequence {xn} is bounded, and {yn} and {Ai xn}, i = 1, ..., N as
well.

Step 2. ‖xn − PCn xn‖ → 0 and ‖Ain xn − PQn
in
Ain xn‖ → 0 are hold as n → ∞.

By (17), we obtain

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉. (20)

Setting ϒn = ‖xn − x∗‖2, we obtain

ϒn+1 ≤ (1 − αn)ϒn + αnbn, (21)

where bn = 2〈u − x∗, xn+1 − x∗〉.
In view of lemma 7, it suffices to demonstrate that lim supk→∞ bnk ≤ 0 for every

subsequence ϒnk is an arbitrary subsequence of ϒn satisfying

lim inf
k→∞ (ϒnk+1 − ϒnk ) = 0.

From (17), we also obtain

‖xn+1 − x∗‖2 ≤ ‖yn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉. (22)

If we put (14) in (22), we obtain that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉
−2λn(1 − λn)‖xn − PCn xn‖2.
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Using the hypothesis λn ∈ [a, b] ⊂ (0, 1), we get from the inequality above that

‖xn − PCn xn‖2 ≤ 1

2λn(1 − λn)
(ϒn − ϒn+1 + αnM)

≤ 1

2a(1 − b)
(ϒn − ϒn+1 + αnM), (23)

where M > 0 is a constant such that 2‖u − x∗‖‖xn+1 − x∗‖ ≤ M, for all n ∈ N .

Since x∗ ∈ �, we note A∗
i (I − PQn

i
)Ai x∗ = 0. Hence, we can get

‖A∗
i (I − PQn

i
)Ai xn − A∗

i (I − PQn
i
)Ai x

∗‖ ≤ ( max
1≤i≤N

‖Ai‖2)‖xn − x∗‖.

Since {xn} is also bounded, we have the sequence {‖A∗
i (I − PQn

i
)Ai xn‖}∞n=1 is also

bounded. Similarly, using (15), (22) and ρn ∈ [c, d] ⊂ (0, 1), we see that

‖Ain xn − PQn
in
Ain xn‖4 ≤ K 2

2c(1 − d)
(ϒn − ϒn+1 + αnM), (24)

where K > 0 is a constant such that ‖A∗
in

(I − PQn
in

)Ain xn‖ ≤ K , for all n ∈ N .

Since ϒn − ϒn+1 → 0 and αn → 0 (n → ∞), it follows from (23) and (24) that

lim
n→∞ ‖xn − PCn xn‖ = 0 and lim

n→∞ ‖Ain xn − PQn
in
Ain xn‖ = 0. (25)

Step 3. We show that ωw(xn) ⊂ �.

Let x̂ ∈ ωw(xn), there exists a subsequence {xnk } of {xn} such that xnk⇀x̂ as
k → ∞. For each i = 1, 2, ..., N , since ∂c is bounded on bounded sets, there exists a
constant ξ > 0 such that ‖ξn‖ ≤ ξ for all n ≥ 0. Then, from the fact that PCn xn ∈ Cn

and (9), it follows that

c(xnk ) ≤ 〈ξnk , xnk − PCnk xnk 〉 ≤ ‖ξnk‖‖xnk − PCnk xnk‖ ≤ ξ‖(I − PCnk )xnk‖.

By applying (25) and the weakly lower semicontinuity of c, we have

c(x̂) ≤ lim inf
k→∞ c(xnk ) ≤ 0.

Consequently, x̂ ∈ C . In the same way, there exists a constant η > 0 such that
‖ηnin‖ ≤ η for all n ≥ 0. Since PQn

in
Ain xn ∈ Qn

in
, it follows that

qin (Ain xnk ) ≤ 〈ηnkin , Ain xnk − PQn
in
Ain xnk 〉

≤ ‖ηnkin ‖‖Ain xnk − PQn
in
Ain xnk‖

≤ η‖(I − PQnk
in

)Ain xnk‖.
(26)
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By applying (25) and the weakly lower semicontinuity of qi , we have

qin (Ain x̂) ≤ lim inf
k→∞ qin (Ain xnk ) ≤ 0.

According to the definition of in , it turns out that Ai x̂ ∈ Qi for i = 1, 2, ..., N .

Consequently, we have x̂ ∈ �, which implies that ωw(xn) ⊂ �.

Step 4. We prove that ϒn → 0.
We now show that ‖xnk+1 − xnk‖ → 0 as k → ∞. Indeed, it follows from the

boundedness of the sequence {yn} and the assumption of αn → 0 that

‖xnk+1 − ynk‖ = αnk‖u − ynk‖ → 0, k → ∞. (27)

In Case 1, from the definition of yn , λn , ρn and (25), we obtain that

‖ynk − xnk‖ = λnk‖xnk − PCnk xnk‖ → 0, k → ∞. (28)

In Case 2, from the definition of yn , τn , ρn and (25), we have

‖ynk − xnk‖ = τnk‖A∗
in (Ain xnk − PQnk

in
Ain xnk )‖

= ρnk

‖Ain xn − PQn
in
Ain xn‖2

‖A∗
in

(Ain xn − PQn
in
Ain xn)‖

→ 0, k → ∞.
(29)

Thus, from (28) and (29), we get ‖ynk − xnk‖ → 0. Consequently, we have

lim
k→∞ ‖xnk+1 − xnk‖ = 0. (30)

Assume that {xnk j } is a subsequence of {xnk }, we also have

xnk j ⇀x̂, j → ∞.

Furthermore, according to (30), x∗ = P�u and lemma 2 (i), we have

lim sup
k→∞

bnk = lim sup
k→∞

2〈u − x∗, xnk+1 − x∗〉
= lim

j→∞ 2〈u − x∗, xnk j+1 − x∗〉
= 2〈u − x∗, x̂ − x∗〉
≤ 0.

(31)

Finally, applying Lemma 7 to (21), we conclude that ϒn → 0, that is xn → x∗. This
completes the proof. ��

Assume that the sequence {xn} generated by Algorithm 2 is infinite. In other words,
Algorithm 2 does not terminate in a finite number of iterations.
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Algorithm 2 Self-adaptive relaxed CQ algorithm II for SFPMOS
Step 0. Choose initial points x0 arbitrary. Set n = 1.
Step 1. Let

zn = PCn xn ,

yin = A∗
i (Ai xn − PQn

i
Ai xn),

dn = max{‖xn + yni − zn‖, i = 1, 2, ..., N },
in ∈ {i ∈ 1, 2, ..., N : ‖xn + yin − zn‖ = dn}.

Step 2. If dn = 0, then stop; else compute

xn+1 = αnu + (1 − αn)[xn − tn(xn + yinn − zn)], (32)

where

tn = ρn

‖xn − PCn xn‖2 + ‖Ain xn − PQn
in
Ain xn‖2

2‖xn + yinn − zn‖2
. (33)

Step 3. Set n = n + 1 and go back to step 1.

Lemma 9 Let {xn} be a bounded sequence. If ‖xn + ynin − zn‖ = 0 holds if and only
if xn is a solution of Problem 2.

Proof Assume ‖xn + yinn − zn‖ = 0 holds. For any x∗ ∈ �, by lemma 2 (iii), we have

‖xn − PCn xn‖2 + ‖(I − PQn
in

)Ain xn‖2
≤ 〈xn − PCn xn, xn − x∗〉 + 〈(I − PQn

in
)Ain xn, Ain xn − Ain x

∗〉
= 〈xn − PCn xn + A∗

in (I − PQn
in

)Ain xn, xn − x∗〉
= 〈xn + yinn − zn, xn − x∗〉
≤ ‖xn + yinn − zn‖‖xn − x∗‖.

(34)

Since {xn} is bounded and together with dn = 0, we get

‖xn − PCn xn‖ = 0 and ‖(I − PQn
in

)Ain xn‖ = 0.

According to the definition of in , it follows from the above equation that

‖(I − Pn
Qi

)Ai xn‖ = 0, for all i ∈ I .

Hence xn ∈ Cn and Ai xn ∈ Qn
i . From (9), we have that xn ∈ C and Ai xn ∈ ⋂N

i=1 Qi .

Therefore, xn ∈ �. ��
Theorem 10 Suppose the sequences {αn} and {ρn} satisfying the following conditions:

(C1) lim
n→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(C2) 0 < lim inf
n→∞ ρn ≤ lim sup

n→∞
ρn < 4.

Then the sequence {xn} generated by Algorithm 2 converges strongly to x∗ = P�u.

123



Self-adaptive relaxed CQ algorithms for solving split feasibility problem... 1453

Proof The proof is divided into four steps as follows.
Step 1. The sequence {xn} is bounded.
Set wn = xn − tn(xn + yinn − zn). It follows from (33) and (34) that

‖wn − x∗‖2 = ‖xn − tn(xn + yinn − zn) − x∗‖2
= ‖xn − x∗‖2 + t2n‖xn + yinn − zn‖2 − 2tn〈xn − x∗, xn + yinn − zn〉
≤ ‖xn − x∗‖2 + t2n‖xn + yinn − zn‖2 − 2tn(‖xn − PCn xn‖2

+ ‖(I − PQn
in

)Ain xn‖2)

=‖xn−x∗‖2 − 4ρn(1− 1

4
ρn)

(‖xn−PCn xn‖2+‖Ain xn − PQn
in
Ain xn‖2)2

‖xn +yinn − zn‖2

≤ ‖xn−x∗‖2 − ρn(1− 1

4
ρn)

(‖xn− PCn xn‖2+‖Ain xn− PQn
in
Ain xn‖2)2

‖xn+ yinn − zn‖2
.

(35)

It implies that

‖wn − x∗‖ ≤ ‖xn − x∗‖. (36)

From (32) and (36), we get

‖xn+1 − x∗‖ = ‖αnu + (1 − αn)wn − x∗‖
= ‖αn(u − x∗) + (1 − αn)(wn − x∗)‖
≤ αn‖u − x∗‖ + (1 − αn)‖wn − x∗‖
≤ αn‖u − x∗‖ + (1 − αn)‖xn − x∗‖
≤ max{‖u − x∗‖, ‖xn − x∗‖}
...

≤ max{‖u − x∗‖, ‖x0 − x∗‖}.

(37)

Hence, {xn} is bounded and so are the sequences {Axn}, {PCxn} and {PQi xn}(i ∈ I ).
Step 2. ‖xn − PCn xn‖ → 0 and ‖Ain xn − PQn

in
Ain xn‖ → 0 are hold, n → ∞.

From (8) and (35), we deduce

‖xn+1 − x∗‖2 = ‖αnu + (1 − αn)wn − x∗‖2
= ‖αn(u − x∗) + (1 − αn)(wn − x∗)‖2
≤ (1 − αn)‖wn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉
≤ (1 − αn)‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉

−(1 − αn)ρn(1 − 1

4
ρn)

(‖xn − PCn xn‖2 + ‖Ain xn − PQn
in
Ain xn‖2)2

‖xn + yinn − zn‖2
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≤ (1 − αn)‖xn − x∗‖2 + αn

[
2〈u − x∗, xn+1 − x∗〉

−1 − αn

αn
ρn(1 − 1

4
ρn)

(‖xn − PCn xn‖2 + ‖Ain xn − PQn
in
Ain xn‖2)2

‖xn + yinn − zn‖2
]
. (38)

Set ϒn = ‖xn − x∗‖2, we have

ϒn+1 ≤ (1 − αn)ϒn + αnbn, n ≥ 1, (39)

where

bn = 2〈u − x∗, xn+1 − x∗〉 − 1 − αn

αn
ρn(1 − 1

4
ρn)

×
(‖xn − PCn xn‖2 + ‖Ain xn − PQn

in
Ain xn‖2)2

‖xn + yinn − zn‖2
.

Now, we prove that ϒn → 0 by lemma 7. Suppose that {ϒnk } is an arbitrary
subsequence of satisfying

lim inf
k→∞ (ϒnk+1 − ϒnk ) ≥ 0. (40)

Let M > 0 be a constant such that 2‖u − x∗‖‖xn+1 − x∗‖ ≤ M, for all n ∈ N . By
(38), we have

(1 − αnk )ρnk (1 − 1

4
ρnk )

(‖xnk − PCnk xnk‖2 + ‖Ain xnk − PQnk
in
Ain xnk‖2)2

‖xnk + yinnk − znk‖2
≤ (1 − αnk )‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + 2αnk 〈u − x∗, xnk+1 − x∗〉
≤ ‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + 2αnk‖u − x∗‖‖xnk+1 − x∗‖
≤ ϒnk − ϒnk+1 + αnk M .

(41)

From (40) and (41) together with conditions (C1) and (C2), we have that

lim sup
k→∞

(1 − αnk )ρnk (1 − 1

4
ρnk )

(‖xnk − PCnk xnk‖2 + ‖Ain xnk − PQnk
in
Ain xnk‖2)2

‖xnk + yinnk − znk‖2
≤ lim sup

k→∞
(ϒnk − ϒnk+1 + αnk M)

= − lim inf
k→∞ (ϒnk+1 − ϒnk ) + lim sup

k→∞
αnk M

≤ 0.

(42)
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Thus we see that

lim
k→∞

(‖xnk − PCnk xnk‖2 + ‖Ain xnk − PQnk
in
Ain xnk‖2)2

‖xnk + yinnk − znk‖2
= 0,

which yields

‖xnk − PCnk xnk‖ = 0, ‖Ain xnk − PQnk
in
Ain xnk‖ = 0. (43)

Step 3. We show that ωw(xn) ⊂ �.

Assume that x̂ ∈ ωw(xn) and {xnk } is a subsequence of {xn} which converges
weakly to x̂ . Since PCn xn ∈ Cn and (9), it follows that

c(xnk ) ≤ 〈ξnk , xnk − PCnk xnk 〉 ≤ ‖ξnk‖‖xnk − PCnk xnk‖ ≤ ξ‖(I − PCnk )xnk‖,(44)

where ξ satisfies ‖ξnk‖ ≤ ξ. By applying (43) and the weakly lower semicontinuity
of c, we have

c(x̂) ≤ lim inf
k→∞ c(xnk ) ≤ 0.

Consequently, x̂ ∈ C . In the same way, there exists a constant η > 0 such that
‖ηnkin ‖ ≤ η for all n ≥ 0.

Since PQnk
in

(Ain xnk ) ∈ Qnk
in
, it follows that

qin (Ain xnk ) ≤〈ηnkin , Ain xnk − PQnk
in
Ain xnk 〉

≤ ‖ηnkin ‖‖Ain xnk − PQnk
in
Ain xnk‖

≤ η‖(I − PQnk
in

)Ain xnk‖.
(45)

By applying (43) and the weakly lower semicontinuity of qi , we have

qin (Ain x̂) ≤ lim inf
k→∞ qin (Ain xnk ) ≤ 0. (46)

It turns out that Ai x̂ ∈ Qi for i = 1, 2, ..., N . Consequently, we have x̂ ∈ �,which
implies that ωw(xn) ⊂ �.

Step 4. We prove that xn → x∗.
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Moreover, we have the following estimation

‖xnk+1 − xnk‖ = ‖αnk u + (1 − αnk )(xnk − tnk (xnk + yinnk − znk )) − xnk‖
≤ αn‖u − xnk‖ + (1 − αnk )tnk‖xnk + yinnk − znk‖
≤ αn‖u − xnk‖ + tnk‖xnk + yinnk − znk‖
≤ αn‖u − xnk‖ + ρnk

×
‖xnk − PCnk xnk‖2 + ‖Aink

xnk − PQnk
in
Aink

xnk‖2

2‖xnk + yinnk − znk‖
.

(47)

Since {xn} is bounded, (43) together with (C1) and (C2), we have that

lim
k→∞ ‖xnk − xnk+1‖ = 0. (48)

Assume that {xnk j } is a subsequence of {xnk }, we also have xnk j ⇀x̂, as j → ∞.

Furthermore, due to (48), x∗ = P�u and lemma 2 (i), we infer that

lim sup
k→∞

bnk = lim
j→∞ bnk j

= lim
j→∞

[
2〈u − x∗, xnk j+1 − x∗〉

−1 − αnk j

αnk j

ρnk j (1 − 1

4
ρnk j )

(
‖xnk j − PCnk j xnk j ‖2 + ‖Ai xnk j − P

Q
nk j
in

Ai xnk j ‖2
)2

‖xnk j + yinnk j − znk j ‖2
]

≤ lim
j→∞ 2〈u − x∗, xnk j+1 − x∗〉

≤ 2〈u − x∗, x̂ − x∗〉
≤ 0. (49)

Finally, applying Lemma 7 to (39), we conclude that �n → 0, that is xn → x∗. This
completes the proof. ��

3.2 Two iterative algorithms for variational inequalities over the solution set of
SFPMOS

Now, we introduce two self-adaptive algorithms for solving variational inequalities
over the solution set of SFPMOS (7). Before convergence analysis of our algorithms,
the following conditions are assumed.

Assumption 1 The control sequences satisfy the following conditions:

(i) 0 < a ≤ λn ≤ b < 1, 0 < c ≤ ρn ≤ d < 1;
(ii) {βn} ⊂ (0, 1), lim

n→∞ βn = 0 and
∑∞

n=0 βn = ∞;

(iii) γ is a positive real number in the open interval (0, 2κ/L2).
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Algorithm 3 Self-adaptive algorithm I for P2
Step 0. Choose initial points x0 arbitrary. Set n = 1.
Step 1. Set

d̂n = ‖xn − PCn xn‖,
d̄n = max{‖Ai xn − PQn

i
Ai xn‖, i = 1, 2, ..., N },

in ∈ {i = 1, 2, ..., N : ‖Ai xn − PQn
i
Ai xn‖ = d̄n}.

Step 2. Let �n = max{d̂n , d̄n}.
Case 1: d̂n = �n . If xn = PCn xn , then stop; else compute

yn = xn − λn(xn − PCn xn). (50)

Case 2: d̄n = �n . If Ain xn = PQn
in
Ain xn , then stop; else compute

yn = xn − τn A
∗
in

(Ain xn − PQn
in

Ain xn
),

where

τn = ρn

‖Ain xn − PQn
in
Ain xn‖2

‖A∗
in

(Ain xn − PQn
in
Ain xn)‖2 . (51)

Step 3. Compute

xn+1 = (I − βnγ F)yn . (52)

Set n = n + 1 and go back to step 1.

Lemma 11 Suppose that F : H → H is L-Lipschitz and κ-strongly monotone, then

(i)

‖(I − βnγ F)yn − (I − βnγ F)x∗‖ ≤ (1 − βnϕ)‖yn − x∗‖,

where

ϕ = 1 −
√
1 − γ (2κ − γ L2);

(ii)

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ + βnγ (βnγ ‖Fyn‖2 − 2〈yn − x∗, Fyn〉)
−2λn(1 − λn)‖xn − PCn xn‖2;

(iii)

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ + βnγ (βnγ ‖Fyn‖2 − 2〈yn − x∗, Fyn〉)

− 2ρn(1 − ρn)
‖Ai xn − PQn

i
Ai xn‖4

‖A∗
i (Ai xn − PQn

i
)‖2 .

(53)
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Proof (i) Taking any x∗ ∈ �, it follows from Lemma 3.1 in [18] that

‖(I − γ F)yn − (I − γ F)x∗‖2 ≤ (1 − γ (2κ − γ L2))‖yn − x∗‖2. (54)

From (54), we have

‖(I − βnγ F)yn − (I − βnγ F)x∗‖
= ‖(I − βn)(yn − x∗) + βn(yn − x∗) − βnγ Fyn + βnγ Fx∗‖
≤ (I − βn)‖yn − x∗‖ + βn‖(I − γ F)yn − (I − γ F)x∗‖
≤ (I − βn)‖yn − x∗‖ + βn

√
1 − γ (2κ − γ L2)‖yn − x∗‖.

(55)

(ii) Using (14), we get

‖xn+1 − x∗‖2 = ‖(I − βnγ F)yn − x∗‖2
≤ ‖yn − x∗ − βnγ Fyn‖2
≤ ‖yn − x∗‖2 + β2

nγ
2‖Fyn‖2 − 2βnγ 〈yn − x∗, Fyn〉

≤ ‖xn − x∗‖2 + βnγ (βnγ ‖Fyn‖2
− 2〈yn − x∗, Fyn〉) − 2λn(1 − λn)‖xn − PCn xn‖2.

(56)

(iii) Similar to (ii), through (15), we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + βnγ (βnγ ‖Fyn‖2 − 2〈yn − x∗, Fyn〉)

− 2ρn(1 − ρn)
‖Ai xn − PQi

n Ai xn‖4
‖A∗

i (Ai xn − PQn
i
)‖2 .

(57)

��

Theorem 12 Let F : H → H be an L-Lipschitz and κ-strongly monotone operator
and under Assumption 1. Then the sequence {xn} generated by Algorithm 3 converges
strongly to the unique solution of V I P(F, �).

Proof Let x∗ be the unique solution of the variational inequality V I P(F, �), that is,

〈Fx∗, z − x∗〉 ≥ 0, ∀ z ∈ �. (58)
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From (16) in Theorem 8, (52) and lemma 11 (i), we have

‖xn+1 − x∗‖ = ‖(I − βnγ F)yn − x∗‖
= ‖(I − βnγ F)yn − (I − βnγ F)x∗ − βnγ Fx∗‖
≤ ‖(I − βnγ F)yn − (I − βnγ F)x∗‖ + βnγ ‖Fx∗‖
= (1 − βnϕ)‖yn − x∗‖ + βnγ ‖Fx∗‖
≤ (1 − βnϕ)‖xn − x∗‖ + βnϕ

γ

ϕ
‖Fx∗‖

≤ max{‖xn − x∗‖, γ

ϕ
‖Fx∗‖}

...

≤ max{‖x0 − x∗‖, γ

ϕ
‖Fx∗‖}.

(59)

This implies that the sequence {xn} is bounded, and {yn} and {Ai xn}, i = 1, ..., N as
well. Using lemma 11 (i), we get that

‖xn+1 − x∗‖2 = 〈(I − βnγ F)yn − x∗, xn+1 − x∗〉
= 〈(I − βnγ F)yn − (I − βnγ F)x∗, xn+1 − x∗〉 − βnγ 〈Fx∗, xn+1 − x∗〉

≤ ‖(I − βnγ F)yn − (I − βnγ F)x∗‖2 + ‖xn+1 − x∗‖2
2

− βnγ 〈Fx∗, xn+1 − x∗〉

≤ (I − βnϕ)‖yn − x∗‖2 + ‖xn+1 − x∗‖2
2

− βnγ 〈Fx∗, xn+1 − x∗〉

≤ (I − βnϕ)‖xn − x∗‖2 + ‖xn+1 − x∗‖2
2

− βnγ 〈Fx∗, xn+1 − x∗〉.

(60)

Hence, we infer that

‖xn+1 − x∗‖2 ≤ (I − βnϕ)‖xn − x∗‖2 − 2βnγ 〈Fx∗, xn+1 − x∗〉.

Set ϒn = ‖xn − x∗‖2, we have
ϒn+1 ≤ (1 − αn)ϒn + αnbn, (61)

where αn = βnϕ and bn = − 2γ
ϕ

〈Fx∗, xn+1 − x∗〉.
Now, we prove that ϒn → 0 by using lemma 7. To this end, suppose that ϒnk is an

arbitrary subsequence of ϒn satisfying

lim inf
k→∞ (ϒnk+1 − ϒnk ) = 0. (62)

Since {xn} is bounded, {yn} is bounded too. Hence, there exists a positive real number
M̄ such that max{supn ‖yn‖, supn ‖Fyn‖} ≤ M̄ .

In Case 1, from lemma 11 (ii) and {λn} ⊂ [a, b] ⊂ (0, 1), we get

2a(1 − b)‖xnk − PCnk xnk‖2 ≤ ϒnk − ϒnk+1 + βnγ (βnγ M̄ + 2M̄ + 2‖x∗‖)M̄ .
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Thus, by (62) and βn → 0, we obtain that

lim sup
k→∞

‖xnk − PCnk xnk‖2

≤ 1

2a(1 − b)
lim sup
k→∞

[ϒnk − ϒnk+1 + βnγ (βnγ M̄ + 2M̄ + 2‖x∗‖)M̄]

= 1

2a(1 − b)

[
lim sup
k→∞

(ϒnk − ϒnk+1) + lim sup
k→∞

βnγ (βnγ M̄ + 2M̄ + 2‖x∗‖)M̄
]

= 1

2a(1 − b)

[
− lim inf

k→∞ (ϒnk − ϒnk+1) + lim sup
k→∞

βnγ (βnγ M̄ + 2M̄ + 2‖x∗‖)M̄
]

≤ 0.

(63)

In Case 2, the same process as above, by lemma 11 (ii) and the condition {ρn} ⊂
[c, d] ⊂ (0, 1), we infer that

2c(1 − d)‖Ain xnk − Pnk
Qin

Ain xnk‖4
≤ K 2(ϒnk − ϒnk+1 + βnγ (βnγ M̄ + 2M̄ + 2‖x∗‖)M̄),

where K > 0 is a constant such that ‖A∗
in

(I − PQn
in

)Ain xn‖ ≤ K , for all n ∈ N . Thus,
we obtain that

lim sup
k→∞

‖Ain xnk − Pnk
Qin

Ain xnk‖4

≤ K 2

c(1 − d)
lim sup
k→∞

[ϒnk − ϒnk+1 + βnγ (βnγ M̄ + 2M̄ + 2‖x∗‖)M̄]
≤ 0.

(64)

This implies that

‖xnk − PCnk xnk‖ = 0, ‖Ain xnk − PQnk
in
Ain xnk‖ = 0.

By the same process as Step 3 of Theorem 1, we obtain ωw(xn) ⊂ �. Let x̂ ∈ ωw(xn),
there exists a subsequence {xnk } of {xn} such that xnk⇀x̂ as k → ∞.

Next, we show that lim sup
k→∞

bnk ≤ 0. Assume that {xnk j } is a subsequence of {xnk },
we also have xnk j ⇀x̂ . Thus, using the above mentioned and (58), we have

lim inf
k→∞ 〈Fx∗, xnk − x∗〉 = lim

j→∞〈Fx∗, xnk j − x∗〉
= 〈Fx∗, x̂ − x∗〉
≥ 0.

(65)
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From (27)–(30) in Theorem 8, we have

lim
k→∞ ‖xnk+1 − xnk‖ = 0. (66)

From (61) and (66), we have

lim sup
k→∞

bnk = lim sup
k→∞

−2γ

ϕ
〈Fx∗, xnk+1 − x∗〉

= −2γ

ϕ
lim inf
k→∞ 〈Fx∗, xnk+1 − x∗〉

= −2γ

ϕ
〈Fx∗, x̂ − x∗〉

≤ 0.

(67)

Therefore we can immediately conclude that ϒn → 0, that is, xn → x∗ as n → ∞.

This completes the proof of the theorem. ��

Algorithm 4 Self-adaptive algorithm II for P2
Step 0. Choose initial points x0 arbitrary. Set n = 1.
Step 1. Let

zn = PCn xn ,

yin = A∗
i (Ai xn − PQn

i
Ai xn),

dn = max{‖xn + yni − zn‖, i = 1, 2, ..., N },
in ∈ {i ∈ 1, 2, ..., N : ‖xn + yin − zn‖ = dn}.

Step 2. If dn = 0, then stop; else compute

xn+1 = (I − βnγ F)(xn − tn(xn + yinn − zn)), (68)

where

tn = ρn

‖xn − PCn xn‖2 + ‖Ain xn − PQn
in
Ain xn‖2

2‖xn + yinn − zn‖2
.

Step 3. Set n = n + 1 and go back to step 1.

Theorem 13 Let F : H → H be an L-Lipschitz and κ-strongly monotone operator
and under assumption 1. Then the sequence {xn} generated by Algorithm 4 converges
strongly to the unique solution of V I P(F, �).

Proof Set wn = xn − tn(xn + yinn − zn). It follows from (35) that

‖wn − x∗‖2 ≤ ‖xn − x∗‖2 − ρn(1 − 1

4
ρn)
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×
(‖xn − PCn xn‖2 + ‖Ain xn − PQn

in
Ain xn‖2)2

‖xn + yinn − zn‖2
,

which implies

‖wn − x∗‖ ≤ ‖xn − x∗‖.

Using the above inequalities, we get

‖xn+1 − x∗‖2 = ‖(I − βnγ F)wn − x∗‖2
≤ ‖wn − x∗ − βnγ Fwn‖2
≤ ‖wn − x∗‖2 + β2

nγ
2‖Fwn‖2 − 2βnγ 〈wn − x∗, Fwn〉

≤ ‖xn − x∗‖2 + βnγ (βnγ ‖Fyn‖2 − 2〈yn − x∗, Fyn〉)

− ρn(1 − 1

4
ρn)

(‖xn − PCn xn‖2 + ‖Ain xn − PQn
in
Ain xn‖2)2

‖xn + yinn − zn‖2
.

(69)

According to (59), replacing wn by yn, we get that {xn} is bounded.
From (60)–(61), the following result obviously holds. Set ϒn = ‖xn − x∗‖2, we

have

ϒn+1 ≤ (1 − αn)ϒn + αnbn, (70)

where αn = βnϕ and bn = − 2γ
ϕ

〈Fx∗, xn+1 − x∗〉.
Now, we prove that ϒn → 0 by lemma 7. Suppose that {ϒnk } is an arbitrary

subsequence of satisfying

lim inf
k→∞ (ϒnk+1 − ϒnk ) ≥ 0. (71)

From (69), we get

ρn(1 − 1

4
ρn)

(‖xn − PCn xn‖2 + ‖Ain xn − PQn
in
Ain xn‖2)2

‖xn + yinn − zn‖2
≤ ϒn − ϒn+1

+ βnγ (βnγ ‖Fyn‖2 − 2〈yn − x∗, Fyn〉).
(72)

Thus, from Assumption 1 (ii) and (62), we obtain

lim sup
k→∞

ρnk (1 − 1

4
ρnk )

(‖xnk − PCnk xnk‖2 + ‖Ain xnk − PQnk
in
Ain xnk‖2)2

‖xnk + yinnk − znk‖2
≤ lim sup

k→∞
[ϒnk − ϒnk+1 + βnkγ (βnkγ M̄ + 2M̄ + 2‖x∗‖)M̄]

(73)
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= − lim inf
k→∞ (ϒnk+1 − ϒnk ) + lim sup

k→∞
βnkγ (βnkγ M̄ + 2M̄ + 2‖x∗‖)M̄

≤ 0,

(74)

where M̄ is a positive real number satisfying max{supn ‖yn‖, supn ‖Fyn‖} ≤ M̄ .

Under Assumption 1, we see that

lim
k→∞

(‖xnk − PCnk xnk‖2 + ‖Ain xnk − PQnk
in
Ain xnk‖2)2

‖xnk + yinnk − znk‖2
= 0,

which yields

‖xnk − PCnk xnk‖ = 0, ‖Ain xnk − PQnk
in
Ain xnk‖ = 0. (75)

By the same process as Step 3 of Theorem 1, we obtain ωw(xn) ⊂ �. Furthermore,
based on the assumptions of the parameters, we obtain

‖xnk+1 − wnk‖ = βnkγ ‖Fwnk‖ ≤ M̄γβnk → 0, k → ∞. (76)

and

‖wnk − xnk‖ = tnk‖xnk + yinnk − znk‖

= ρnk

‖xnk − PCnk xnk‖2 + ‖Aink
xnk − PQnk

in
Aink

xnk‖2

2‖xnk + yinnk − znk‖
→ 0, k → ∞.

(77)

From (76) and (77), we get

‖xnk+1 − xnk‖ → 0, k → ∞.

Therefore, we infer that

lim sup
k→∞

bnk = lim sup
k→∞

−2γ

ϕ
〈Fx∗, xnk+1 − x∗〉

= −2γ

ϕ
lim inf
k→∞ 〈Fx∗, xnk+1 − x∗〉

= −2γ

ϕ
〈Fx∗, x̂ − x∗〉

≤ 0.

(78)

Finally, applying Lemma 7 to (70), we conclude that �n → 0, that is xn → x∗. This
completes the proof. ��
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Remark 1 We have the following comments for Algorithm 1–4.

• Algorithm 1–4 are based on the gradient algorithm with selection technique. In
each iteration, Algorithm 1 only needs to compute two projections, one from
PCn and another one from {PQn

i
Ai xn}Ni=1. Algorithm 2 only needs to compute the

projection of {xn−PCn xn+ A∗
i PQn

i
Ai xn} in each iteration. This technique reduces

the computational effort of the projection and speeds up the rate of convergence
of algorithms.

• Different selectionmethods of the proposed algorithms result in different represen-
tation of adaptive steps. Algorithm 1 and Algorithm 2 are two different projection
and Halpern-type algorithms, which results in a different range of step sizes. Algo-
rithm 1 and Algorithm 3 use the same step size, as do Algorithm 2 and Algorithm
4.

4 Numerical experiment

In this section, we provide some numerical examples to prove we proposed the con-
vergence of the algorithm. All codes for the numerical computations are implemented
usingMATLABR2015b. The numerical results are carried out on a personal computer
with an Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz.

Using ‖xn+1− xn‖ < 10−6 as the stopping criterion, we plot the graphs of T OL =
‖xn+1 − xn‖2 against the number of iterations for each n. The numerical results are
reported in Figs. 1 and 2 and Tables 1 and 2.

Example 1. [12] Consider H = R
10, H1 = R

20, H2 = R
30 and H3 = R

40. Find a
point x∗ ∈ R

10 such that

x∗ ∈ � := C ∩ A−1
1 (Q1) ∩ A−1

2 (Q2) ∩ A−1
3 (Q3) �= ∅,

where C = {x ∈ R
10 : ‖x − c‖2 ≤ r2}, Qi = {x ∈ R

(i+1)×10 : ‖x − ci‖2 ≤ r2i }, and
A1 : R10 → R

20, A2 : R10 → R
30, A3 : R10 → R

40 are bounded linear operators
the elements of the representing matrices of which are randomly generated in the
closed interval [-5, 5]. In this case, for any x ∈ R

10, we have c(x) = ‖x − c‖2 − r2

and qi (Ai x) = ‖Ai x − ci‖2 − r2i for i = 1, 2, 3.
The half-spaces Cn and Qn

i (i = 1, 2, 3), are defined by

Cn = {x ∈ R
10 : ‖xn − c‖2 − r2 ≤ 2〈xn − c, xn − x〉},

and

Qn
i = {z ∈ R

20 : ‖Ai xn − ci‖2 − r2i ≤ 2〈Ai xn − ci , Ai xn − y〉}.

The control parameters for each algorithm are chosen as follows.

• Algorithm 1 and Algorithm 2 (Our new algorithm 1 and 2): λn = τn = 1
10n+1 and

αn = 1
n+1 .
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Fig. 1 Example 1: Comparison of all algorithms in different cases

• Algorithm 3 and Algorithm 4 (Our new algorithm 3 and 4): γ = 0.15, βn =
1

100n+1 , and Fx = 2x for all x ∈ R
10.

• Algorithm (1.6) (in (4), [12]): λ1 = 1
6 , λ2 = 1

3 , λ3 = 1
2 , and f (x) = 0.975x for

all x ∈ R
10.

• Algorithm (79) (in [16]) is as follows:

xn+1 = αnu + (1 − αn)(xn − ρn
1 (I − PCn )xn − τn

N∑

i=1

ϑi A
∗
i (I − PQn

i
)Ai xn)),

where τn := ρn
2

∑N
i=1 ϑi‖(I−PQn

i
)Ai xn‖2

τ̄n
2 , τ̄n := max{‖∑N

i=1 ϑi A∗
i (I − PQn

i
)Ai xn‖, β}.

We take ρn
1 = ρn

2 = 1
10n+1 , ϑ1 = 1

6 , ϑ2 = 1
3 ϑ3 = 1

2 , and β = 0.05.
Now we bring the results of the iterations for four cases, where e1 = (1, 1, ..., 1) ∈
R
10.

Case 1: Take u = 10e1 and x1 = 5e1;
Case 2: Take u = 3e1 and x1 = 0.5e1;
Case 3: Take u = 3e1 and x1 = −0.5e1;
Case 4: Take u = e1 and x1 = −0.2e1.
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Fig. 2 Example 2: Comparison of all algorithms in different cases

Table 1 Numerical results of all algorithms with different x0 and u

Algorithm Case 1 Case 2 Case 3 Case 4

CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s) Iter.(n)

Alg. 1 0.1024 220 0.1417 157 0.1275 182 0.0668 115

Alg. 2 0.1165 225 0.1439 193 0.1123 155 0.0568 104

Alg. 3 0.0434 77 0.0973 124 0.0398 24 0.0756 29

Alg. 4 0.1594 215 0.1327 224 0.1143 153 0.0506 60

Alg. (1.6) 0.2311 596 0.0913 300 0.1374 303 0.1211 193

Alg. (79) 0.1399 356 0.1006 235 0.1061 190 0.0765 146

Example 2. Let H = H1 = L2([0, 1]). For all y ∈ L2([0, 1]), z ∈ L2([0, 1]), 〈·, ·〉 and
‖ · ‖ are defined by 〈y, z〉 := ∫ 1

0 y(t)z(t)dt and ‖y‖ := (
∫ 1
0 |y(t)|2dt) 1

2 , respectively.
Furthermore, we consider the half-spaces

C := {x ∈ L2([0, 1])|
∫ 1

0
x(t)dt ≤ 1}
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Table 2 Numerical results of all algorithms with different x0 and u

Algorithm Case 1 Case 2 Case 3 Case 4

CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s) Iter.(n)

Alg. 1 15.3756 47 23.5493 31 43.9618 36 57.0047 74

Alg. 2 50.3079 47 41.8029 31 67.0135 36 2.7160 3

Alg. 3 3.0016 9 0.8664 3 2.3713 3 2.7160 3

Alg.4 23.8211 28 2.6605 3 2.8622 3 0.1429 2

Alg. (1.6) 142.2924 87 128.1796 71 106.4480 73 239.2246 95

Alg.(79) 80.0467 55 132.4689 33 103.2844 37 214.5914 61

and

Q := {x ∈ L2([0, 1])|
∫ 1

0
|y(t) − sint |2dt ≤ 16}.

And A : L2([0, 1]) → L2([0, 1]), where (Ax)(t) = ∫ 1
0 x(t)dt,∀t ∈ [0, 1], x ∈

L2([0, 1]).Then, A is a bounded linear operator, ‖A‖ = 2
π
and (A∗x)(t) = ∫ t

1 x(s)ds.
The metric projections PC and PQ are defined by

PC (x(t)) =
{
x(t) + 1 − a, a > 1,
x(t), a ≤ 1,

(79)

and

PQ(y(t)) =
{
sin(t) + 4(y(t)−sin(t))√

b
, b > 16,

y(t), b ≤ 16,
(80)

where a = ∫ 1
0 x(t)dt and b = ∫ 1

0 |y(t) − sin(t)|2dt .
Now we bring the results of the iterations for four cases,
Case 1: Take u = t and x1 = e3t ;
Case 2: Take u = t3 + 2t and x1 = sin(3t);
Case 3: Take u = −t and x1 = 2t

2 ;
Case 4: Take u = e5t

5 and x1 = sin(3t).

Remark 2 The preliminary results presented in Tables 1 and 2 and Figs. 1 and 2 demon-
strate the advantages and computational efficiency of the proposedmethods over some
known schemes.

• The suggested Algorithms 1–4 require fewer iterations and CPU time than
Alg.(1.6) and Alg.(79) in reaching the same stopping criterion.

• The step size of Alg. (1.6) depends on the criterion of the transfer operator, and
thus its performance is significantly weaker than that of our algorithms 1–4 with
adaptive step sizes.
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• The advantage of our proposed algorithm compared to Alg. (79) lies in the appli-
cation of the selection technique, which is shown to be advantageous when n is
sufficiently large. We have only discussed the case where n = 3.

5 Conclusions

In this paper, based on the relaxed CQmethod and Halpern-type method, we proposed
two new adaptive iterative algorithms to discover solutions of the split feasibility prob-
lemwithmultiple output sets in infinite dimensional Hilbert spaces.More importantly,
according to different selection conditions, we give two different adaptive step sizes
without the prior knowledge of the operator norm of the involved operator. Moreover,
as a generalization, we construct two new algorithms to solve the variational inequal-
ities over the solution set of split feasibility problem with multiple output sets. Under
some suitable conditions, we established the strong convergence theorems of the sug-
gested algorithms. Finally, the advantages of the proposed algorithms are confirmed
by two numerical examples. It is interesting to extend the results obtained in this paper
to Banach spaces or more complex spaces.
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