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Abstract
The passage of non-Newtonian fluids across the stretching plate exerts a significant
impact and finds applications in various industrial sectors, such as fluidics networks,
fluid agitation, thermal reactors, liquid chromatography, semiconductors, tissue regen-
eration, and gene delivery to organs. In this study, we investigated the hydrodynamic
Williamson nanofluid flowover a stretchy surfacewith zeromass flux, Christov–Catta-
neo (C–C) theory, non-linear mixed convection, and passive controls of nanomaterials.
Thermophoresis and Brownian motion impressions are also taken in the present flow.
The second law of thermodynamics is also used to determine the entropy generation.
By using the proper similarity alterations, the PDEs (governing equations) are con-
verted into non-linear ODEs. To crack the non-linear ODEs, the homotopy analysis
method is used. There is a detailed discussion of the effects of magnetic, Weissenberg,
radiation, Brownian motion, the Bejan parameter, and the entropy creation of various
factors. Additionally, the heat, mass transfer rate, and skin friction are assessed. Also,
compare skin friction and the Nusselt number with previous studies. TheWeissenberg
number and Brinkman parameter shows the opposite tendency in entropy generation
and Bejan number profiles.
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List of symbols

â Stretchy rate
(
s−1

)

Bi Biot parameter
Be Bejan parameter
Br Brinkman parameter
B0 Constant magnetic field

(
kgs�2A−1

)

C Concentration
(
kgm−3

)

Cr Reaction rate number
cp Specific heat at constant pressure

(
J kg−1K−1

)

C∞ Free stream concentration
(
kgm−3

)

Cw Fluid concentration at wall
(
kgm−3

)

C f Skin-friction coefficient
DB and DT Brownian and Thermophoresis diffusion coefficients

(
m2s−1

)

EG Entropy creation number
Ec Eckert parameter
f (η) Velocity similarity function
fw Suction/blowing parameter
h f Convective heat transmission coefficient

(
Wm−1K−1

)

k Thermal conductivity
(
Wm−1K−1

)

Le Lewis number
M Hartmann parameter
Nb Brownian motion number
Nt Thermophoresis number
Nu Nusselt parameter
N∗ Ratio of concentration to thermal buoyancy forces
Pr Prandtl number
Q0 Heat source/sink coefficient
q̂ Heat flux

(
Wm−2

)

Rd Radiation number
Re Reynolds parameter
Sh Sherwood parameter
S Heat source parameter
T Temperature (K)

T∞ Free stream temperature (K)

T f Convective surface temperature (K)

ûw Sheet velocity
(
ms−1

)

û, v̂ Velocity apparatuses in
(
x̂ , ŷ

)
axes

(
ms−1

)

v̂w > 0 Suction velocity
v̂w < 0 Blowing velocity
We Weissenberg number
x̂ , ŷ Cartesian coordinates (m)

PDEs Partial differential equations
ODEs Ordinary differential systems
C–C Christov–Cattaneo heat flux
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Greeks

β Relaxation time
βt Nonlinear mixed convection temperature component
βC Nonlinear mixed convection concentration component
φ(η) and θ(η) Concentration and tedmperature similarity functions
� Non-dimensional velocity slip parameter
γ Non-dimensional thermal relaxation time
η Similarity parameter
λT Thermal relaxation time
λ Non-dimensional immovable
ν Kinematic viscosity

(
m2s−1

)

	 Non-dimensional temperature variance
τ Ratio of the effective heat capacity
ρ Density

(
kgm−1

)

σ Electrical conductance variable (Sm)

ψ Stream function
(
ms−1

)

ζ Non-dimensional concentration variance

1 Introduction

Considering its significance in engineering and business, the investigation of heat and
mass transference is a particularly significant subject for researchers. It is used in
biomedical and manufacturing processes, together with food preparation and tissue
conduction. Because of the many applications of non-Newtonian fluids, investigators
have expressed a strong interest in studying them. The main reason for this is the
prevalence of these fluids in nature. Non-Newtonian performance is widely employed
in industries like mining, where slurries and muck are regularly controlled, and in
services like lubricating and biomedical flows. Although non-Newtonian fluids have
been the subject of a sizable amount of research, non-Newtonian fluid models still
need a great deal of work. Williamson fluid is classified as a non-Newtonian fluid
having shear-thinning characteristics, meaning that its viscosity gets thinner as shear
stress intensity rises.

Nanofluids have emerged as one of the most sought-after research fields due to
their low heat resistance and efficient thermal properties. In addition, it’s crucial to
maintain the chilling of technical items like CPUs, laptops, power electronics, engines,
and high-powered emissions in order for them to operate as intended. Choi [1] studied
the thermal conductivity’s properties of different types of nanofluids. Kuznetsov and
Nield [2] inspected a study on a vertical plate of natural convection boundary layer
nanofluid flow. Khan and Pop [3] discussed fluid flow with nanomaterials over an
extending surface. Haddad et al. [4] inspected the impressions of thermophoresis and
the Brownian of nanofluid flow. A study on a stretchy sheet of Williamson fluid flow
with nanomaterials was discussed by Nadeem et al. [5]. Khan et al. [6] inspected the
Oldroyd-B fluid flow with the impacts of motile organisms and the active Prandtl
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approach. Bilal et al. [7] elucidate the flow characteristics of the Non-Newtonian
Carreau fluid model within a square chamber. The Carreau fluid model describes
the relationship between stress and strain for a non-elastic material, considering both
infinite and zero stress magnitudes. Bilal et al. [8] investigate the physical properties of
Carreau nanofluid on a linearly extensible cylinder, as well as its potential application
in bioconvection phenomenon.

Fourier’s law [9] also revealed the heat transfer mechanism in 1822. This law
serves as the foundation for the hypothesis that the mode under investigation may
detect the actual temperature quickly. Cattaneo [10] corrected this problem by adding
a thermal relaxation time to Fourier’s law. This expression denotes the amount of time
required for a mode to transfer heat to the nearby elements. Christov [11] improved
thismodel aswell. The innovativemodel (C–C) is recognized as theCattaneo-Christov
heat flow model. The C–C model and the second-order slip, reaction rate, and double
diffusion impacts on hydromagnetic convective Oldroyd-B liquid flow approaching an
extensible surfacewere examined byLoganathan et al. [12]. Imtiaz et al. [13] inspected
the fluid flow and heat transference impact of third-grade fluid in the presence of C–C
models and reaction rates. Ramadevi et al. [14] inspected the hydromagnetic mixed
convection micropolar fluid flow over a stretchy surface using a modified Fourier’s
heat flux model. The impressions of heat transference and entropy creation of time-
dependentMHDfluid flow over a stretchy revolving disk solved via an artificial neural
system and particle swarm optimization procedure were discussed by Rashidi et al.
[15]. Khan and Alzahrani [16] conducted a study on the flow of a non-Newtonian
nanofluid (specifically, the Jeffrey fluid) towards a stretched surface, focusing on the
Cattaneo-Christov double diffusion. López et al. [17] analyzed the entropy creation and
non-linear thermal radiation impacts of hydromagnetic fluid flow with nanomaterials
over a porous, erect microchannel. Khan et al. [18] considered the non-linear mixed
convective nanofluid flow to analyze the entropy creation in the existence of Joule
heating and slipping situations. Qing et al. [19] inspected the entropy creation study
of hydromagnetic Casson fluid flow with nanomaterials over a porous extending or
reducing surface. Sheikholeslami and Ganji [20] discussed theMHD nanofluid flow to
optimize the entropy creation solved via the Lattice Boltzmann method. Liao and Tan
[21] discussed a generic approach to searching out the series outcomes of non-linear
PDEs.

The classification of the elements that cause the loss of useful energy makes the
entropy computation of flow and heat transfer systems crucial. Energy loss may jeop-
ardize the thermally designed system’s efficiency. Reducing the entropy-producing
variables can increase the system’s output. Loganathan et al. [22] inspected the
Williamson nanofluid flow over a slipping stretchy surface to control the passive
situation of nanomaterials. Khan and Alzahrani [23] investigated the phenomenon
of nonlinear mixed convection in a dissipative convective flow of micropolar fluid
towards a stretched surface. Mixed convection refers to the simultaneous occurrence
of forced and natural convection mechanisms. Eswaramoorthi et al. [24] discussed the
double diffusion and chemical reaction impact of a radiative visco-elastic fluid flow
over a stretchy surface. Aquino and Bo-ot [25] investigated the Homotopy analysis
scheme to address the two-level set of equations and provide conclusions that would
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identify turbulent activity. The study conducted by Chu et al. [26] focuses on ana-
lyzing the entropy production in an inclined channel that is filled with Rabinowitsch
fluid. Hayat et al. [27] discussed the radiative third-grade fluid flow over a radiative
surface with Joule heating impact. Ghasemi et al. [28] inspected the hydromagnetic
blood nanofluid flow that passes through porous arteries. Wang [29] discussed the
natural convection fluid flow over an erect, stretchy surface. Reddy and Sidawi [30]
studied the suction and blowing impacts on the erect stretchy surface of natural con-
vection fluid flow. Khan and Pop [31] considered a boundary layer fluid flow with
nanomaterials over a stretchy surface. Makinde and Aziz [32] inspected the convec-
tive boundary layer fluid flow with nanomaterials over a stretchy surface. Gorla and
Gireesha [33] studied the dual results for Williamson fluid flow with nanomaterials
over a stretchy/shrinking sheet and stagnation point.

As far aswe know, no research has been done on howentropy buildingwithC–C and
zero mass flux affects the MHD 2D non-linear mixed convection flow of aWilliamson
nano-liquid caused by a stretchable surface. There are still few studies involving the
C–C heat flux and entropy creation. Although there are a number of techniques for
studying extremely non-linear equations, the homotopy analysis scheme is considered
to be the best. The goal of the current essay is to mathematically formulate such flows
with the help of the HAM approach. Upon completing our investigation, we furnish
the solutions to the subsequent inquiries for additional research:

• How the non-linear mixed convection affects the flow rate?
• What are the impacts of embedded variables on entropy and Bejan number profile
like Weissenberg number, Eckert number, and Brinkman number?

• How thermos phoresies and Brownian motion affects the nanoparticle concentra-
tion?

2 Flow analysis

The current study enclosed with time-independent 2-D flow of incompressible, viscid
and radiative Williamson fluid with nanomaterials over a flat stretchy surface. The
bottom of the plate induces the convective heating temperature T f . The perpendicular
direction of the plate is subjected to the imposition of a uniform transverse magnetic
field B0. Assume that û � ûw � â x̂ is the stretchy velocity and that ′â′ is the stretching
rate. While the ŷ-track is moving vertically, the x̂-track is stretched out. Nadeem et al.
[5] present the Williamson fluid Cauchy stress tensor.

δ � −pI + � (1)

� �
(

μ∞ +
μ0 − μ∞
1 − βα

)
ε (2)

where�, μ0,μ∞ is the extra stress tensor, viscosities at zero and endless shear stresses,
respectively, time invariable is defining as β > 0 i, ε is the initial Rivilin-Erickson
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tensor and shear rate α is stated as

α �
√
1

2
π · π � trace

(
ε2

)
(3)

After Gorla and Gireesha [33], we have researched

M∞ � 0, βα < 1. (4)

So, we obtain

� �
(

μ0

1 − βα

)
ε (5)

otherwise using binomial expansion

� � μ0(1 + βα)ε (6)

A �
[(

∂ û

∂ x̂

)2

+

(
∂ û

∂ ŷ

)2

+
1

2

(
∂v̂

∂ x̂
+

∂ û

∂ ŷ

)2
] 1

2

(7)

�x̂ x̂ � 2μ0(1 + βα)
∂ û

∂ x̂
(8)

�x̂ ŷ � �ŷ x̂ � μ0(1 + βα)

(
∂v̂

∂ x̂
+

∂ û

∂ ŷ

)
(9)

�ŷ ŷ � 2μ0(1 + βα)
∂v̂

∂ ŷ
(10)

Figure 1 displays a physical structure of the model construction.
The governing flow equations are [22]:

∂ û

∂ x̂
+

∂v̂

∂ ŷ
� 0 (11)

û
∂ û

∂ x̂
+ v̂

∂ û

∂ ŷ
� ν

∂2û

∂ ŷ2
+
√
2νβ

∂ û

∂ ŷ

∂2û

∂ ŷ2
− σ B2

0

ρ
û+

g

ρ

(
λ1 (T − T∞) + λ2

(
(T − T∞)2

))

+
g

ρ

(
λ3 (C − C∞) + λ4

(
(C − C∞)2

))

(12)
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Fig. 1 Flow diagram

(13)

û
∂T

∂ x̂
+ v̂

∂T

∂ ŷ
� k

ρcp

∂2T

∂ ŷ2
− 1

ρcp

∂qr
∂ ŷ

+
Q0

ρcp
(T − T∞)

+ τ

[

DB
∂C

∂ ŷ

∂T

∂ ŷ
+
DT

T∞

(
∂T

∂ ŷ

)2
]

+
σ B2

0

ρcp
û2 +

μ0

ρcp

(
∂ û

∂ ŷ

)2

+
μ0

ρcp
β

(
∂ û

∂ ŷ

)3

û
∂C

∂ x̂
+ v̂

∂C

∂ ŷ
� DB

∂2C

∂ ŷ2
+

DT

T∞
∂2T

∂ ŷ2
− km(C − C∞) (14)

û � ûw
(
x̂
) � â x̂ + L

∂ û

∂ ŷ
, v̂ � v̂w, − k

∂T

∂ ŷ
� h f

(
T f − T∞

)
,

DB
∂C

∂ ŷ
+
DT

T∞
∂T

∂ ŷ
� 0 at ŷ � 0

û → 0, T → T∞, C → C∞ as ŷ → ∞ (15)
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The heat flux q̂ is provided by [10, 11].

q̂ + λT

(
∂q̂

∂t
+

(
V · ∇q̂ − q̂ · ∇V

)
+ (∇ · V)q̂

)
� −k∇T (16)

For λT � 0, Eq. (16) reduces to Fourier’s law. The necessity for incompressible
fluids is ∇ · V � 0 and we achieve,

q̂ + λT

(
∂q̂

∂t
+

(
V · ∇q̂ − q̂ · ∇V

)) � −k∇T (17)

Removing q̂ between Eqns. (13) and (17), we arrive at the subsequent energy
equation

û
∂T

∂ x̂
+ v̂

∂T

∂ ŷ
+ λT

(
û2

∂2T

∂ x̂2
+ v̂2

∂2T

∂ ŷ2
+

(
û

∂ û

∂ x̂

∂T

∂ x̂
+ v̂

∂ û

∂ ŷ

∂T

∂ x̂

)
+ 2ûv̂

∂T 2

∂ x̂∂ ŷ

)

+

(
û

∂v̂

∂ x̂

∂T

∂ ŷ
+ v̂

∂v̂

∂ ŷ

∂T

∂ ŷ

)
� k

ρcp

∂2T

∂ ŷ2
− 1

ρcp

∂qr
∂ ŷ

+
Q0

ρcp
(T − T∞)

+τ

[

DB
∂C

∂ ŷ

∂T

∂ ŷ
+
DT

T∞

(
∂T

∂ ŷ

)2
]

+
σ B2

0

ρcp
û2 +

μ0

ρcp

(
∂ û

∂ ŷ

)2

+
μ0

ρcp
β

(
∂ û

∂ ŷ

)3

(18)

The transformations are [22],

ψ � √
âν x̂ f (η), û � ∂ψ

∂ ŷ
, v̂ � −∂ψ

∂ x̂
, η �

√
â

ν
ŷ, v̂ � −√

âν f (η), û � â x̂ f ′(η)

θ(η) � T − T∞
T f − T∞

, φ(η) � C − C∞
C∞

. (19)

We have,

f ′′′ +Wef ′′ f ′′′ − f ′2 + f f ′′ − M f ′ + λθ(1 + βtθ) + λφN∗(1 + βcφ) � 0 (20)

(21)

θ ′′ + Rd ((θ (θw − 1) + 1))2
(
3θ ′2 (θw − 1) + (θ (θw − 1) + 1) θ ′′)

+ Pr f θ ′ + Pr Sθ − Prγ
(
f 2θ ′′ + f f ′θ ′) + Pr

(
Nbθ ′φ′ + Ntθ ′2)

+ Pr

(
MEcf ′2 + Ecf ′′2 + We√

2
Ecf ′′3

)
� 0

φ′′ + Le f φ′ + Nt

Nb
θ ′′ − LeCrφ � 0 (22)
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with limitations f (0) � fw, f ′(0) � 1 + � We√
2
f ′′(0), θ ′(0) � −Bi(1 − θ(0)), Nbφ′

(0) + Ntθ ′(0) � 1

f ′(η) → 0, θ(η) → 0, φ(η) → 0 as η → ∞ (23)

The variables are stated as We �
√

2â3
υ

β x̂ , � � L
√

â
ν
, M � σ B2

0/ρâ, Pr �
ρcp/k, Ec � â2 x̂2

cp(T f −T∞)
, Rd � (

4σ ∗T 3∞
)
/(kk∗), S � Q0

ρcp
, γ � λT a, Bi � h f

k

√
ν
/
â,

Nb � τDB
ν

C∞, Nt � τDT
ν

(
T f − T∞

)
, Cr � km

a . βt � λ2(T f −T∞)
λ2

, βC � λ4(C∞)
λ3

.
The following physical quantities are those of relevance to engineers:

C f Re
0.5 �

[
f ′′(0) + f

′′2 We

2
(0)

]
(24)

NuRe−0.5 �� −
(
1 +

3

4
Rd

(
(θw − 1)(θ(0))3

))
θ ′(0) (25)

In zeromass flux state, the local Sherwood number turns identically zero, as demon-
strated in [22]:

ShRe−0.5 � Nt

Nb
θ ′(0) (26)

3 Formulation of entropy generation

The entropy creation is stated as

S′′′
gen � K0

T 2∞

[(
∂T

∂ x̂

)2

+

(
∂T

∂ ŷ

)2

+
16σ ∗T 3∞
3kk∗

(
∂T

∂ ŷ

)2
]

+
μ

T∞

[(
∂ û

∂ ŷ

)2

+ β

(
∂ û

∂ ŷ

)3
]

+

[
∂ û

∂ ŷ
+

∂v̂

∂ x̂

]2
+
RD

C∞

[(
∂C

∂ ŷ

)2
]

+
RD

T∞

[(
∂T

∂ ŷ

)(
∂C

∂ ŷ

)]
+

σ B2
0

T∞
û2 +

ν

kp
û2

(27)

NT � K0

T 2∞

[(
∂T

∂ ŷ

)2

+
16σ ∗T 3∞
3kk∗

(
∂T

∂ ŷ

)2
]

� Contribution of entropy due to thermal transfer.

N f � μ

T∞

[(
∂ û

∂ ŷ

)2

+ β

(
∂ û

∂ ŷ

)3
]

�Contribution of entropy due to fluid friction.
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NC � RD

C∞

(
∂C

∂ ŷ

)2

+
RD

T∞

(
∂T

∂ ŷ

) (
∂C

∂ ŷ

)

� Contribution of entropy due to mass transfer.

Nm �
(

σ B2
0

T∞
+

ν

kp

)

û2

� Contribution of entropy due to magnetic field and porous medium.

where the following is a description of the characteristic entropy generation rate S′′′
0 :

S′′′
0 � K0

T 2∞
(�T )2

l2

As a result, the following is the value of the non-dimensional entropy creation num-
ber:

EG � S′′′
gen

S′′′
0

(28)

EG � Re
(
1 + Rd

(
1 + (θ (θw − 1) + 1)2

))
θ ′2 + Re

Br

	

(
f ′′2 + We√

2
f ′′3

)

+ Re

(
ζ

	

)2

λφ′2 + Re
ζ

	
λφ′θ ′ + Br

	
M f

′2

Bejan number is written as

Be � Entropy creation due to heat and mass transmission

Total entropy creation
(29)

Be �
Re

(
1 + Rd

(
1 + (θ(θw − 1) + 1)2

))
θ ′2 + Re

(
ζ
	

)2
λφ′2 + Re ζ

	
λφ′θ ′

Re
(
1 + 4

3 Rd
)
θ ′2 + Re Br

	

(
f ′′2 + We√

2
f ′′3

)
+ Re

(
ζ
	

)2
λφ′2 + Re ζ

	
λφ′θ ′ + Br

	 (M + KP ) f ′2
(30)

4 HAM solutions

The main hypotheses for the homotopy process are described as

f0 � fw +

(
1

1 + �

)
1 − e−η, θ0 � Bi ∗ e−η

1 + Bi
and φ0 � −

(
Nt

Nb

)
∗ Bi ∗ e−η

1 + Bi
(31)
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The auxiliary linear operators L f , Lθ and Lφ are obtained as

L f � f ′′′(η) − f ′(η), Lθ � θ ′′(η) − θ(η) and Lφ � φ′′(η) − φ(η) (32)

The above linear operators satisfying

L f
[
A1 + A2e

η + A3e
−η

] � 0, Lθ

[
A4e

η + A5e
−η

] � 0 and Lφ

[
A6e

η + A7e
−η

] � 0
(33)

here A j ( j � 1 − 7) denote the licentious conditions.
Zeroth order deformation:

(1 − p)L f [ f (η; p) − f (η)] � ph fN f [ f (η; p)] (34)

(1 − p)Lθ [θ(η; p) − θ0(η)] � phθNθ [θ(η; p), f (η; p), φ(η; p)] (35)

(1 − p)Lφ[φ(η; p) − φ0(η)] � phφNφ[φ(η; p), θ(η; p), f (η; p)] (36)

where pε[0, 1] and h f , hθ and hφ are the non-zero auxiliary constants and N f , Nθ

and Nφ are the nonlinear operators given by

N f [ f (η; p) , θ (η; p)] � ∂3 f (η; p)

∂η3
+We

∂2 f (η; p)

∂η2

∂3 f (η; p)

∂η3

+ f (η; p)
∂2 f (η; p)

∂η2
− M

∂ f (η; p)

∂η

+ λθ (η; p) (1 + βtθ (η; p)) + λφ (η; p) N∗ (1 + βcφ (η; p))

(37)

Nθ [ f (η; p), θ(η; p), φ(η; p)]

� ∂2θ(η; p)

∂η2
+ Rd((θ(η; p)(θw − 1) + 1))2

(

3

(
∂θ(η; p)

∂η

)2
(θw − 1) + (θ(η; p)(θw − 1) + 1)

∂2θ(η; p)

∂η2

)

+ Pr f (η; p)
∂θ(η; p)

∂η
+ Sθ(η; p) − Pr γ [[ f (η; p)]2

∂2θ(η; p)

∂η2
− Pr γ f (η; p)

∂ f (η; p)

∂η

∂θ(η; p)

∂η

+ Pr Nb
∂θ(η; p)

∂η

∂φ(η; p)

∂η
+ Pr Nt

[
∂θ(η; p)

∂η

]2
+ Pr MEc

[
∂ f (η; p)

∂η

]2
+ Pr Ec

[
∂2 f (η; p)

∂η2

]2

+ Pr Ec
We√
2

[
∂2 f (η; p)

∂η2

]3

(38)

(39)

Nφ [ f (η; p) , θ (η; p) , φ (η; p)] � ∂2φ (η; p)

∂η2
+ Le f (η; p)

∂φ (η; p)

∂η

+
Nt

Nb

∂2θ (η; p)

∂η2
− LeCrφ (η; p)
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(40)

f (0; p) � fw, f ′ (0; p) � 1 + �
We√
2
f ′′ (0 : p) , f ′ (∞; p)

� 0, θ ′ (0; p) � −Bi (1 − θ (η; p)) , θ (∞; p)

� 0, φ′ (0; p) � − Nt

Nb
θ ′ (0; p) , φ′ (∞; p) � 0

mth order deformation:

L f
[
fm(η) − χm fm−1(η)

] � h f R f ,m(η) (41)

Lθ

[
θm(η) − χmθm−1(η)

] � hθ Rθ ,m(η) (42)

Lφ

[
φm(η) − χmφm−1(η)

] � hφRφ,m(η) (43)

where

χm �
{
0, m ≤ 1
1, m > 1

(44)

(45)

R f ,m (η) � f ′′′
m−1 +

m−1∑

k�0

We
(
f ′′′
m−1−k f

′′
k

) −
m−1∑

k�0

fm−1−k ′ fk ′ +
m−1∑

k�0

fm−1−k f
′′
k

− (M) fm−1−k ′λθm−1 (1 + βtθm−1) + λφm−1N
∗ (1 + βcφm−1)

Rθ ,m(η) � θ ′′
m−1 + Rd((θm−1(θw − 1) + 1))2

(

3(θw − 1)
m−1∑

k�0

θm−1−k ′θk ′ + (θm−1(θw − 1) + 1)θ ′′
m−1

)

+ Pr
m−1∑

k�0

[
θm−1−k ′ fk

]

− Prγ

⎡

⎣

⎛

⎝ fm−l−1

l∑

j�0

f1− j ′θ j ′ + fm−l−1θ
′′
l

⎞

⎠

⎤

⎦ + PrNb
m−1∑

k�0

θm−1−k ′φk + PrNt
m−1∑

k�0

θm−1−k ′θk ′ + Sθm−1

+ Pr Ec
[
fm−1−k ′

]2 + Pr Ec
[
f ′′
m−1−k

]2 +
1√
2
Pr EcWe

[
f ′′
m−1−k

]3 (46)

Rφ,m(η) � φ′′
m−1 + Le

m−1∑

k�0

φm−1−k ′ fk + Nt

Nb

m−1∑

k�0

θm−1−k ′θk ′ − LeCrφm−1 (47)

fm(0) � 0, fm ′(0) − �
We√
2
f ′′
m(0) � 0, θm ′(0) − Biθm(0) � 0, φm ′ + Nt

Nb
θm ′(0) � 0

fm ′(η) → 0, θm ′(η) → 0, φm(η) → 0 as η → ∞. (48)

with boundary conditions

fm ′(0) � fm(0) � fm ′(∞) � θm(0) � θm(∞) � φm(0) � φm(∞) � 0. (49)
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The appropriate solutions
[
f ∗
m , θ∗

m , φ∗
m

]
are

fm(η) � f ∗
m(η) + A1 + A2e

η + A3e
−η (50)

θm(η) � θ∗
m(η) + A4e

η + A5e
−η (51)

φm(η) � φ∗
m(η) + A6e

η + A7e
−η (52)

5 Convergence analysis

The above-mentioned HAM algorithm was computed by MATHEMATICA software
platform. Significant contributions from the auxiliary constants h f , hθ , and hφ were
made to the convergence series solutions. Figure 2 shows the h-curves of f ′′(0), θ ′(0),
and φ′(0). The h-curve, which is a straight line, is noted from these charts. The straight
line representing the curves is used to select the convergent approximation. Up to four
decimal places, the convergent series solution for the 15th order of approximations is
shown in Table 1.

Fig. 2 Curves for h f , hθ and hφ .

Table 1 Code justification of

− f ′′(0) for confining case
M � � � fw � 0

Order of approximation Nadeem [5] Existing

1 1.04 1.04

5 1.03446 1.03446

10 1.03446 1.03446

15 1.03446 1.03446
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6 Computational results and discussion

This section demonstrates the physical justification for velocity, nanomaterial volume
percentage, temperature, Bejan impact, and entropy creation rate for a variety of flow
parameters. The non-linear ODEs are cracked via HAM.

The impressions of themass suction/blowing parameter ( fw) on the velocity outline
is exposed in Fig. 3a. Figure 3a shows that as the fw is improved, the velocity profiles
drop, thickening the momentum boundary layer. As the dimensionless constant rises,
the velocity profile also rises, as shown in Fig. 3b.

Figure 3c illustrates how the fluid flow velocity value grows. The velocity increases
as the mixed convection parameter (βt ) value rises. This is because mixed convection
happens when the buoyancy of free convection increases significantly. Consequently,
the growing mixed convection parameter will result in a growth in buoyancy. Together
with the buoyancy force, the flow velocity increases. The velocity graph increases as
the ratio of concentration to thermal buoyancy increases, as shown in Fig. 3d. The
buoyancy force affects the thermal buoyancy parameter. Stronger buoyancy forces
result from larger buoyancy parameters. Such a stronger buoyancy force acts as a
catalyst, causing the fluid velocity to rise.

In Fig. 4a, it is depicted that as the θw rises, so does the temperature profile.
Figure 4b demonstrates that as the quantity of We increases, the temperature curve

Fig. 3 a–d Impressions of fw , λ, ρt and N∗ on velocity graph
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Fig. 4 a–d Impact of θw , We, Pr and Ec on temperature profile

and thermal boundary layer both improve. The impression of Prandtl number, Pr , on
temperature distribution was shown in Fig. 4c. It is clear that the Prandtl number has
a negative connection with the temperature distribution. This is owing to the fact that
larger amount of Pr causes the fluid thermal diffusivity to drop, which further causes
the thermal boundary layer thickness to decrease.

For Eckert numbers (Ec � 0.0, 0.3, 0.6, 0.9), Fig. 4d forecasts Ec impact on
the temperature graph, in which we can observe that temperature increases clearly.
Ec calculates the energy loss resulting from flow arrangement. Enthalpy variance and
the kinetic energy of fluid elements are correlated. We can see from Ec data that the
bigger temperature differences are reduced at the sheet’s surface. Frictional heating
causes the liquid particles to have more kinetic energy than usual. This component
caused the thermal boundary layer to expand for a greater Ec.

As seen in Fig. 5a, the fluid concentration falls as Nb upsurges because Brownian
motion reasons the boundary layer to warm and cause the elements to leave the fluid
regime. On the other hand, the movement of nanoparticles causes thermal conduction
to rise with an increase in Nb, and this effect becomes stronger with smaller particles.
Thefluid concentration rises as the thermophoresis parameter rises, as shown inFig. 5b.
This is because, for smaller values of Pr , thermophoresis heats the boundary layer,
slowing the fluid’s ability to transmit heat and mass.
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Fig. 5 a, b Impressions of Nt and Nb on Concentration Graph

The impacts of different factors on the entropy generation graph and Bejan number
are highlighted in Fig. 6a–h. The relationship between the entropy generation rate and
Weissenberg parameter is described in Fig. 6a. Entropy production first appears at
the microscopic level when heat transfer increases. Further actions brought by heat
transfers cause heat energy to be lost and converted to work. Chaos develops as a result
of the additional movement created both inside the structure and outside. Entropy is
specifically mentioned as a amount of chaos; "We" is directly inversely related to
relaxation time. As a result, fluid particle motion slows down for longer periods of
relaxation, which prevents the system’s entropy from increasing. As seen in Fig. 6b,
the profile of the Bejan number grows as the quantities of the Weissenberg number
(We) grow.

The range of the entropy generation initially decreases as Ec increases in Fig. 6c,
but it begins to expand as Ec reaches a value of η > 0.4. According to Fig. 6c and d,
the kinetic energy and enthalpy of the boundary layer in the fluid flow physically rise
with an rise in the Eckert parameter. As a result, the rate of irreversibility increases.
Entropy and Bejan number increase as a result for Eckert number. The impact of the
dimensionless constant (λ) on the Bejan number and entropy generation profile is seen
in Fig. 6e and f. In Fig. 6e, increasing values of λ cause the range of the Bejan number
to initially decrease; but, after it reaches a value of η > 0.6, it starts to increase. As
Fig. 6f illustrates, the dimensionless constant (λ) tends to reduce the Bejan number.

When the Brinkman number rises, the outcome in Fig. 6g and h are inverted. In
terms of physics, the Brinkman number predominates the disregarding of heat over
viscous heating in comparison to heat transmission in the existence of molecular
conduction. Heat transfer by molecular conduction close to the sheet is more efficient
at transferring heat than the viscous effect. As a result, a significant amount of heat is
produced amid the layers of moving fluid elements. Consequently, the Bejan number
dropped and the rate of entropy generation increased.

Figures 7, 8, 9, 10, 11 and 12 show how various fluid parameter effects on skin
friction, local heat transfer, and mass transference rates. Figures 7 and 8 show that
for the combined settings of We & fw and We & M , the skin-friction rate decreases.
From Fig. 9, it can be seen that the greater radiation impacts is an rise in the rate of
heat transference. The outcome of WevsNb on the Nusselt and Sherwood numbers
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Fig. 6 a–h Impact of We, Ec, λ and Br on Entropy and Bejan number profile
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Fig. 7 3-D plot of Re0.5C f for
We& f w

Fig. 8 3-D plot of Re0.5C f for
We&M

will be examined in Figs. 10 and 11. These charts highlight the declining influence of
increasing We values. Additionally, Fig. 10 shows that the Nusselt number quickly
decrease as the amount of Nb grow, whereas the amount of the Sherwood number
sharply increasewith enhancement, as seen inFig. 11. PositiveNusselt number indicate
that heat is being transported physically from a hot object to a cool fluid. Figure 12
displays the mass transference rate for the joint parametersWe and Nt . Therefore, we
infer from this graph that the mass transference rate decreases asWe and Nt increase.

7 Code validation

This section covers code validation of current results. With the exception of the excep-
tional case M � KP � � � fw � 0, a comparative analysis of the order of
approximation of HAM for − f ′′(0) and skin friction

( − Re0.5C f
)
is completed

by Nadeem et al. [5] (Consult Tables 1 and 2). Early findings of code validation for
lower Nusselt number are presented in [29–32]. In Table 3, the validation is displayed.
The validation results show a good degree of consistency with previously published
findings. As a result, there is maximum confidence in the current simulations.
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Fig. 9 3-D plot of Re−0.5Nu for
We&Rd

Fig. 10 3-D plot of Re−0.5Nu
for We&Nb

8 Final outcomes

In the current study, a stretchable sheet with zero mass flux and Christov-Cattaneo
heat flux was used to generate a non-linear mixed convective Williamson nanofluid
flow. The governing nonlinear equations are dealt with using the homotopy progress
technique. Following discussion of the physical clarification of various physical char-
acteristics related to entropy creation, Bejan number, concentration, velocity, and
temperature:

• The velocity graph is increased by the thermal buoyancy parameter and the dimen-
sionless constant, but the suction/blowing parameter exhibits the reverse trend.

• When Eckert number and Weissenberg parameter are strong, the temperature pro-
files rise.

• The Weissenberg number has an inverse relationship with the range of the heat and
mass transfer rate.

• For increased magnetic, suction/injection, and Weissenberg numbers, skin friction
rate decreases.
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Fig. 11 3-D plot of Re−0.5Sh for
We&Nb

Fig. 12 3-D plot of Re−0.5Sh for
We&Nt

Table 2 Code justification of

skin-friction
(
−Re0.5C f

)
for

limiting case M � � � fw � 0

We Nadeem [5] Present

0 1 1

0.1 0.97659 0.97659

0.2 0.93982 0.93982

0.3 0.88272 0.88274

Table 3 Evaluation between the specific case with the lowered Nusselt number Rd � Ec � M � Nt �
Nb � We � γ � S � � � fw � 0, Bi → ∞

Pr Wang [29] Gorla [30] Khan [31] Makinde [32] Present

0.20 0.1691 0.1691 0.1691 0.1691 0.1691

0.70 0.4539 0.5349 0.4539 0.4539 0.4539

2.00 0.9114 0.9114 0.9113 0.9114 0.9114

7.00 1.8954 1.8905 1.8954 1.8954 1.8954
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• Thermophoresis andBrownianmotion parameters’ inverse effects on themass trans-
fer rate and nanoparticle volume fraction are clearly visible.

• Eckert parameter, dimensionless constant, and Brinkman number all cause a rise in
entropy formation, however bigger values of the Weissenberg parameter have the
opposite effect.

• It is expected that in the future, several scientific and practical applications will
rely on the dynamics of the stream across a stretching plate. The findings of the
present study can be applied to various model investigations. The current issue’s
findings are particularly thrilling in various fields of science and technology, such
as microchips, electronic cooling systems, heat exchangers, and more.

Data availability Data available upon request.
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