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Abstract
In this article, we present an enhanced version of the symmetric division deg index
(sdd-index) known as symmetric division eccentric index or SDE index, for short.
Unlike its predecessor, SDE employs eccentricity instead of vertex degree to assess
the properties of a graph G. In this paper, we first give some bounds for SDE index
of a connected graph G with fixed size m. For two connected graphs G1 and G2 of
order n1 and n2, employing these bounds, we compute the SDE index for two classes
of graph products, e.g., the Cartesian product and Corona product. As an application,
we determine the structure of graphs with two non-equi-centric edges. Our theorems
generalize the recent results for the extended adjacency index of a graph. Besides, this
research significantly contributes to the comprehension of graph analysis techniques
and offers valuable insights into the relationship between SDE and various graph
properties.
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1 Introduction

Graph theory, a fundamental area of mathematics, plays a pivotal role in modelling
real-world networks and understanding their intricate structures. In this paper, we
present an advanced variant of the symmetric division degree index (SDD-index)
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called as symmetric division eccentric index (or shortly SDE index) which leverages
eccentricity instead of vertex degree for evaluating graph properties.

The SDD-index has beenwidely used tomeasure the distribution of edges in a graph.
However, by incorporating eccentricity, the SDE index offers a refined perspective on
graph analysis. Eccentricity captures the notion of how far a vertex is from other
vertices in terms of shortest path lengths, providing a more comprehensive evaluation
of graph structure.

The primary objective of this study is to explore new bounds and new properties
of the SDE index as well as investigate its relationship with other prominent graph
indices. Specifically, we will examine the graph invariants such as the first and second
Zagreb indices, harmonic index, atom-bond-connectivity index, Randic index, the
size of the graph automorphism group, and the sum connectivity index. By calculating
these indices and analyzing their correlations with SDE, we aim to gain a deeper
understanding of the interplay between different graph measures and the enhanced
SDE index.

Understanding such relationships can lead to valuable applications in various fields,
including network analysis, network modelling, and biological network characteriza-
tion. Moreover, uncovering the connections between the SDE index and established
graph indices may offer new insights into graph properties that were previously unex-
plored.

In the subsequent sections of this paper, we will introduce the methodology behind
the calculation of the SDE index and graph indices. We will then present our findings
on the correlation between SDE and other indices, highlighting any significant patterns
or observations. Finally, we will discuss the implications of our results and potential
avenues for future research.

In conclusion, by introducing the SDE index and investigating its relationships with
various graph indices, this paper contributes to the advancement of graph theory and
provides a deeper understanding of graph properties.

2 Preliminary results

We denote a graph by G = (V , E), where V (G) represents the set of vertices and
E(G) represents the set of edges. In this paper, all graphs are assumed to be simple,
connected, and undirected.

The Cartesian product of two graphs, G and H , denoted as G1 × G2, results in
a new graph with the vertex set V (G) × V (H). Two vertices (g1, h1) and (g2, h2)
are adjacent if and only if either g1 = g2 and h1h2 ∈ E(H), or if h1 = h2 and
g1g2 ∈ E(G). To obtain further information on other terms related to graph theory,
refer to [14]. The corona product of two graphs G1 and G2, represented as G1 ◦ G2,
is obtained by taking |V (G1)| copies of G2 and connecting each vertex of the i-th
copy with the corresponding vertex vi ∈ V (G1), see for example [5]. It follows that
the number of vertices in G1 ◦ G2, denoted by |V (G1 ◦ G2)|, is given by |V (G1)|
(1+|V (G2)|), and the number of edges, denoted by |E(G1 ◦ G2)|, is calculated as
|E(G1)| + |V (G1)|(|(V (G2)|+|E(G2)|), see [8].
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The distance between two vertices u, v ∈ V , denoted as d(u, v), is defined as the
length of the shortest path between vertices u and v in graph G. The eccentricity of a
vertex v, denoted as ε(v), is the maximum distance from v to any other vertex in G:

ε(v) = max(d(u, v)); for all u ∈ V (G).

The radius of a graph G, denoted as r(G), is the minimum eccentricity among all
vertices:

r(G) = min(ε(v)); for all v ∈ V (G).

The diameter of a graph G, denoted as d(G), is the maximum eccentricity among all
vertices [1]:

d(G) = max(ε(v)); for all v ∈ V (G).

A vertex v of G is called a central vertex if ε(v) = r(G) and center C(G) of G
is the collection of all such vertices in G. A graph is referred to as a self-centered
graph if r(G) = d(G). In other words, in a self-centered graph, the eccentricity is
the same for all vertices in the graph. This can be equivalently stated as the radius
and diameter of the graph, which represent the smallest and largest eccentricities,
respectively, being equal. Within this piece, we introduce the notion of an "equi-
centric" edge (or ec-edge for short) in a graph, which refers to an edge, where both
ends have equal eccentricity. By defining and identifying equi-centric edges, we can
gain deeper insights into the structural properties of graphs. By an equi-centric edge,
we mean an edge that endpoints have the same eccentricity. An edge which is not
equi-centric is called a non-equi-centric edge (or nec-edge for short). This means that
for such an edge, the maximum distance from each endpoint to any other vertex in the
graph is identical.

A graph G is called as nec-graph if G has no ec-edge. Equi-centric edges play a
significant role in understanding and analyzing various graph structures. Identifying
equi-centric edges can be valuable in several applications. For example, in social net-
work analysis, detecting equi-centric edges may provide insights into individuals who
exhibit similar influence or centrality within a network. Additionally, in transportation
networks, identifying equi-centric edges could highlight roads or paths, where travel
time remains constant regardless of the starting or ending point. Studying equi-centric
edges contributes to the broader understanding of graph properties and helps uncover
hidden patterns or connections within complex networks. By exploring the character-
istics and implications of equi-centric edges, researchers and practitioners can enhance
their analyses and make informed decisions in a wide range of fields.

A pendant edge in a graph refers to an edge that is incident to only one vertex. In
other words, one end of the edge connects to a vertex while the other end remains
unconnected. A cut edge, also known as a bridge, is an edge in a graph whose removal
increases the number of connected components in the graph. In other words, if we
remove a cut edge from a graph, the graph becomes disconnected or split into two or
more separate parts.
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The edge connectivity number of a graph is theminimumnumber of edges thatmust
be removed in order to disconnect the graph. It represents the minimum number of
edges that need to be remove in order to separate the graph into multiple disconnected
components.

A leaf node, also known as a leaf vertex or terminal vertex, refers to a node in a
graph that has only one edge connected to it. Here we denote leaf nodes by LF .

Graph indices are numerical quantities associated with graphs that provide insights
into their structural properties and can be used to analyze various aspects of graph
behavior. In this paper, we focus on several important graph indices: the graph inde-
pendence number, first and second Zagreb index, harmonic index, ABC index, Randic
index, size of the graph automorphism group, and sum connectivity index.

The graph independence number, denoted as α(G), is the maximum cardinality of
an independent set in a graph G. An independent set is a subset of vertices in which
no two vertices are adjacent.

One of the most graph indices is the widely recognized Zagreb index presented in
[9]. When considering a (molecular) graph G, the first Zagreb index M1(G) and the
second Zagreb index M2(G) can be defined as follows:

M1(G) =
∑

v∈V (G)

dG(v)2,

M2(G) =
∑

uv∈E(G)

dG(u)dG(v),

where dG(v) denotes the degree of vertex v in graph G.

The harmonic index, represented as H(G), is a graph property initially presented
in reference [4]. It is computed for a given graph G using the following formula:

H(G) =
∑

uv∈E(G)

2

dG(u) + dG(v)
.

The atom-bond-connectivity index (or shorting the ABC index) is determined by the
following formula [3]:

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v) − 2

dG(u)dG(v)
.

The Randic index, denoted as R(G), is a molecular descriptor originally developed for
chemical compounds but applicable to graphs as well. It is defined as the sum of the
reciprocal square roots of the degrees of all vertices in a graph G. The R(G) captures
the complexity and branching patterns of a graph and is defined as [12]
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R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

The size of the automorphism group, denoted as |Aut(G)|, represents the number of
automorphisms of a graph G. An automorphism is an isomorphism from a graph to
itself, preserving both the vertex set and the edge set. The size of the graph automor-
phism group reflects the symmetry and structural regularity of a graph.

The sum connectivity index, denoted as SC(G) is defined as [16]

SC(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

.

The symmetric division degree index (SDD-index) was defined by Vukičević [13] as
follows:

SDD(G) =
∑

uv∈E(G)

[
dG(u)

dG(v)
+ dG(v)

dG(u)

]
.

In this way, we define the SDE index based on eccentricities of vertices as follows:

SDE(G) =
∑

uv∈E(G)

[
ε(u)

ε(v)
+ ε(v)

ε(u)

]
.

In graph theory, a theta graph (denoted as �-graph) is a specific type of connected
graph that consists of three internally disjoint paths, each with a length of at least one
edge, connecting two vertices (u and v) with lengths k, l, and m, where k, l, and m
are non-negative integers. The three paths are mutually disjoint, meaning they do not
share any vertices or edges except for the endpoints u and v.

Several studies have been conducted to explore the relationship between network
properties and graph parameters. Ghorbani et al. [7] focused on investigating various
topological indices such as the first Zagreb index, secondZagreb index, spectral radius,
Randic index, LaplacianEstrada index, LaplacianEnergy,Harary index, Estrada index,
energy, Balaban index and atom-bond connectivity across different networks. Addi-
tionally, the authors in [6] examined networks of fullerene molecules. In this paper,
our objective is to explore the correlation between graph indices and the generalized
symmetric division degree index SDE in protein networks. Our focus will be on inves-
tigating and analyzing how changes in graph indicators impact the SDE. This research
aims to enhance our understanding of network behavior and the factors influencing it.

Example 2.1 Here, we determine the SDE index of a star graph on n vertices. Since
surrounded vertices have an eccentricity of two and the eccentricity of the central
vertex is one, we obtain

123



952 M. Ghorbani, R. Alidehi-Ravandi

SDE(Sn) =
∑

uv∈E(Sn)

[
ε(u)

ε(v)
+ ε(v)

ε(u)

]

=
∑

uv∈E(Sn)

[
1

2
+ 2

1

]

= 5

2
(n − 1).

The star graph is a special case of an edge-transitive graph. In general, we have the
following theorem.

Theorem 2.1 Let G be a graph with size m. Then

i) 2m ≤ SDE(G) ≤ 5
2m,

ii) If G is an edge-transitive graph, then SDE(G) = 2m or SDE(G) = m( rd + d
r ),

where r and d are the radius and diameter of the graph, respectively.

Proof First, we show that for an edge e = uv, ε(u) = ε(v) or ε(u) = ε(v) + 1.
Suppose ε(u) �= ε(v), there exists a path P of length ε(u) between u and a vertex
such as un that is P = u, u1, u2, u3 . . . un . Clearly, if v /∈ {u, u1, u2, . . . , un} then
ε(v) > ε(u) which is a contradiction. Since u and v are adjacent, without loss of
generality, we can assume that u1 = v and we are done.
i) Given that for each edge e = uv, since |ε(u) − ε(v)|≤ 1, we have following two
cases:

– If ε(u) = ε(v), then ε(u)
ε(v)

+ ε(v)
ε(u)

= 2,

– If ε(u) �= ε(v), then ε(u)
ε(v)

+ ε(v)
ε(u)

≤ 5
2 .

This completes the proof of the first claim.
i i) Assume that G is edge-transitive. If G is vertex-transitive, then G is self-centered
and so SDE(G) = 2m. If G is edge-transitive but not vertex-transitive, since the
action of Aut(G) on the edges is transitive, for each edge e = uv and an arbitrary
vertex w, we have ε(w) ∈ {r , d} and by discussion before the proof of Part i) the
proof is complete. ��
Example 2.2 Now consider the path graph Pn with vertices v1, v2, . . . , vn . It is easy
to see that ε(v1) = ε(vn), ε(v2) = ε(vn−1), etc. This leads us to conclude that if n is
even, then we have

SDE(Pn) =
∑

uv∈E(Pn)

[
ε (u)

ε (v)
+ ε (v)

ε (u)

]

= 2 ×
⎡

⎢⎣
n − 1

n − 2
+ n − 2

n − 1
+ n − 2

n − 3
+ · · · +

n − n − 2

2

n − n

2

+
n − n

2

n − n − 2

2

⎤

⎥⎦

+
⎡

⎢⎣
n − n

2

n − n

2

+
n − n

2

n − n

2

⎤

⎥⎦ .
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And if n is odd, we obtain

SDE(Pn) =
∑

uv∈E(Pn)

[
ε(u)

ε(v)
+ ε(v)

ε(u)

]

= 2 ×
[(

n − 1

n − 2
+ n − 2

n − 1

)
+

(
n − 2

n − 3
+ n − 3

n − 2

)
+ · · ·

+
(
n − n+1

2

n − n−1
2

+ n − n−1
2

n − n+1
2

)]
.

Example 2.3 It is well-known that for a tree T , the center C(T ) is isomorphic to K1
or K2. The star graph Sn is an example for which C(Sn) ∼= K1 and for the bistar tree
Sm,n , we have C(Sm,n) ∼= K2. This leads us to conclude

SDE(Sm,n) =
∑

uv∈E(Sm,n)

[
ε(u)

ε(v)
+ ε(v)

ε(u)

]

= (
2

2
+ 2

2
) + m × (

2

3
+ 3

2
) + n × (

2

3
+ 3

2
)

= 13

6
(m + n) + 2.

3 Results

This section begins with the establishment of bounds for the SDE index in a graph,
providing valuable information about its potential range. The aim of this section is to
obtain bounds for SDE index. Besides, we characterize graphs with no or with two
ec-edges.

Theorem 3.1 Consider two graphs G1 and G2 of respectively orders n1 and n2 with
sizes m1 and m2. Then

1. If both G1 and G2 are self-centered, then

SDE(G1 × G2) = 2n1m2 + 2n2m1.

2. If one of the graphs G1 or G2 is not self-centered, then

SDE(G1 × G2) <
13

6
n1m2 + 2n2m1.

Equality holds if and only if G1 ∼= Sn1 and G2 ∼= Kn2 .

Proof By definition of the Cartesian product of two graphs, we have:

|E(G1×G2)| = |E(G1)|.|V (G2)| + |E(G2)|.|V (G1)|,
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and

εG1×G2(ui , v j ) =εG1(ui ) + εG2(v j ).

1. If bothG1 andG2 are self-centered, thenG1×G2 is self-centered and we are done.

2. Suppose X = G1 × G2. Without loss of generality, suppose that G2 is not self-
centered, then

SDE(X) =
∑

[(ui ,v j ),(uk ,vl )]∈E(X)(ui ,v j ) �=(uk ,vl )

[
εX (ui , v j )

εX (uk, vl)
+ εX (uk, vl)

εX (ui , v j )

]

=
∑

[(ui ,v j ),(ui ,vl )]∈E(X)v jvl∈E(G2)

[
εX (ui , v j )

εX (ui , vl)
+ εX (ui , vl)

εX (ui , v j )

]

+
∑

[(ui ,v j ),(uk ,v j )]∈E(X)ui uk∈E(G1)

[
εX (ui , v j )

εX (uk, v j )
+ εX (uk, v j )

εX (ui , v j )

]
.

So

SDE(X) =
∑

ui∈V (G1)

∑

v j vl∈E(G2)

[
εG1(ui ) + εG2(v j )

εG1(ui ) + εG2(vl)
+ εG1(ui ) + εG2(vl)

εG1(ui ) + εG2(v j )

]

(1)

+
∑

v j∈V (G2)

∑

ui uk∈E(G1)

[
εG1(ui ) + εG2(v j )

εG1(uk) + εG2(v j )
+ εG1(uk) + εG2(v j )

εG1(ui ) + εG2(v j )

]
.

(2)

In the second term, the edges between graphs G2 are considered and it is clear
that in these edges, the eccentricities of two ends of an edge have the same value.
Therefore the second term is equal to 2n2m1. Furthermore, consider that the function
f by f (x) = a+x

a+(x+1) + a+(x+1)
a+x is decreasing. This implies that the maximum value

of this function occurs when the eccentricities of all vertices in G1 are one, and in G2,
the eccentricities are 1 and 2, for each edge. Consequently, we have

SDE(G1 × G2) ≤ n1
∑

v jvl∈E(G2)

[
1 + 1

1 + 2
+ 1 + 2

1 + 1

]
+ 2n2m1

= 13

6
n1m2 + 2n2m1. ��

Theorem 3.2 Consider two graphs G1 and G2 of orders n1 and n2, respectively. Then

SDE(G1 ◦ G2) ≤ SDE(G1) + n1SDE(G2) + n1n2

(
13

6

)
.

Equality holds if and only if G1 ∼= Kn1 .

123



Exploring the SDE index: a novel approach... 955

Proof The edges of the corona graph G1 ◦ G2 can be partitioned into three distinct
subsets as follows:

E1 = {e ∈ E(G1 ◦ G2), e ∈ E(G1)} ,

E2 = {
e ∈ E(G1 ◦ G2), e ∈ E(G2i ), i = 1, 2, . . . , V (G1)

}
,

E3 = {
e ∈ E(G1 ◦ G2), e = uv, u ∈ V (G2i ), i = 1, 2, ..., V (G1), v ∈ V (G1)

}
,

and

εG1◦G2(u) =
{

ε(u) + 1 if u ∈ V (G1)

ε(u) + 2 if u ∈ V (G2)
.

Then

SDE(G1 ◦ G2)= ∑
uv∈E1

[
εG1◦G2 (u)

εG1◦G2 (v)
+ εG1◦G2 (v)

εG1◦G2 (u)

]

+∑
u′v′∈E2

[
εG1◦G2 (u′)
εG1◦G2 (v′) + εG1◦G2 (v′)

εG1◦G2 (u′)

]

+∑
u′′v′′∈E3

[
εG1◦G2 (u′′)
εG1◦G2 (v′′) + εG1◦G2 (v′′)

εG1◦G2 (u′′)

]

= ∑
uv∈E1

[
εG1 (u)+1
εG1 (v)+1 + εG1 (v)+1

εG1 (u)+1

]

+∑
u′v′∈E2

[
εG2 (u′)+2
εG2 (v′)+2 + εG2 (v′)+2

εG2 (u′)+2

]

+∑
u′′v′′∈E3

[
εG1◦G2 (u′′)
εG1◦G2 (v′′) + εG1◦G2 (v′′)

εG1◦G2 (u′′)

]

≤ ∑
uv∈E1

[
εG1 (u)

εG1 (v)
+ εG1 (v)

εG1 (u)

]

+n1
∑

u′v′∈E2

[
εG2 (u′)
εG2 (v′) + εG2 (v′)

εG2 (u′)

]

+∑
u′′v′′∈E3,u′′∈V1,v′′∈V2

[ 2
3 + 3

2

]

≤ SDE(G1) + n1SDE(G2) + n1n2(
13
6 ).

If G1 ∼= Kn1 , then clearly the equality holds. Conversely, if equality holds then all
vertices of G1 are adjacent and for each vertex u ∈ V (G1) and v ∈ V (G2), we have
εG1(u) = 2 and εG2(v) = 3 and this completes the proof. ��
Proposition 3.1 Let G be a graph of order n, size m and t well-connected vertices.
Then

SDE(G) = 1

2
t(n − t) + 2m.

Proof Since the diameter of the graph is two, the eccentricity of each vertex is either
one or two. Assume that the graph has t well-connected vertices. In this case, the
following formula can be inferred:

123
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SDE(G) = t(n − t)

(
1

2
+ 2

1

)
+ t(t − 1)

2

(
1

1
+ 1

1

)

+
(
m − t(n − t) − t(t − 1)

2

)(
2

2
+ 2

2

)

= 1

2
t(n − t) + 2m.

��
Theorem 3.3 A graph G has diameter two, and all of its edges are nec if and only if
G ∼= Sn.

Proof If G ∼= Sn , it is evident that the conditions of the problem are satisfied. Let G
be a graph with diameter two and all edges are nec. Therefore, there exist vertices
like wi and w j such that there is a path of length two, such as wi , wk, w j between
them. Therefore, ε(wi ), ε(wk) and ε(w j ) are 2, 1, and 2, respectively and the degree
of vertex wk is n − 1. Suppose the vertex wi is adjacent to another vertex say wt . If
the eccentricity of wt is one, the edge wtwk has an eccentricity of one at both ends
which contradicts the assumption of the problem. If ε(wt ) = 2, then the eccentricity
of both ends of wiwt is two, a contradiction. We can conclude that a vertex like wt

cannot exist, and except for wk , the degree of other vertices is one and so G ∼= Sn . ��
Note 1. It is not difficult to prove that every tree of order greater than 3, has at least

three nec-edges.
Note 2. If a graph G has at least three distinct eccentricities, then G has at least

three nec-edges.

Theorem 3.4 If G is nec-graph, then the diameter of the graph is even.

Proof Let the diameter of graph G be d. Therefore, there exists a path, v1, v2, v3, . . . ,
vd+1, where all ε(v1), ε(v2), . . ., ε(vd+1) are distinct.

Knowing that two ends of an edge have either equal eccentricities or their difference
is 1, we conclude ε(v1) = ε(vd+1) = d and ε(v2) = ε(vd) = d − 1. By using proof
by contradiction, assume that the diameter of the graph is odd. In this case, we will
show that along the path v1, v2, v3, . . . , vd+1, there exists an edge e in the center, and
the eccentricities of endpoints of e are the same.

As shown in Table 1, the possible values for the eccentricities of two ends of a
median edge(vd+1/2, vd−(d−3)/2), are as follows: when (d + 1)/2 is odd, they are d,
d−2, d−4 . . . d−((d−3)/2+1) and when (d+1)/2 is even, the possible values are
d − 1, d − 3, d − 5, . . . , d − ((d + 1)/2− 1). In both cases, the minimum difference
is 2 and cannot represent the eccentricities of two ends of an edge. ��
Corollary 3.1 If a graph has diameter d = 2k + 1, then there exists at least one ec
edge.

Corollary 3.2 There is no graph with diameter three, in which all edges are nec.

Theorem 3.5 There is no graph with exactly one nec-edge.
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Table 1 The contribution of different eccentricities of vertices

v1, vd+1 v2, vd v3, vd−1 v4, vd−2 v5, vd−3 … vd+1/2, vd−(d−3)/2
(d + 1)/2 is odd (d + 1)/2 is even

d d − 1 d
d − 2

d − 1
d − 3

d
d − 2
d − 4

… d
d − 2
d − 4
.

.

.

d − ((d − 3)/2 + 1)

d − 1
d − 3
d − 5
.

.

.

d − ((d + 1)/2 − 1)

Proof Suppose e = uv is the only nec-edge. Assume P is the longest path containing
e, where P = w1w2 . . . wi uvwi+3 . . . wd+1. Since, according to the assumption, all
edges are ec-edge except e, we obtain

ε(w1) = ε(w2) = . . . = ε(wi ) = ε(u) = d,

and neccesarily ε(v) = d − 1. This means that

d − 1 = ε(v) = ε(wi+3) = . . . = ε(wd+1),

a contradiction with d(w1, wd+1) = d. ��

Theorem 3.6 If the graph G has exactly two nec edges, then both of them are pendants.

Proof Suppose G has two nec edges say e = uv and e′ = u′v′ and the other edges
are ec. We demonstrate that the edges e and e′ are located on the longest path in the
graph. Let ε(u) = α, ε(v) = α − 1, ε(u′) = β and ε(v′) = β − 1. Since the graph
is connected, there exists a path P between e and e′. All edges on P are ec, so we
conclude that α = β and the eccentricity is either α or α − 1, for all vertices and the
diameter of G is equal to α. On the other hand, except for e and e′, all edges are ec,
then the eccentricity of endpoints of an edge is either α or α −1. However, if there are
some edges where the eccentricity of their endpoints is α while in remaining edges
it is α − 1, the graph structure will resemble Fig. 1, where the edges e and e′ are cut
edges which contradicts the fact α is diameter. Therefore, the eccentricity of endpoints
of all edges in the graph is either α or α − 1, but not both. If they are α, then vertices
u′ and v′ are not adjacent to any other vertex and their degree is 1. If the eccentricity
of endpoints of all edges is α − 1, then vertices u and v are not adjacent to any other
vertex and their degree is 1. ��

Theorem 3.7 Let G be a graph (G � Sn) with size m ≥ 4 and diameter d ≥ 2. Then

2(m − 2) + 2(
d

d − 1
+ d − 1

d
) ≤ SDE(G) ≤ 5

2
m − 1

2
.
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Fig. 1 The structure of the graph
in Theorem 3.6

Fig. 2 Graph G in Theorem 3.7

The equality holds for lower bound for G + 2e, where G is a �-graph and upper
bound holds for two graphs Sm + e and (K m−1

2
)c + K2.

Proof For the lower bound, ifG is not self-centered, then byTheorem3.5, it has at least
two pendant edges. If any rooted tree Tv attached to a vertex of Cn is of order greater
than 3, then by Note 1 we have a contradiction. If |Tv| = 3, then G is isomorphic with
one of the graphs depicted in Fig. 2. �� ��

In Fig. 2a, G has more than two nec-edges, a contradiction. Suppose two pendant
edges uw and vw are attached to Cn at vertex w. Without loss of generality, we can
suppose the eccentricity of u or v holds with vertex x . Thus two vertices adjacent
with x have the same eccentricity equal ε(w) which yields at least three nec-edges, a
contradiction.

Finally, suppose two pendant edges are attached to Cn at different vertices such as
x and y, see Fig. 2c.

Let w lies in a shortest xy-path, where d(w, x) ≤ [ n4 ]. It is clear that ε(w) = n
2

while d(w, u) = [ n4 ] + 1 or d(w, v) = [ n4 ] + 1. Hence, three vertices u, x, w have
distinct eccentricities, a contradiction. Thus the lower bond equality holds holds for
the graph G + 2e, where G is �-graph.

For the upper bound, obviously, the difference between eccentricities of vertices
located on an edge is zero or one. Suppose r denotes the radius of graph G and G has
exactly k equi-centric edges, then

SDE(G) =
∑

uv∈E(G)

[
ε(u)

ε(v)
+ ε(v)

ε(u)

]

≤ 2 + 2 + · · · + 2 + (m − k)

[
r

r + 1
+ r + 1

r

]
. (3)
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Fig. 3 All structures of graphs given in Theorem 3.7

Since the function f by f (x) = x
x+1 + x+1

x is decreasing, the maximum value of
SDE occurs for r = 1 and therefore

SDE(G) ≤ 5

2
m − k

2
.

It is clear that the maximum value of (1) occurs when k = 1. In the following, we
show that the equality holds for the upper bound in graphs isomorphic with one of the
structures shown in Fig. 3. The graph G has exactly one ec-edge say uv. The values
of ε(v) and ε(u) can be either one or two.

1) Assume that ε(v) = ε(u)= 1 and consider an arbitrary vertex w. Suppose on the
contrary that w is adjacent to a vertex z, then either the eccentricity of both ends of
wz is two, a contradiction, or one of them is two and the other is one. Without loss
of generality, suppose the eccentricity of vertex z is one. In this case, both ends of uz
have the same eccentricity, a contradiction. This yields a graph with structure (a) as
shown in Fig. 3.

2) Assume that ε(v) = ε(u)= 2. There are two paths, namely P1 = u, s, w and
P2 = v, t, z. Since the eccentricity of u and v is two, the eccentricity of s and t must
be one. Clearly, s and t are adjacent implying that the edge st is ec, a contradiction.
Therefore, we conclude s and t can not be distinguished, and the desired paths are
P1 = u, s, w and P2 = v, s, z. Similarly, it is not difficult to see that two vertices w

and z are not adjacent, and the graph has a structure as depicted in Fig. 3.7b.

Example 3.1 It should be noted that there many classes of graphs satisfying the lower
bound condition of Theorem3.7, but among them, a�-graph has theminimumnumber
of edges. For example, two graphs Fig. 4 have exactly two nec-edges but graph Fig. 4a
has 7 edges while Fig. 4b has 8 edges. To construct a class of graphs satisfying in the
conditions of Theorem 3.7, we consider a cycle graph of length 2k + 1. Then, we add
a path of length k − 1 between two vertices in the cycle, namely vi and vi+k . Finally,
we add two pendant edges to vertices u and v. The structure of these graphs can be
observed in Fig. 4c.

Theorem 3.8 Let G be a connected graph with size m ≥ 4 and diameter d = 3. Then

SDE(G) ≥ 13

6
m − 1

6
.
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Fig. 4 The structure of graphs in Example 3.1

Fig. 5 Bistar graph Sa,b: A
graph structure showing equality
in Theorem 3.8

The equality holds for the bistar graph Sa,b.

Proof Suppose the number of ec-edges is k, then according to Theorem 3.7, we have

SDE(G) ≥ 2k + (m − k)
[

d
d−1 + d−1

d

]
.

Considering d = 3, the inequality can be rewritten as

SDE(G) ≥ 2k + (m − k)

[
3

2
+ 2

3

]
= 2k + 13

6
(m − k) = 13

6
m − 1

6
k. (4)

So, the minimum value of SDE(G) with diameter three is 13
6 m − 1

6 . In the following,
we show all structures with equality in Eq.4 are isomorphic with the bistar graph Sa,b.
Since the diameter ofG is three, there exists a path of length three say P = w1w2w3w4.
Since ε(w1) = ε(w4)= 3, ε(w2) and ε(w3) are 2 or 3. Since there is exactly one ec-
edge, we conclude ε(w2) and ε(w3) are not three simultaneously. Therefore, either
ε(w2) = ε(w3) = 2 or ε(w2) = 2 and ε(w3) = 3.

1) At first suppose ε(w2) = ε(w3)= 2. For each arbitrary vertex z, we have ε(z) �= 1,
because otherwised(w1, w4) = 2, a contradiction. Thuswemay assume that ε(z) = 2,
then z is not adjacent tow2 orw3 and so it is adjacent tow1 orw4, but not both.Without
loss of generality, assume that z is adjacent to w1, then d(z, w4) > 3, a contradiction.
Hence ε(z) = 3 and thus z is not adjacent to w1 or w4. Suppose z is adjacent to both
w2 and w3, there exists a path of the length of three from z to a vertex like s. If this
path passes throughw2 orw3, the structure (b) in Fig. 6 occurs and if ε(t) = 2 then the
edge tw3 is ec. In the case that ε(t) = 3, the edge ts is ec. If this path passes through
w1 or w4, the structure (a) in Fig. 6 occurs and edge w4s is ec. Finally, if P does not
contain vertices w1, w2, w3 and w4, then the structure (c) occurs in Fig. 6 and one of
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Fig. 6 Different positions of vertex s with respect to z

the edges ys or xy are ec. In all cases, the number of ec-edges is greater than one, a
contradiction. ��

Hence, z is adjacent to one of the vertices w2 or w3. This implies that all vertices
except w′

i s (i=1,2,3,4) have an eccentricity equal to three. If there are edges between
these vertices, then the number of ec-edges is greater than two, a contradiction. Con-
sequently, all of them are pendant edges and we are done.

4 Analyzing protein networks

Proteins play a crucial role in various biological processes and are often represented as
networks to understand their structural and functional properties, see [2, 10, 11, 15].
In this section, we extend our investigation of SDE index by analyzing real protein
networks.

Essential proteins play critical roles in cell processes such as development and
survival. Table 2 reports the correlation coefficients between the SDE index and several

Table 2 Correlation analysis of SDE index with the topological indices

SDE α |LF | |V | |E | R H ABC SC M1 M2 |A|
SDE 1 0.89 0.66 0.90 1 0.89 0.88 0.99 0.97 0.91 0.80 0.52

α 0.89 1 0.86 0.99 0.89 0.99 0.99 0.94 0.97 0.62 0.45 0.35

|LF | 0.66 0.86 1 0.83 0.66 0.81 0.78 0.74 0.75 0.42 0.26 0.38

|V (G)| 0.90 0.99 0.83 1 0.90 0.99 0.99 0.95 0.98 0.64 0.47 0.36

|E(G)| 1 0.89 0.66 0.90 1 0.89 0.88 0.99 0.97 0.91 0.80 0.52

R(G) 0.89 0.99 0.81 0.99 0.89 1 0.99 0.94 0.98 0.62 0.44 0.03

H(G) 0.88 0.99 0.78 0.99 0.88 0.99 1 0.93 0.97 0.60 0.42 0.30

ABC 0.99 0.94 0.74 0.95 0.99 0.94 0.93 1 0.99 0.84 0.71 0.48

SC 0.97 0.97 0.75 0.98 0.97 098 0.97 0.99 1 0.76 0.61 0.41

M1 0.91 0.62 0.42 0.64 0.91 0.62 0.60 0.84 0.76 1 0.98 0.64

M2 0.80 0.45 0.26 0.47 0.80 0.44 0.42 0.71 0.61 0.98 1 0.67

|A| 0.52 0.35 0.38 0.36 0.52 0.03 0.30 0.48 0.41 0.64 0.67 1
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Fig. 7 Scatter maps showing the relationship between SDE and different graph properties
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graph invariants including the indepence number α = α(G), |LF |, |V |, |E |, R, H ,
ABC , SC , M1, M2, and |A| = |Aut(G)|. Each correlation coefficient represents the
strength and direction of the relationship between the SDE index and the corresponding
network property. We observed a strong linear correlation between SDE and M2 and
R. In other words, upon analyzing the results, we infer that SDE index exhibits a strong
positive correlation with |E |, ABC, SC, M1, |V |, α, R, H , and M2, respectively. The
implications of these correlation analysis results are significant for understanding
protein network properties.

These findings can guide further research in protein network analysis and contribute
to the development ofmore accurate computationalmodels for predicting protein func-
tions and identifying potential therapeutic targets. It evaluates whether the coefficients
of all predictors collectively exhibit a significant deviation from zero. Overall, the cor-
relation analysis between the SDE index and topological indices provides valuable
insights into the intricate nature of protein networks. By unravelling the relationships
between network properties, we can deepen our understanding of protein network
organization and its implications in biological networks.

In Table 3 the coefficient for M2 is estimated as 0.05284 with a standard error of
0.0009274. It is highly statistically significant (p-value < 2e− 16), implying that M2
has a strong positive impact on SDE. For a one-unit increase in M2, SDE is expected to
increase by approximately 0.05284 units, while keeping all other variables constant.
The coefficient for R is estimated as 3.743 with a standard error of 0.01499. It is
highly statistically significant (p-value <2e − 16), indicating that R has a strong
positive impact on SDE. For a one-unit increase in R, SDE is expected to increase by
approximately 3.743 units, while keeping all other variables constant. The coefficient
for |A| is estimated as −7.136e−256 (which is essentially zero) with a standard error
of 0. The coefficient being effectively zero suggests that |A| may not be contributing
significantly to the model, and its inclusion in the regression equation may not be
appropriate. Therefore, we remove |A| and perform the regression again.

In Table 4 the estimated coefficient for M2 is 2.983e − 02. It indicates that a one
unit increase in M2 is associated with an estimated increase of 0.02983 units in the
predicted value of SDE. The estimated coefficient for R is 4.010e+00. This suggests

Table 3 Results of the linear regression model for the variables SDE, |A|, M2, and R

Estimate Std. error T value Pr(> |t |)
(Intercept) –1.201e+01 1.411e+01 −0.852 0.401

M2 5.284e−02 9.274e−04 56.979 <2e-16 ***

|A| –7.136e−256 0.000e+00 −∞ <2e-16 ***

R 3.743e+00 1.499e−02 249.707 <2e-16 ***

Residual standard error 44.5 on 31 degrees of freedom

Multiple R-squared 0.9999

Adjusted R-squared 0.9999

F-statistic 1.65e+05 on 3 and 31 DF

p value < 2.2e−16

123



964 M. Ghorbani, R. Alidehi-Ravandi

Table 4 Results of the linear regression model for the variables SDE, M2, and R

Estimate Std. Error T value Pr(> |t |)
(Intercept) 2.014e+02 1.549e+02 1.30 0.201

M2 2.983e−02 7.537e−04 39.58 <2e–16 ***

R(G) 4.010e+00 7.547e−02 53.14 <2e–16 ***

Residual standard error 510.9 on 39 degrees of freedom

Multiple R-squared 0.995

Adjusted R-squared 0.9947

F-statistic 3872 on 2 and 39 DF

p value < 2.2e−16

that a one-unit increasing in R is associated with an estimated increase of 4.01 units
in the predicted value of SDE. The R-squared is 0.995, meaning that approximately
99.5 percent of the variability in SDE can be explained by the independent variables
(M2 and R) included in the model. The adjusted R-squared (Adjusted R-squared) is
0.9947, which is slightly lower than the R-squared value but still indicates a highly
effective model in explaining the relationship between SDE and the predictors. The
F-statistic tests the overall significance of the regression model. It assesses whether
the coefficients of all predictors are jointly different from zero. In this case, the F-
statistic is 3872 with degrees of freedom (DF) of 2 and 39. The associated p-value is
< 2.2e−16, which is extremely low. This suggests that the overall regressionmodel is
highly significant, indicating that at least one of the predictors (M2 or R) is significantly
related to SDE. In summary, the regression analysis indicates that both M2 and R are
highly significant predictors of SDE. The model explains a large proportion of the
variability in SDE, as evident from the high R-squared value. The overall regression
model is also highly significant, suggesting that it provides valuable information for
predicting and understanding the relationship between SDE and the predictors. The
regression equation for the variables SDE, M2, and R, as shown in Table 4, can be
written as:

SDE = 201.4 + 0.02983M2 + 4.01R.

5 Conclusion

In this article, we introduced the SDE index as a new version of the SDD-index
in graphs, which utilizes eccentricity instead of vertex degrees for graph analysis.
Through our investigation, we determined the limits of the SDE index and explored
its relationship with other graph properties. We have found significant correlations
between SDE and various graph properties. Furthermore, the strong positive associ-
ations between SDE and indices like R and H suggest the central and diverse roles
played by proteins with higher SDE values in the network. Additionally, the nearly
perfect correlation between SDE and the ABC index emphasizes the crucial involve-
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ment of proteins with high SDE values. Regression analysis confirms the significance
of M2 and R as predictors for SDE, with the model explaining a substantial propor-
tion of its variability. Overall, our findings contribute to advancing graph analysis and
understanding the intricate interplay between SDE and other graph characteristics.
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