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Abstract

This paper aims in developing the finite difference scheme for riemann liouville space
fractional diffusion equation and caputo fabrizio time fractional derivative with a
Dirichlet BCs. The prove for scheme to be unconditionally stable and also convergent
is been discussed, and the convergence order of our scheme is O (At2 + hz). Further,
an application example in terms of numerical results is solved and graphs simulated
using Matlab.
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1 Introduction

Fractional differential equations have been an exciting field of applied mathematics,
it s gives very important tools for describing and studying natural phenomena, on
fractional calculus more authors are interesting by the theory of fractional differential
equations since they are abstract formulations for many problems in physics, hydrol-
ogy, engineering, chemistry, finance. For details, we refer the reader to the books
[1-6].

Over the last studies, The finite difference method has some advances in solv-
ing Fractional partial differential equations e.g., [7, 8]. Several authors have proposed
some effective numerical Approximations solving for SFDE, for more details see finite
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element method [9], finite difference method [10] and spectral method [11, 12] where
The authors considered a kind of reaction—diffusion model with space described by the
fractional Laplacian and a nonlinear source term, when are developed a second-order
stabilized semi-implicit time-stepping Fourier spectral method. Identified a practical
criterion to choose the time step size to ensure the stability of the semi-implicit method.
the efficient of the approach is illustrated by solving several models of practical inter-
est. Several second order numerical schemes were proposed for solving STFDEs we
refer the reader to the papers [13—15] where the authors introduce the approximation
of fourth-order finite difference scheme for Riemann—Liouville fractional derivatives
and the first-order approximation to Caputo fractional derivatives, The stability and
convergence of the proposed scheme are discussed, The study concluded by Numer-
ical experiments are given to demonstrate the efficiency of the proposed schemes.
A second-order exponential wave integrator method in time and the Fourier spec-
tral method in space are applied to derive a scheme for a nonlinear space fractional
Klein—Gordon equation (NSFKGE) in [16], where the authors prove the improved
uniform error bounds using Regularity compensation oscillation technique. Complex
and oscillatory complex NSFKGE with nonlinear terms of general power exponents
are discussed, at the end numerical experiments prove the effectiveness of previous
theoretical results. For our present study, we consider a numerical method for the
following space-time fractional equation of diffusion (STFED) as follows:

crD§u(x, 1) = c(x, DDy u(x, D)+ f(x.1), 0<x <L,0<r<T, (LD
subject to initial condition
ux,0) =¢x), 0<x<L, (1.2)
and the boundary conditions
u@©,)=0, u(L,r)y=v(), 0<r<T. (1.3)
a € (0,1), B € (1,2), c(x,t) > 01is the positive diffusion coefficient.

Here gy, Dgﬁ Lu(x, 1) is the Riemann-Liouville derivative of order 8 € (1, 2], see
[3, 17] defined by

192 f" u(§.0)dg 1
— 5 2T < B <2,

RLDY u(x, 1) = { o) et 0 = (1.4)
ax2 ’3 =2

and ¢ FDgﬁtu(x, t) is the Caputo Fabrizio derivative of order @ € [0, 1], see [18]
defined as: for u € H'(a, b), b > a,.

t J—
crDgu(x, 1) = ]1‘/[_(02 ; au(axé §) exp [—ai—g} dg, (1.5)
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where M («) is a normalization function such that M (0) = M (1) = 1 [18]. However,
if the function does not belong to H 1 (a, b) then, the derivative can be redefined as

§

aM(x) :ai|d€ (1.6)

t
/ (u(x, 1) —u(x,§))exp |:—a
l—«a 0

crDgu(x, 1) =

The paper is briefly summarized as follows. In Sect. 2, we propose a an implicit finite
difference scheme to approximate the (STFDE) (1.1), (1.2), and (1.3) using the Crank
Nicholson method to discretize the Caputo Fabrizio time fractional derivatives of
order o € (0, 1), and The Riemann—Liouville space fractional derivative of order 8 €
(1, 2) can be discretized by the standard Grunwald-Letnikov formula. We study the
stability and convergence of the discrete scheme Sect. 3, some numerical experiments
are performed in Sect. 4 to verify the efficiency and accuracy of the methods.

2 Finite difference scheme

For the implicit numerical approximation scheme, we define 7 = W = 11\‘, and
At = the space and time steps respectively, such that fy = kAt; k =0, 1,.
be the 1ntegrat10n time 0 <t < T and x; = x; +ih fori = 0,1, N. Let

U (xi, tr+1) = Ul.k+1,i =1,2,...N,k = 1,2,...n, be the exact solution of the
fractional partial differential equation (1.1), (1.2), and (1.3) at the node point (x;, #).
Let U,.k be the numerical approximation to U (x;, tx).

A discrete approximation to the Caputo—Fabrizio derivative of fractional order can
be obtained by simple quadrature formula as follows:

M(a) %+ U (x;, tetl —
cr DU (i i) = 1 @ [P 00008 [—a%ﬂds @1

The linear approximation of the function U (¢) in [#x—1, 7] is defined as

t—t
LU A refnenn], Tsksn

U(t)app =U (k- 1)

This equation can be modified using the first-order approximation to

M(@) & pu+han (yi+t gl
crDg U (xi, tig1) = [ — L 4+ 0(AD)
’ l—« 20 ()At At

exp[ 1 — g}d&

1 —
Before integration we obtain the following expression

k J+L g4 i+1)At
M(a) U; U; /W lep1 — €
O (At —a— > | gg,
o Z( At +O0(AD ( P ¢ l—« §

s N
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k Jj+1 J
M () U, " —U:
CFDg,zU (Xi, k1) = o Z (# + O(Af)> dj ks
j=0
where
At . At .
djp=exp|—a k—j)|—exp|—« k—j+1|.
1l -« 1l -«
k k
At . At .
Zdj'k = Z(exp[—al _a(k—])] —exp[—al —a(k_J + 1)})
J=l1 J=1
At
=1—exp |:—a k:| 2.2)
l—«a

The approximation of the exponential function can be obtained as

At At
exp | —« k)|~1—«a (k).
l —« l—«a
Then replacing the above in Eq. (2.2), we obtain
k
At . At . At
> exp|—a k—j)| —exp|—a k—j+D|])|~a (k).
i l—« -« -«
Then equation (11) becomes
k j+1 j
M (a) u'' - U; M () At
D§ U (x;, ¢t = ! L 1d; —— (k) O (A1).
crDf U (xis tiyn) = — ;( " ) i+ —_— R0
We therefore obtain the requested result
k j+1 j
M (a) u't - U; »
crDy U (xi, tiy1) = ” 2) ( : A : )dj,k +0 (Az ) (2.3)
Jj=

We finally have that the first-order approximation method for the computation of
the Caputo—Fabrizio derivative.

We introduce some Lemmas in order to approach the Caputo—Fabrizio fractional
derivative by substituting the first order derivative by simple quadrature formula, and
an approaching for left Riemann—Liouville fractional derivative.

Lemma 1 Let g(t) € C? [0, tx]. For any 0 < a < 1, Then, we have

At~ M () ! .
crDy 8 (s, tk) — — d kg + Z (djx —dj+1k) g’ — dixg’
j=1
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1—a)M
g(a—)(a) max |g" ()| A% 1 <k <n,
202 0<r<ty

Proof From the previous computation, is not difficult to get that

k j j—1
g ( —g (ti-1) f—t M(a) —gl
Z Jj— /lexp[—al_a] Z( )dj,k

j=1 ] j=1
k-1
At~ M (@) :
= ——— | dixg" + > ([djx —djrix) g’ —disg’
=1

Therefore, note

l -« e
WA:/O g(t)exp|:—

' o — 1t
/ exp |:—oz £ :|dt.
i l—«

J

} Z 8 (1)) ’171)

J=1

then

a0y [ |- St e [
ti—1

M () , thk —t
= Z/t; | g(1) — g(Dapp] exp |:—a 1k_ a:| dt,

By parts integration calcul we get

k )

M 1
A=-— O(;x) § / [g(t) - g(t)app] €Xp I:_‘x

j=171-1

Using the error expansion in the approximation is given in [19]

—t
_a]dt, te(tj-1.t))

g" (vj) ,
g() —g(t)app = T (l — l‘j_l) (l — tj) , Vj,lE€ (tj_l,tj) 1<j<k.
which yields

k .

M (a) ol g (v e —t

Al=— ;/;l[ gl)(t—tjl)(tj—t) exp[—al_a]dt
M(Ol) Atz maxo<r<t, ‘g”(f)‘ Tk < o (tk — s))
< exp| ————— ) ds
o 2 l -«
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(1 —-a)M(x) p
=T leolas
the proof completed. O

Lemma2 [20] Lerd(x) € LY(R), gL pft? d(x) and its Fourier transform belong to

—00,X

L' (R), and define the weighted and shifted Griinwald—Letnikov operator by
B (2)
LD}, dx) = hﬁ Zg dx = (= phy + 22 x Zg d(x = (j = h),

where p, q are integers and p # q, A1 = 2’[(3[) = Ay = 2(p g), Here the Griinwald

normalized weights are defined by gg.o =1, gg,j = % j=0,1,...

Then we have

D}, 4d(x) = D) + 0 (n?)

uniformly for x € R.
According to Lemma 2, the fractional spatial derivative in (1.1) can be approximated
as

_ (B) yrk+1 (B) yrk+1 2
RLDO xu(xl’ k1) = hﬂ E 8 U;_ ]JFP /’lﬂ E 8; U;- j+q +0 (h ) :
j=0

Thus, for p = 1, g = 0, the fractional spatial derivative in (1.1) can be discretized as
follows

i+1

R DG (i 1) = LS wuk 1o (n). 2.4)
j=0

where w(ﬂ) — gg(()ﬂ)’ iﬂ) ﬁ (,3) + 22/385/3)1,]- =1,2..
On substltutmg Griinwald estlmates in the superdlffusmn Eq (1 1) to obtain the
Crank—Nicolson type numerical approximation, the resulting finite difference equa-

tions is

k
doAt™'M(a) [ iy 1 AT M(a) it i
el v = e (o - v
Jj=1

ck+1 i+1 "
_ i k+1 k+1
=t B Z w! U Jay f;

where d; = exp [—aﬁ—’a(j)] — exp [—alé—ta(j + 1)] and fik = f (xi, k).
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Therefore, from (1.1) and (1.2) we have

k i+1

1 ) ;
k+1 k k—j+1 k+1 B) yrk+1 k+1
U] —U,.]+%§ d; (U7 - U] = R E:w Ukt |+ F,
j=1
h Rk+1 aAtCkJrl d Fk+1 a At k+1 . k . 0 1 2
where hﬁM(a)’ an dOM(a)f , ,bk=0,1,2,...

After further simplification, we get

i+1
(1_Rl(<+1 (ﬂ)) U - R Y w(ﬂ)Uk+1 _ (1_ﬂ> Uk

i—j+1 — i
=0, j#1 do
e dy
k J 0 k+1
— U; F; 2.5
+d ; djt1) +d + (2.5)

Therefore, from Eq. (2.5) then an implicit finite difference scheme of (1.1) to (1.3)
can be expressed as follows

i+1

(1 - R}wim) ul =R Y WUl =UHFL for k=0 (@26)
J=0,j#1
i+1 d
k+1 (ﬁ) k+1 k+1 (B) rrk+1 k
(1-& Juit =R Y wul M:(l—(j—)U,.
J=0.j#1 0
14 dy
+ 2@ —din) U] U~ f+d U+ FEYL for k=1 @7
j=1
initial condition:
UP=¢(x;), i=0,1,2,... (2.8)
boundary conditions:
Utk =0, Uk =vi)=0* k=0,1.2,... (2.9)

3 Stability and convergence analysis of STFDE

Denote the column vectors as follows

T
k _ k k k
U —<u1,u2,...,uN> ,

T
k—1 k-1 k—1 k—1
Q :(1,{1 ,M2 ,...,MN7],0> 5
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778 M. Zakaria, A. Moujahid

Fk=<d0]‘5t k.
oM ()

T
do M(a)fZ"' do M(a)fN v ) ’
The finite-difference Eqs. (2.6) to (2.9) are expressed in the matrix form as:

AU' = QY+ F! 3.1

k—1
1 i di
AUk+l = <1 ) k d_ E d - J-H k I + d_OQO + Fk_H (32)
Jj=1

A = (a;j) is a (N) ordered square matrix of coefficients

_(1 _ R/]{+1w55)) 7R/f+1w(()ﬁ) 0 . 0 T
SRS (- Ry R 0 0
—Ré‘“wgﬂ) —R§+]w;’3) (1- Ré‘“wgﬁ)) _R§+1w(()ﬁ) 0 0

A=
0
kt1 () kt1 () kt1 () k+1 . (B) k+1 . (B)
—RyTywuly o Ry we Ly —RyTw, s s (L= RyTywy™) —RyT wg
L 0 0 0 0 1 i

We introduce the lemmas on the properties of the coefficients of the discretized
fractional operators

Lemma 3 [17, 21] Let B, B1, and B3 be positive real numbers, and the integer n > 1.
Then the coefficients gj.ﬁ ) (j =0,1,---) possess the following properties

W e =1 ¢f =(1-22) g forj=1;

i) g <’ < <0, Y Og(f’) > 0for0<p <1;
(iii) g(ﬂ) g(ﬁ) - > 0, Zl Og;ﬂ)<0f0r1<,3<2;
i) Y_os)” = 0" (i)

+
V) Z ' g;ﬁl)g,(lﬁzj) gr(Lﬂl /32)'

Lemma 4 [22] Let B be positive real numbers. Then the coefficients w;ﬂ) (j=0,1,..)
possess the following properties

i uw? = £ w(ﬁ)_z—ﬂ—ﬂ2 Lo _ BB +B—4)

2’ - 2 R 4 ’
B 2-p
w;.ﬂ) 2gﬁﬁ)+ 5 ;’3)1, for j > 3;

n
(ii)l>wéﬂ)>w§’3)>wiﬁ)>-~>0, Zw;ﬁ)<0, for 1<p <2, n>2.
=0

)

—w
—I—wéﬂ) —21 >0

(iii) w(ﬂ )
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A numerical study on solving a fractional time-space... 779

Lemma5 The coefficients dj(j = 1,2, ...) possess the following properties
dj > 0; and dj > dj+1;
Denote Ul.k is the approximate solution of the difference scheme with the initial

condition 01.0.
To discuss the stability of the numerical method, we put

and

T
e = (eheh . eh) Hngwz max [}

from the definition of The finite-difference Egs. (2.6) to (2.9), we have: For 1 <i <
N —1,

i+1

(1—R}w§f’>) el —RDY wPel =60 for k=0 (3.3)
J=0,j#1

L= R P gt _ gl S Bk (1)

(_iwl) sz,+1— _%Si

J=0,j#1
| k! d

k—

+d_ (dj dj-H) j+d_ 10! Jor k=1 G4

1

J

Definition 1 For £, being some initial rounding error arbitrarily, if there exists ¢ a
positive number, independent of 7 and At such that ||sk || <c H &9 or Hsk || < ¢, then
the difference approximation is stable.

Theorem 6 When 1.6 < B < 2, the fractional finite difference (2.6)—(2.9) is uncondi-
tional stable.

Proof Suppose Hel H |el } = maxj<;<nN |8 ‘ According to the Lemma 4, we have
I+1
1 1 1. (B) 1 1 B) |1
|o']. = lt] = (1= &) fel| - &) 32wl
Jj=0,j#1
I+1
1 (B) 1 1 (ﬂ)
f(l_Riwl )‘81‘_Ri Z ‘51 1+1‘
J=0,j#1
I+1
B) pl1) .1 B) .1
= (1—w1 Ri)81 P wel
Jj=0,j#1
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780 M. Zakaria, A. Moujahid

= |#f] =[]
o
Supposing ||| = ‘ f“‘ = maxj<j<y )8,’.‘“ , and assuming that we have
proved that ||8k ||Oo < HEO ||Oo (1 < k < n), with the above Lemma 5 and (11),
Therefore:
141
k+1 _ |k k+1 (/3) k+1 k+1 B) | k+1
e+t =l = (1= RET?) el = REEE ST et
Jj=0,j#1
1+1
k+1, (B) k+1 k+1 B) | k+1
5<1_Ri Wy )‘81 )_Ri Z w; )51 j+1‘
j=0,j#1
k+1 (/3) k+1 k+1 B) k+1
= (I_Ri ) - R; Z Wi E—j+1
J=0,j#1
k—1
= (1 >8 + — Z j+1 ]—i-%ei
] 1
k—
d 1 j d
= 0-2) L —di) [+ 1)
& <|(1 £ di —d e
H oo—< d0> +d0 ( i+1) o T do I oo
d; 1 «— dy
<(1-2) [l g @ - [+ 2|
_< d()) oo+d0j;(] ]+1) oo+d0 00
=],
o0

Hence, by mathematical induction this shows that finite approximation scheme
defined by (2.6)—(2.9) is unconditionally stable.

For the convergence of the numerical method, denote the local truncation error by
r!‘ for1 <i < N — 1. It follows from (2.3), and (2.5) that,

Hr’kH 5C(At2+h2), 1<k<n.
o0

and
i+1
- (1 _ Rilwiﬂ)> el — Z w(ﬂ) el . —é0, for k=0 (3.5)
j=0,j#1
k1 b1 (B)) b _ gl B) k1 di\
it =(1- R )l — R Z w! ”H—(l—%)ei

Jj=0,j#1
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k—1

1 ki dr
-2 [di—din)e f—d—e?, for k=1 (3.6)
0 o
where
K=UF-UF 1<i<N, Il<k<n,
and
0_0 o ko k KT k k
S0 d= () [l = me 4]

O

Theorem7 When 1.6 < B < 2, the implicit finite difference (2.6)—~(2.9) is uncondi-
tional convergent, and there exists a positive constant C independent of At and h such
that

ot -2

§C(At2+h2), 1<k<n.
o0

Proof Suppose ||e1 ||OO = ‘e” = maxj<;<n |eil | According to the Lemma 4, we have

I+1
1 1 1 (B) 1 1 B) | ,1
|e'], =[] < (1= P el - &0 32wl
J=0,j#1

I+1
L (B |,1 1 B ] 1
(1 — R;w; ) ‘e, ‘ — R Z w; ‘61—j+1)
J=0.j#1

[+1
B) p1\ 1 1 B 1
(1—wl Rl-)el—Ri Z wile i
Jj=0,j#1

<C (At2+h2>.

IA

IA

rh+el| =[]
oo

Supposing ||ek+1 ||oo = ‘e;‘H e; |, and assuming that we have

k+1
‘ = maxj<j<y ¢/ T )

proved that

Hek Hoo <cC (At2 +h2> (d’[‘l—ol)l (1<k<n) 3.7)

Then, Lemma 5 the Eq. (3.7) turns into

o = (ar ) (&) 69

0
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782 M. Zakaria, A. Moujahid

with the above Lemma 5 and (3.8), Therefore:

I1+1
Hek+1 HOO _ ‘e;c+1‘ < (1 _ Rl(c+1wiﬁ)) ‘e;c+1‘ — RMH Z (ﬂ)‘ k+1‘
Jj=0,j#1
B) - »B)
k+1 k+1 k+1 k+1
S(I—Ri wl)‘el ‘—Ri Z w; ‘el /+1)
Jj=0,j#l1
I1+1
< (1 _ Rf“wiﬁ)) k+1 Rk+1 Z w(’s)ef“r]l“
J=0,j#1
di | k! .
_ k Jo okt
= <l—d—0>€l+%;(d —d/+1) —|—}"
de | k!
<(1=2) ¢l + G @ - [ ] 4]
_( d0> ¢ oo+d()j22( / '/+1) ¢ 00 i o)
dk_l)_l dy 1 2 k+1
<|— 1—— 4+ — di —dji C(At+h>+” H
( 0 do do ( +1)
dy\ 7! d
Hek+‘H < (—) (1——‘+—(d1 —d)+ )c(m +h )
0o o dy do
dy\ 7! -
< (d—> c (At2 n hz) <C (At2 + h2>
0

Hence, by induction, we observe that for any x and ¢, as (h, At) — (0, 0), 011‘
converges to U (x;, t;). Hence proof completed. O

4 Numerical experiments

In this section, we numerically demonstrate the above theoretical results obtained
by the finite-difference scheme (2.6) to (2.9), including numerical solution, conver-
gence orders and the error in the sense of L. Denote E,(At, k) the maximum error
with temporal and spatial grid size. The temporal and spatial convergence orders are
computed, respectively, by

Eoo((2At, h)

order; (At, h) = log, (m
m 9

), orders(At, h) = log, <M>

Ex((At, h)
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Table 1 Example 1: numerical errors and the spatial convergence order of the fractional finite-difference
scheme (2.6) to (2.9)

B values B=1.6 =138
o value At =h Exo(At, h) Orderg Exo(At, h) Orderg
a=02 % 5.1875e—04 - 2.3017e—04 -
% 1.5419e—04 1.82613 7.3948e—05 2.57732
81—0 4.2280e—05 1.85701 2.1006e—05 2.38902
11@ 1.1109e—05 1.92593 5.6032e—06 2.28408
=05 % 5.3655e—04 - 2.3865¢—04 -
ﬁ 1.5700e—04 1.72597 7.5089e—05 2.43476
% 4.2727e—05 1.8667 2.1161e—05 2.26066
llﬁ 1.1181e—05 1.93103 5.6244e—06 2.1637
a=038 % 5.7371e—04 - 2.9265e—04 -
% 1.6307e—04 1.74963 7.7345e—05 2.23739
8% 4.3719¢—05 1.87594 2.1474e—05 2.09751
11@ 1.1343e—05 1.93542 5.6684e—06 2.0171

Table2 Example 1: numerical errors and the temporal convergence order of the fractional finite-difference
scheme (2.6) to (2.9)

B values B=106 p=138
o value At =h Exo(At, h) Order; Eso(At, h) Order;
@=02 -+ 5.1875e—04 - 2.3017e—04 -
ﬁ 1.5419e—-04 1.95377 7.3948e—05 3.06671
% 4.2280e—05 1.82104 2.1006e—05 2.88646
ﬁ 1.1109e—05 1.74992 5.6032e—06 2.79619
a=05 21—0 5.3655e—04 - 2.3865e—04 -
ﬁ 1.5700e—04 1.96801 7.5089e—05 3.07122
% 4.2727e—05 1.84615 2.1161e—05 2.90254
ﬁ 1.1181e—05 1.781 5.6244e—06 2.81722
a=0.28 21—0 5.7371e—04 - 2.9265e—04 -
ﬁ 1.6307e—04 2.02132 7.7345e—05 3.10947
% 4.3719e—05 1.92242 2.1474e—05 2.96393
ﬁ 1.1343e—05 1.87037 5.6684e—06 2.88883

Example 1 Consider the (STFDE) (1.1), (1.2),and (1.3) problem on a finite domain
withO <x <1,0 <t <1 (Tables 1 and 2),

CFDgytu(x,t) = RLDOﬁyxu(x, H+ fx,t), 0<x<l1, 0<t=<l,
u(x,0) = x%(x — 1), 0<x<I, 4.1)
u©,1) =0, u(l,r)=0, 0<t<l.
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784 M. Zakaria, A. Moujahid

o T T T T T T T T T

Exact solutions
001 * Numerical solutions b

002

003 -

u(xt=T)

0.04 -

005 -

-0.06 [~

[ 01 02 03 04 05 06 07 08 09 1

Fig. 1 Example 1: the comparisons of numerical solution and exact solution for « = 0.5, 8 = 1.8, and
At =h = 5y atthe time T = |
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Fig. 2 Example 1: the comparisons of numerical solution and exact solution for « = 0.5, B = 1.8, and
At =h = % atthe time T = 1

take the function c equals 1, and the corresponding forcing term function f defined by

2 cos(mt) 28 12 cos(mt) 3-8 24 cos(mt) 4-p
_ ainhduit ad s _ R

fx,t) = ———x X
raé-p INCE:) r'é-p)
xz(x — 1)2 o . cos(wt) T
R D (sm(nt) — nT + exp(—at);) ,
o
o =
l—«

with the nonzero initial condition u(x,0) = x%(x — 1)? and boundary conditions
u(0,1) = u(l, r) = 0. When the exact solution of the fractional (STFDE) is (Figs. 1,2
and 3)
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x10°%
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Fig.3 Example 1: the Absolute Error fora = 0.5, 8 = 1.8,and At = h = ﬁ at the time T = 1
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Fig. 4 Example 2: numerical solutions for« = 0.6, 8 = 1.7, and At = h = ﬁ at the time T = 0.5, 1,
and 1.5

u(x,t) = cos(nt)xz(x — 1)2.

Example 2 Consider the problem (1.1)—(1.3) with L = 1, and ¢ = 1, the initial
condition ¢(x) = x*(x — 1)*, the boundary conditions v(t) = 0, and f

t
f(x,t) =2sin (%) 2P T3 (e = 2)?

The 3d graph in Fig.5 is shown the numerical solutions of the Example 2, for
o = 0.6 and B = 1.7, for step size At = h = ﬁ, which is conformable with the
results in Fig. 4 where the curves described the numerical solutions at T = 0.5, 1, and

@ Springer



786 M. Zakaria, A. Moujahid
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- Numerical solutions
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Fig.5 Example 2: numerical solution as a 3d graph fora = 0.6, § = 1.7,and At = h = ﬁ
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Fig. 6 Example 2: numerical solution for a different values «, and B, where At = h = ﬁ at the time
T=2

1.5. Figure 6 displays the numerical solution for a different values « and g, for the
same space-time step size at T = 2.

5 Conclusion

In this study, a novel approximete method is proposed for simulating a fractional
diffusion equations, we derive a finite difference schemes for the time-space frac-
tional diffusion equations. Being distinct from the previous works on fractional
diffusion equations, we deal with the time-space fractional diffusion equations, with
two tendance fractionals operators Caputo Fabrizio of order o € (0, 1), and Riemann
Liouvilee of order 8 € (1,2). we construct a finite difference scheme for problem
which is unconditionally stable and convergent in the maximum norm with the order
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O (A12 + h2) under the sufficient condition 1.6 < B < 2. The numerical experiments
support the theoretical analysis.
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