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Abstract
In this paper, a new adaptive upwind finite difference method based on the arc-length
equidistribution principle is studied for solving the general linear singularly perturbed
convection-reaction-diffusion two-point boundary value problem. Under the discrete
comparison principle and its derived properties, the a posteriori error estimate of the
upwind finite difference scheme on an arbitrary mesh is obtained by using a linear
interpolation, the existence of the solution of the adaptive upwind finite difference
method is proved without the presupposition, and the boundedness of the arc-length
of the numerical solution and then the uniform first-order convergence of the adaptive
upwind finite differencemethod are achieved by the discrete Green’s function. Finally,
the proposedmethod is verified to be uniformly first-order convergent and is compared
with the existing method in numerical examples

Keywords Singularly perturbed problem · Upwind finite difference scheme ·
Arc-length monitor function · A posteriori error estimate · Adaptive/moving grid ·
Uniform first-order convergence

Mathematics Subject Classification 65L10 · 65L11 · 65L12 · 65L20

1 Introduction

The numerical methods for solving singularly perturbed problems are often concerned
and have been developed for decades (see [1–5]). Besides fitted operator numeri-
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cal methods on the uniform mesh (see [1, 2, 5, 6]), two strategies are commonly
used to solve these problems on the non-uniform mesh. One strategy is to use layer-
adapted grid methods, i.e., numerical methods on a priori layer-adapted meshes, such
as Bakhvalov-type meshes and Shishkin-type meshes (see [1, 2, 4, 5, 7–10]). Another
strategy is to use adaptive grid methods, i.e., numerical methods on adaptive meshes.
The application of the adaptive grid gets rid of the limitation of a priori knowledge
of the exact solution, only needs to find a monitor function to help optimize the grid
continually (see [1, 3, 5, 11–28]). The monitor function is defined in terms of the
local error (or the local residual) or the arc-length of the solution and so on. Because
the construction of the adaptive grid (or the moving mesh) does not depend on the
properties of the exact solution, the progresses on the convergence analysis of the
adaptive grid method based on the arc-length monitor function have been made grad-
ually almost only for the special cases (see [14–21]), but seldom for the general linear
non-conservative case (see [22–26]).

We consider the general linear singularly perturbed convection-reaction-diffusion
problem in the non-conservative form:

{
Tu(x) := −εu′′(x) − p(x)u′(x) + q(x)u(x) = f (x), x ∈ (0, 1),
u(0) = 0, u(1) = 0,

(1)

where 0 < ε � 1 is a sufficiently small positive perturbation parameter, p, q and f
are sufficiently smooth functions, 0 < β ≤ p(x) ≤ β∗, |p′(x)| ≤ Cp, 0 ≤ q(x) ≤ γ ∗
and |q ′(x)| ≤ Cq for x ∈ [0, 1], β, β∗, γ ∗,Cp and Cq are constants, and C is a
generic positive constant, independent of the perturbation parameter ε. The problem
has a unique solution u that has an exponential boundary layer at x = 0.

This problem (1) was solved by the upwind finite difference scheme on the arc-
length equidistribution mesh as follows (see [22–25]):

{
T NuN

i := −εDD−uN
i − pi D+uN

i + qiuN
i = fi , i = 1, ..., N − 1,

uN
0 = 0, uN

N = 0,
(2)

where hi = xi − xi−1, D−ui = ui−ui−1
hi

, D+ui = ui+1−ui
hi+1

and DD−ui =
2(D−ui+1−D−ui )

hi+1+hi+1
.

The development of related adaptive methods and their convergence analysis are
reviewed in the following.

(i) In the early days, for the non-conservative homogeneous linear case −εu′′(x) −
p(x)u′(x) = 0, the convergence of the upwind finite difference scheme on the grid
equidistributing themonitor functionM(x, u(x)) = |u′(x)|1/m and

√
1 + (u′(x))2

of the exact solutionuwasobtained byusing the a priori truncation error in [11–14].
For the non-homogeneous case −εu′′(x) − p(x)u′(x) = f (x), the convergence
of the upwind finite difference scheme by using M(x, u(x)) = α + |u′′(x)|1/m
of the exact solution u was obtained by the a priori truncation error in [15]. For
the reaction-diffusion case −εu′′(x) − b(x)u(x) = f (x), the convergence of
the central finite difference scheme using M(x, u(x)) = α + |w′′(x)|1/m (w is
the layer component of u) was obtained by the a priori truncation error in [16].
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For the conservative quasilinear case −εu′′(x) − b(x, u)′ = f (x), the first-order
convergence of the simple upwindfinite difference schemeusingmonitor functions
based on a priori information of the exact solution was also obtained in [17].

(ii) In fact, to devise a rigorous analysis of any adaptive algorithm, the first ingredient
one needs is an a posteriori bound on the error of the computed solution (see
§I.2.5 in [1]). For the conservative quasilinear case −εu′′(x) − b(x, u)′ = f (x),
the convergence of the simple upwind finite difference scheme on the adaptive
mesh equidistributing the numerical arc-length monitor function M(x, uN (x)) =√
1 + ((uN (x))′)2 was firstly analyzed by the a posteriori truncation error in [18].

Its uniform first-order error bound was obtained by using the Green’s function,
since the conservative equation could easily be reduced to the first-order equation
(see [1, 18, 19]). The numerical solution of the above problem was also calculated
by equidistributing a monitor function of discrete second-order derivatives in [20].

(iii) Afterwards, the special case −εu′′(x) − p(x)u′(x) = 0 was solved by the simple
upwind scheme on the adaptive mesh equidistributing the numerical arc-length
monitor function M(x, uN (x)). By using some techniques developed in [18],
the existence of the adaptive solution was proved with a strong grid assump-
tion hi/hi+1 ≤ 1, and the uniform first-order convergence was obtained by the
a posteriori error estimation and using a quadratic interpolation of the numerical
solution (see [21]).

(iv) However, the uniformfirst-order convergence of (2) for the general case−εu′′(x)−
p(x)u′(x) + q(x)u(x) = f (x) was proved in [22] by the a priori truncation error
and the grid properties obtained in [14] for the special case−εu′′(x)− p(x)u′(x) =
0, but not the a posteriori error estimate and not free from the properties of the
exact solution. The uniform first-order convergence of (2) for singularly perturbed
mixed boundary value problems was derived in [23] also by a priori truncation
error, the properties of the exact solution and the grid properties obtained in [14].

(v) In the later, by developing the techniques in [21], the existence of the numerical
solution of (2) for the general problem (1) on the adaptive mesh equidistributing
the numerical arc-length monitor function M(x, uN (x)) was proved by a slightly
weakened grid restriction hi/hi+1 ≤ C , and the uniform first-order convergence
was obtained by the a posteriori error estimation and also the quadratic interpola-
tion of the numerical solution for (1) in [24].

(vi) Further, the quadratic interpolation was replaced by a linear interpolation in the
error analysis of (2) for (1) in [25] and also of a similar scheme for a singularly
perturbed differential difference equation with small delay in [26]. However, the
uniform first-order convergence in [25, 26] was obtained by citing [24] and [18,
21] respectively, where the quadratic interpolation and the impractical condition
hi/hi+1 ≤ C or the conservative equation were used, but without any proof of
the existence of numerical solution and the boundedness of the arc-length of the
numerical solution.

(vii) Recently, for the reaction-diffusion singularly perturbed boundary value problem
−εu′′(x) + a(x)u(x) = f (x) of robin-type, the spline difference method on the
a posteriori layer adapted mesh by using the monitor function M(x, u(x)) =
α + |w′′(x)|1/m (see also [16] was discussed in [27]. A posteriori error analyses
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for the system of reaction-diffusion problems, the nonlinear singularly perturbed
system of delay differential equations and the singularly perturbed nonlinear
parameterized problem were also discussed in [28–30]. The algorithm and its
extension for the system of mixed type reaction diffusion problems and several
singularly perturbed parabolic problems were developed in [31–35].

The stability of T in (1) was derived in Corollary 4.2 in [24] as follows:

Lemma 1.1 (see [24]) Let F(x) = ∫ 1
x f (s)ds+c0 be a bounded piecewise continuous

function. Then, there exists a unique weak solution u ∈ H1
0 (0, 1) for the problem (1),

such that
‖u‖∞ ≤ C1‖Tu‖∗, (3)

where C1 = C(2 exp(γ ∗/β) + β∗/β)/β2 + C, and

‖u‖∞ = ess sup
x∈[0,1]

|u(x)| and ‖u‖∗ = min
U :U ′=u

‖U (x)‖∞. (4)

Actually, the stability (3) can also be proved under the condition q ≥ 0 and q+ p′ ≥ 0
by the derivation for Theorem 1.7 in §I.1.1.2 in [1].

In this paper, we investigate a new upwind finite difference scheme different from
(2) on the adaptive mesh equidistributing the numerical arc-length monitor function
M(x, uN (x)) to solve the general non-conservative non-homogeneous convection-
reaction-diffusion problem (1). In Section 2, the a posteriori error estimate for the
upwind finite difference scheme on an arbitrary mesh is obtained by the stability of
T and a linear interpolation of uN . In Section 3, the adaptive upwind finite difference
method is proposed and the existence of the solution is proved by the fixed point
theorem without the grid restriction hi/hi+1 ≤ 1 or C . In Section 4, the boundedness
of the arc-length of the numerical solution and then the uniformfirst-order convergence
are derived by using the property of the discrete Green’s function. Finally, in Section
5, the adaptive method is compared with the existing method and shown to be effective
and uniformly first-order convergent in the numerical examples.

2 The upwind finite difference scheme and its a posteriori error
estimate

For any nodes on interval [0, 1], 0 = x0 < x1 < ... < xn = 1, we investigate a new
simple upwind finite difference scheme as follows:

{
T NuN

i := −εD+(D−uN
i ) − pi D+uN

i + qiuN
i = fi , i = 1, ..., N − 1,

uN
0 = 0, uN

N = 0,
(5)

where hi = xi − xi−1, D−ui = ui−ui−1
hi

, D+ui = ui+1−ui
hi+1

and then D+(D−ui )
= D−ui+1−D−ui

hi+1
. The simple upwind scheme (5) when hi = h gives the simple upwind

scheme (2.12) in §I.2.1.2 in [1] and is much similar to the scheme −D+(εD−uN
i +
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b(xi , uN
i )) = fi in [17–20] and the scheme in [8–10], but different from the usually

adopted classical simple upwind scheme (2) in [7, 11–15, 21–26]. And it is also
different from the central difference scheme to avoid oscillations of it, see e.g. the
central difference scheme (2.3) in §I.2.1.1 and the discussion in §I.2.1.2 in [1].

Since T NuN
i = − ε

hi hi+1
uN
i−1 + ( ε

hi hi+1
+ ε

hi+1hi+1
+ pi

hi+1
+ qi )uN

i − ( ε
hi+1hi+1

+
pi

hi+1
)uN

i+1, the matrix of T N of the scheme (5) is diagonally dominant and has non-

positive off-diagonal entries. Thus, the matrix is an M-matrix. Let �±
i = 1

β
(1 −

xi )‖T NuN
i ‖∞ ± uN

i . Then

T N�±
i = pi

β
‖T NuN

i ‖∞ + qi
β

(1 − xi )‖T NuN
i ‖∞ ± T NuN

i ≥ 0,

�±
0 ≥ 0 and �±

N ≥ 0. So, by the discrete comparison principle, �±
i ≥ 0, i.e., T N is

uniformly stable (cf. Lemma 2.11 in §I.2.1 in [1]):

|uN
i | ≤ 1

β
‖T NuN

i ‖∞ ≤ 1

β
‖ fi‖∞, i = 0, 1, ..., N . (6)

For any x ∈ Ii = (xi , xi+1), i = 0, . . . , N − 1, we have a piecewise constant
function f N (x) = fi and a piecewise linear interpolation

uN (x) = 1

hi+1
(uN

i+1(x − xi ) + uN
i (xi+1 − x)), (7)

which satisfies uN (xi ) = uN
i , uN (xi+1) = uN

i+1 and (uN (x))′ = D+uN
i . Alterna-

tively, a quadratic interpolation was used in [21–24].
For any x ∈ Ii = (xi , xi+1), i = 0, . . . , N − 1, we have

TuN (x) − f N (x)
= −ε(uN (x))′′ − p(x)(uN (x))′ + q(x)uN (x)

+εD+(D−uN
i ) + pi D+uN

i − qiuN
i

= (−ε(uN (x))′ + ∫ 1
x p(t)(uN (t))′ − q(t)uN (t)dt

−∑N−1
j=i+1

∫
I j

εD+(D−uN
j ) + p j D+uN

j − q juN
j dt

− ∫ xi+1
x εD+(D−uN

i ) + pi D+uN
i − qiuN

i dt + εD−uN
N )′

= (−εD+uN
i + ∑N−1

j=i+1

∫
I j
p(t)D+uN

j − q(t)uN (t)dt

+ ∫ xi+1
x p(t)D+uN

j − q(t)uN (t)dt

−εD−uN
N + εD−uN

i+1 − ∑N−1
j=i+1

∫
I j
p j D+uN

j − q juN
j dt

+ ∫ xi+1
x fi dt + εD−uN

N )′
= (

∑N−1
j=i+1

∫
I j

(p(t) − p j )D+uN
j + (q juN

j − q(t)uN (t))dt

+ ∫ xi+1
x (p(t) − pi )D+uN

i + (qiuN
i − q(t)uN (t))

+pi D+uN
i − qiuN

i + fi dt)′.
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And owing to Lemma 1.1, (1) and (4), we have

‖uN (x) − u(x)‖∞ ≤ C‖TuN (x) − Tu(x)‖∗
= C‖TuN (x) − f N (x) + f N (x) − f (x)‖∗
≤ C‖∑N−1

j=i+1

∫
I j

(p(t) − p j )D+uN
j + (q juN

j − q(t)uN (t))dt

+ ∫ xi+1
x (p(t) − pi )D+uN

i + (qiuN
i − q(t)uN (t)) + pi D+uN

i − qiuN
i + fi dt

− ∫ 1
x f N − f dt‖∞

≤ C max
0≤i≤N−1

{
N−1∑
j=i

∫
I j

|(p(t) − p j )D
+uN

j | + |(q(t) − q j )u
N
j |

+|q(t)(uN (t) − uN
j )| + | f j − f |dt + ∫

Ii
|pi D+uN

i − qiuN
i + fi |dt}.

Since the items of the right-hand side satisfy:

∫
I j

|(p(t) − p j )D
+uN

j |dt ≤ Cp

∫
I j

|(t − x j )D
+uN

j |dt ≤ Ch2j+1|D+uN
j |,

∫
I j

|(q(t) − q j )u
N
j |dt ≤ C

∫
I j

|q(t) − q j |dt ≤ CCqh
2
j+1,

∫
I j

|q(t)(uN (t) − uN
j )|dt ≤ γ ∗

∫
I j

|
∫ t

x j
(uN (s))′ds|dt

≤ γ ∗
∫
I j

∫ t

x j
|D+uN

j |dsdt ≤ Ch2j+1|D+uN
j |,

∫
I j

| f j − f (t)|dt ≤ Ch2j+1,

∫
Ii

|pi D+uN
i − qiu

N
i + fi |dt ≤ β∗hi+1|D+uN

i | + Chi+1,

we have

‖uN (x)− u(x)‖∞ ≤ C max
0≤i≤N−1

{
N−1∑
j=i

(h2j+1|D+uN
j |+ h2j+1)+ hi+1|D+uN

i |+ hi+1},

and then
‖uN (x) − u(x)‖∞ ≤ C max

0≤i≤N−1
(hi+1|D+uN

i | + hi+1). (8)

Theorem 2.1 Let u(x) be the solution of (1) and uN
i be the solution of (5) on an

arbitrary mesh. Then there exists a constant C such that:

‖uN
i − u(xi )‖∞ ≤ C max

1≤i≤N
hi

√
1 + (D−uN

i )2.
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Proof Let uN (x) be the piecewise linear interpolation of uN
i . From (8), we have

‖uN
i − u(xi )‖∞ ≤ ‖uN (x) − u(x)‖∞ ≤ C1 max

1≤i≤N
(hi |D−uN

i | + hi )

≤ C max
1≤i≤N

hi

√
1 + (D−uN

i )2.


�

3 The adaptive upwind FDM and the existence of its solution

The problem (1) is solved iteratively by the adaptive upwind finite difference method:

Step 1. Set an initial mesh {x (0)
i }, e.g., a uniformmesh {0, 1

N , 2
N , ..., 1} or a Shishkin-

type mesh.
Step 2. For k = 0, 1, ..., compute the numerical solution {u(k)

i } by (5) on the current
mesh {x (k)

i }, and set l(k)i =
√

(x (k)
i − x (k)

i−1)
2 + (u(k)

i − u(k)
i−1)

2 and L(k) =∑N
j=1 l

(k)
i .

Step 3. Take a user-chosen constant C0 ≥ 1. If the condition

max1≤i≤N l(k)i

L(k)
≤ C0

N
(9)

is satisfied, then set {x∗
i } = {x (k)

i }, u∗ = u(k) and stop. Otherwise, continue
to the next step.

Step 4. Set the next mesh 0 = x (k+1)
0 < x (k+1)

1 < ... < x (k+1)
N = 1 by equidistribut-

ing the arc-length of the polygonal curve of the numerical solution u(k)(x),
such that

l(k+1)
i =

√
(x (k+1)

i − x (k+1)
i−1 )2 + (u(k)(x (k+1)

i ) − u(k)(x (k+1)
i−1 ))2 = L(k)

N
.

Return to step 2. Similar to the contents in [18, 21, 24–26], but the equation
(1) is different from those in [18, 21, 26] and the scheme (5) is different
from that in [18, 21, 24–26], the above adaptive method for (1) constructs
a mapping, and its existence theorem also follows the fixed point theorem,
which only demands the following newly proved preliminary lemma without
using the presupposition hi/hi+1 ≤ 1 or C used in [21, 24–26].

Lemma 3.1 The solution {uN
i } by (5) for (1) on an arbitrary mesh {xi } satisfies

|D−uN
i | ≤ C(N + ε−1) for i = 1, 2, ..., N ,

where C a constant independent of ε and N.
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Proof From (6), |uN
i | ≤ C for each i . So, hk ≥ N−1 and |D−uN

k | ≤ CN for some k.
For i = k, k + 1, ..., N − 1, from (5) we have

−ε(D+uN
j − D−uN

j ) − p j h j+1D
+uN

j + q j h j+1u
N
j = h j+1 f j ,

(ε + p j h j+1)D
+uN

j = εD−uN
j + q j h j+1u

N
j − h j+1 f j ,

ε|D+uN
j | ≤ ε|D−uN

j | + Ch j+1,

ε(|D+uN
i | − |D−uN

k |) ≤ C
i∑

j=k

h j+1 ≤ C,

|D−uN
i+1| ≤ |D−uN

k | + Cε−1 ≤ C(N + ε−1).

For i = 1, 2, ..., k − 1, from (5) we have

ε(D−uN
i − D−uN

k )

= ∑k−1
j=i {p j h j+1D+uN

j − q j h j+1uN
j + h j+1 f j }

= pi (uN
i+1 − uN

i ) + ... + pk−1(uN
k − uN

k−1) − ∑k−1
j=i {q j h j+1uN

j − h j+1 f j }
= −piuN

i + (pi − pi+1)uN
i+1 + ... + (pk−2 − pk−1)uN

k−1 + pk−1uN
k

−∑k−1
j=i {q j h j+1uN

j − h j+1 f j },

ε|D−uN
i | ≤ ε|D−uN

k | + C + CCp

k−2∑
j=i

h j+1 + C
k−1∑
j=i

h j+1.

We also have

ε|D−uN
i | ≤ εCN + C, i.e., |D−uN

i | ≤ C(N + ε−1). 
�
We need to prove that there exists a solution by (5) satisfying the equations:

li =
√

(xi − xi−1)2 + (ui − ui−1)2 =
∑N

j=1 l j

N
, 1 ≤ i ≤ N . (10)

Theorem 3.2 (Existence of a solution of the adaptive upwind FDM)For any ε ∈ (0, 1)
and every positive integer N, there exists a mesh equidistributing the arc-length (10)
along the piecewise linear interpolation of the solution of (5).

Proof Let us regard steps 2 and4of the algorithmas amapping:� : (h1, h2, ..., hN ) →
(h̃1, h̃2, ..., h̃N ), where hi and h̃i are of the mesh before and after moving it. Define a
set

SQ = {(h1, h2, ..., hN ) ∈ RN : hi ≥ Q, 1 ≤ i ≤ N ,

N∑
i

hi = 1}

where Q = Q(ε, N ) satisfies 0 < Q < 1
N . Clearly, SQ is not empty. Let uN

i
be the numerical solution from (5) on the mesh with the step size hi and set
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Uniform convergence analysis of a new adaptive upwind… 609

li = hi
√
1 + |D−uN

i |2 (i = 1, 2, ..., N ). From Lemma 3.1 the slope of each seg-

ment of uN (x) is at most C(N + ε−1), so the arc-length of uN (x) on each interval of
the new mesh with length h̃i for every i is at most h̃i

√
1 + C(N + ε−1)2. Since the

new mesh is taken to split the piecewise linear function uN (x) into N pieces, we have

h̃i
√
1 + C(N + ε−1)2 ≥

∑N
j=1 l̃ j

N
≥

∑N
j=1 h̃ j

N
= 1

N
,

which leads to

h̃i ≥ Q := 1

N
√
1 + C(N + ε−1)2

, 1 ≤ i ≤ N .

Hence 0 < Q < 1
N and then � maps SQ into itself.

The nonempty set SQ is compact and convex, and � is obviously continuous. So,
� has a fixed point in SQ by the Brouwer fixed point theorem, i.e., there is a mesh, as
well as a computed solution on it, such that li = l j for all i and j . 
�

4 The uniform first-order convergence of the adaptive upwind FDM

Define the discrete Green’s function G(xi , x j ) of T N in (5) as follows:

T NGi, j = δNi, j , i = 1, 2, . . . , N − 1, (11)

and G0, j = GN , j = 0, for j = 1, 2, . . . , N − 1, where

δNi, j =
{ 1

hi+1
, i = j,

0, otherwise.

Thus, the numerical solution uN
i has the expression

uN
i =

N−1∑
j=1

h j+1Gi, j f j , (12)

which satisfies (5).
Similar to the property of the discrete Green’s functions in [1, 16, 18, 21, 24], we

can prove the following property:

Lemma 4.1 The discrete Green’s function G(xi , x j ) in (11) satisfies:

0 ≤ Gi, j ≤ β−1, for i, j = 0, ..., N ,
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and
N∑
i=1

|Gi, j − Gi−1, j | ≤ 2

β
, for j = 1, . . . , N − 1. (13)

Proof Let the barrier function for Gi, j be (see, e.g., [1, 16, 18]):

Bi
j =

⎧⎪⎨
⎪⎩

β−1, for i = 0, ..., j,

β−1
i∏

k= j+1

(1 + βhk
ε

)−1, for i = j + 1, ..., N .

For i = 1, ..., j − 1, we have

T N Bi
j = qiβ

−1 ≥ 0.

For i = j , we have

T N B j
j = − ε

h j+1
(
B j+1
j −B j

j
h j+1

− 0
h j

) − p j
B j+1
j −B j

j
h j+1

+ q j B
j
j

= −( ε
h j+1

+ p j )
B j
j

h j+1
[(1 + βh j+1

ε
)−1 − 1] + q j B

j
j

= ε+p j h j+1
(ε+βh j+1)h j+1

+ q jβ
−1 ≥ 1

h j+1
.

For i = j + 1, ..., N − 1, we have

T N Bi
j = − ε

hi+1
(
Bi+1
j −Bi

j
hi+1

− Bi
j−Bi−1

j
hi

) − pi
Bi+1
j −Bi

j
hi+1

+ qi Bi
j

= ε
hi+1

(
β

ε+βhi+1
− β

ε
)Bi

j + pi
β

ε+βhi+1
Bi
j + qi Bi

j

= (pi−β)β
ε+βhi+1

Bi
j + qi Bi

j ≥ 0.

Hence

T N Bi
j ≥ δi, j = T NGi, j .

Since B0
j ≥ G0, j and BN

j ≥ GN , j , the bounds in the following are established by the
discrete comparison principle

0 ≤ Gi, j ≤ Bi
j ≤ β−1, for i, j = 0, ..., N .

As we know that Gi, j increases for i = 0, 1, . . . , j and Gi, j decreases for i =
j, j + 1, . . . , N , we have

N∑
i=1

|Gi, j − Gi−1, j | = 2G j, j ≤ 2

β
, for j = 1, . . . , N − 1.


�
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Furthermore,

LN =
N∑
i=1

hi

√
1 + (D−uN

i )2 ≤
N∑
i=1

hi [1 + |D−uN
i |] = 1 +

N∑
i=1

|uN
i − uN

i−1|, (14)

where LN is the arc length of discrete solution {uN
i }. From (5), (12)-(14), we have

LN ≤ 1 + ∑N
i=1

∑N−1
j=1 h j+1| f j | · |Gi, j − Gi−1, j |

≤ 1 + ‖ f ‖∞
∑N−1

j=1 h j+1
∑N

i=1 |Gi, j − Gi−1, j |
≤ 1 + 2‖ f ‖∞

β
.

(15)

Theorem 4.2 The solution uN
i of (5) on the grid {xi } of arc-length equidistribution

satisfies:

‖uN
i − u(xi )‖∞ ≤ CN−1,

where C is a constant independent of ε and N.

Proof According to Theorem 2.1, Theorem 3.2, (9) and (15), the solution uN
i of (5)

for (1) on the grid {xi } of arc-length equidistribution satisfies:

‖uN
i − u(xi )‖∞ ≤ C1 max

1≤i≤N
hi

√
1 + (D−uN

i )2 ≤ C1C0LN/N ≤ CN−1.


�

5 Numerical examples

The numerical examples for the problem (1) are solved by the old upwind scheme (2)
and new (5) respectively on the uniform mesh and the adaptive mesh. The maximum
node errors are denoted as eNold and eNnew, respectively. The numerical convergence
orders are denoted as r Nold and r

N
new, respectively. The number of iterations are denoted

as I terold and I ternew, respectively. The numerical convergence order is computed
by

r N = log2
max |ui − uN

i |
max |ui − u2Ni | .

Example 1 Consider the singularly perturbed two-point boundary value problem:

{−εu′′(x) − (1 + x)u′(x) + u(x) = f (x), x ∈ (0, 1),
u(0) = u(1) = 0,
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Table 1 The numerical results of Ex.1

N 16 32 64 128 256 512

ε = 10−2

I terold 4 6 6 4 3 3

eNold 1.1613e−01 7.5945e−02 4.6723e−02 2.6277e−02 1.4325e−02 7.6502e−03

r Nold 0.6127 0.7008 0.8303 0.8752 0.9050

I ternew 7 3 3 2 2 2

eNnew 5.4921e−02 3.2226e−02 1.7497e−02 1.1045e−02 5.0560e−03 2.2858e−03

r Nnew 0.7691 0.8811 0.6638 1.1273 1.1453

ε = 10−5

I terold 17 19 38 10 6 10

eNold 1.3675e−01 8.0317e−02 5.1264e−02 3.1368e−02 1.9866e−02 1.1102e−02

r Nold 0.7677 0.6478 0.7087 0.6590 0.8395

I ternew 12 14 5 4 31 12

eNnew 6.0147e−02 3.2131e−02 1.7137e−02 9.4281e−03 4.1500e−03 2.2783e−03

r Nnew 0.9045 0.9068 0.8621 1.1839 0.8651

ε = 10−8

I terold 15 18 16 18 20 35

eNold 1.3655e−01 8.0134e−02 5.1230e−02 3.1182e−02 1.8343e−02 1.0922e−02

r Nold 0.7690 0.6454 0.7163 0.7655 0.7480

I ternew 15 9 10 6 5 21

eNnew 6.1471e−02 3.3082e−02 1.6479e−02 8.6102e−03 4.7830e−03 2.2665e−03

r Nnew 0.8939 1.0054 0.9365 0.8481 1.0775

where f (x) is chosen so that u(x) = e− x
ε − ex + (e − e− 1

ε )x .
The numerical results are shown in Table 1, Fig. 1 and Fig. 2.

Example 2 Consider the singularly perturbed two-point boundary value problem:

{−εu′′(x) − u′(x) + u(x) = 0, x ∈ (0, 1),
u(0) = 0, u(1) = 1.

The exact solution is u(x) = exp(m1x)−exp(m2x)
exp(m1)−exp(m2)

, where m1 = −1+√
1+4ε

2ε ,m2 =
−1−√

1+4ε
2ε .

The numerical results are shown in Table 2 and Fig. 3.

Example 3 Consider the singularly perturbed two-point boundary value problem:

{−εu′′(x) − (1 + x(1 − x))u′(x) = f (x), x ∈ (0, 1),
u(0) = u(1) = 0,
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Fig. 1 The solutions of Ex. 1 when N = 32 for ε = 10−2

Fig. 2 The errors of Ex. 1 when N = 32 for ε = 10−2
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Table 2 The numerical results of Ex. 2

N 32 64 128 256 512 1024

ε = 10−2

I terold 5 4 3 3 2 2

eNold 3.4408e−02 2.0047e−02 1.0891e−02 5.7997e−03 3.1689e−03 1.5717e−03

r Nold 0.7794 0.8802 0.9091 0.8720 1.0117

I ternew 4 3 3 2 2 2

eNnew 1.0738e−02 5.7549e−03 3.0807e−03 1.6893e−03 8.3495e−04 4.1298e−04

r Nnew 0.8998 0.9015 0.8668 1.0167 1.0156

ε = 10−4

I terold 17 11 17 10 7 6

eNold 5.1225e−02 3.1884e−02 1.9278e−02 1.1334e−02 6.4437e−03 3.5708e−03

r Nold 0.6840 0.7259 0.7663 0.8147 0.8516

I ternew 6 23 19 13 7 9

eNnew 1.3833e−02 6.7360e−03 3.6323e−03 1.8955e−03 9.7837e−04 4.9868e−04

r Nnew 1.0382 0.8910 0.9383 0.9541 0.9723

ε = 10−6

I terold 16 47 35 27 166 31

eNold 5.1613e−02 3.2332e−02 1.9512e−02 1.1622e−02 6.8388e−03 3.8243e−03

r Nold 0.6747 0.7286 0.7475 0.7651 0.8385

I ternew 9 18 16 28 13 23

eNnew 1.1767e−02 6.7545e−03 3.6409e−03 1.9009e−03 9.8197e−04 5.0078e−04

r Nnew 0.8008 0.8915 0.9376 0.9530 0.9715

where f (x) is chosen such that u(x) = 1−e− x
ε

1−e− 1
ε

− cos(π
2 (1 − x)).

The numerical results are shown in Table 3 and Fig. 4.

From the rows of iteration numbers, the errors and the numerical convergence orders
for each ε in the tables, and from the ordinates of errors in the figures, we can see
that the two adaptive methods both achieve better accuracy when the mesh is finer
and are close to the first-order convergence uniformly with respect to ε. Moreover, the
proposed adaptive upwind finite difference method with new scheme (5) usually uses
less iterations to satisfy the iteration tolerance and obtains better precision to resolve
the boundary layers than the existing adaptive upwind finite difference method does.

6 Conclusion

In this work, the rigorous error analysis of the upwind finite difference scheme
(5) on the grid that equidistributes the arc-length monitor function M(x, uN (x)) =√
1 + ((uN (x))′)2 of the numerical solution uN to solve the general non-conservative

convection-reaction-diffusion problem (1) is finally accomplished through newefforts.
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Fig. 3 The errors of Ex. 2 when N = 32 for ε = 10−2

Fig. 4 The errors of Ex. 3 when N = 32 for ε = 10−2
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Table 3 The numerical results of Ex.3

N 32 64 128 256 512 1024

ε = 10−2

I terold 7 7 6 4 3 3

eNold 6.3718e−02 4.0954e−02 2.3724e−02 1.3043e−02 6.9076e−03 3.5914e−03

r Nold 0.6377 0.7877 0.8630 0.9171 0.9436

I ternew 6 4 3 2 2 2

eNnew 4.5076e−02 2.3682e−02 1.2122e−02 7.0324e−03 3.2826e−03 1.5496e−03

r Nnew 0.9286 0.9662 0.7855 1.0992 1.0830

ε = 10−5

I terold 22 23 23 21 69 15

eNold 6.5623e−02 4.2844e−02 2.6595e−02 1.5934e−02 9.4057e−03 5.9246e−03

r Nold 0.6151 0.6880 0.7390 0.7605 0.6668

I ternew 19 17 16 4 9 14

eNnew 5.5522e−02 2.8054e−02 1.4075e−02 7.3192e−03 3.5138e−03 1.8164e−03

r Nnew 0.9849 0.9951 0.9434 1.0586 0.9520

ε = 10−8

I terold 26 27 26 26 71 53

eNold 6.5639e−02 4.2843e−02 2.6599e−02 1.5937e−02 9.3793e−03 5.9478e−03

r Nold 0.6155 0.6877 0.7390 0.7649 0.6571

I ternew 20 19 17 18 59 23

eNnew 5.5577e−02 2.8057e−02 1.4082e−02 7.0495e−03 3.5168e−03 1.8209e−03

r Nnew 0.9861 0.9945 0.9982 1.0033 0.9496

By contrast, considering adaptive methods, M(x, u(x)) was of the exact solution u in
[11–16], the equation was of conservative form in [17–20], of reaction-diffusion form
with no first derivative term in [16, 27, 28, 31–33] and of convection-diffusion form
with no zero derivative term in [11–15, 21], the a priori truncation error was from
a priori knowledge of the exact solution in [22, 23], and the condition hi/hi+1 ≤ 1
or C was used in [21, 24–26]. In fact, the a posteriori error estimate of the upwind
finite difference scheme, the existence of the solution of the adaptive upwind finite
difference method, and its ε-independent first-order convergence are developed step
by step with new progresses in this paper. The numerical examples confirm its uniform
first-order convergence and show its advantage in precision, too. Theworks for solving
nonlinear singularly perturbed problems, singularly perturbed mixed BVPs, problems
having interior layers, systems of singularly perturbed BVPs, singularly perturbed
two-dimensional elliptic problems, fractional order integro-parabolic equations and
so on are expected to be extended for future study (see e.g. [27–39]).
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