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Abstract

In this paper, a second-order difference scheme is developed to solve two-dimensional
two-sided space distributed-order fractional diffusion equation with variable coeffi-
cients. In the spatial direction, a second-order difference scheme is proposed, the
distribution-order integral is discretized by the Gauss—Legendre quadrature formula
and the space fractional derivative is approximated by the weighted and shifted
Griinwald-Letnikov operators. In addition, the time direction is discretized into a
second-order difference scheme by the Crank—Nicolson method. Therefore, the main
numerical scheme is developed. Furthermore, a small perturbation is added to the main
difference scheme to construct an alternating-direction implicit scheme. Also, the sta-
bility and convergence of the numerical scheme are proved. Finally, some numerical
results are provided to show the accuracy and efficiency of the proposed method.
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2 Y.Wang et al.

1 Introduction

In recent years, distributed-order fractional diffusion equations (DOFDEs) have
attracted considerable interest because of its ability to model the processes that become
more anomalous in course of time. It is an important tool for modeling ultraslow dif-
fusion [9, 23, 27] or accelerating superdiffusion [8, 36] where a plume of particles
spreads at a logarithmic rate. DOFDEs were first proposed in [6]. During these years,
the theoretical studies of DOFDEs were carried out by some literatures. For example,
in [4], the authors obtained a priori estimation of the solution of the initial boundary
value problems of DOFDEs by the maximal principle. In [26], the authors proved the
existence of the solution of the boundary value problems of DOFDEs by constructing
a formal solution using the Fourier method of variables separation. The authors of
[21] discussed the well-posedness of the Cauchy problems of the abstract DOFDEs
by functional calculus technique. Ansari et al. [S] used the Mittag-Leffler and Wright
functions to obtain the fundamental solution of the DOFDESs with fraction Laplacian
in axisymmetric cylindrical configuration. In general, the analytical solutions of many
DOFDE:s are not easy to gain. Therefore, different numerical methods are worth con-
sidering to solve DOFDEs. Zaky et al. [37] developed a spectral tau method based on
Legendre polynomials for DOFDEs. In [3], authors studied Galerkin meshless repro-
ducing kernel particle method for neutral delay time-space distributed-order fractional
damped diffusion-wave equations. Authors of [19] presented a finite element method
for the distributed order time-fractional diffusion equations. Sun et al. [32] proposed a
fast and memory saving algorithm for solving distributed-order time-space fractional
diffusion equations, and other methods for this type of equations can refer to [14, 16,
38,42, 43].

As an important class of DOFDEs, the space DOFDEs have attracted extensive
attentions, which can be used to simulate an accelerated superdiffusion process [22,
36]. And they mainly include two kinds, one is the Riesz space DOFDEs, the other
is two-sided space DOFDEs which is more general. And under certain conditions,
the two types of equations can be transformed into each other. For example, authors
of [2] studied the following two-dimensional distributed-order Riesz space-fractional
diffusion equation

SM(X,y,t)_ 2 8ﬁu(x,y,t) 3ﬂu(x,y,t)
T_/l X(’s)[ wlF T AP }dﬁ+f(x,y,t), (L1)

where yx (8) is non-negative weight function of 8, and y (8) satisfies [1]

2
x(B) =0, x(B)#0, VB e(l,2), 0</] x(B)dp < oo.

3ﬁu(x,y,t) Bﬂu(x,y,t)
anp 2
be written as

denote the Riesz space fractional derivative [3, 20]. (1.1) can
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au(x,y,t)_/2 L _[2 (¥ utyn ¥y
o) 2 cos(P7) L ax axp1 3(—x)p1

3 (3P ux,y,t) P ux, y, 1)
dy dyP-1 a(—y)p-1

)}dﬁ+f(x,y,t)

/1 @+1) -1 3 (%u(x,y, 1) %ulx,y,1)
= o —_— —_
0 2cos (eim) Lox \ o B(—x)@

0 (0%u(x,y,t) 0%u(x,y,t)
dy ay* A(=y)

)]da+f(x,y,t), (1.2)

let w(a) = x(x + 1) , thus (1.1) becomes a two-dimensional two-sided

(a+1)7r

space dlstrlbuted-order fractlonal diffusion model [41]. To date there have many
numerical methods to be proposed for these equations. Chen et al. [11] derived a
fourth-order accurate numerical method for the distributed-order Riesz space fractional
diffusion equation. Abbaszadeh et al. [2] presented a fourth-order ADI finite differ-
ence scheme to solve the two-dimensional distributed-order Riesz space-fractional
diffusion equation. In [36], authors developed a novel finite volume method for the
nonlinear two-sided space distributed-order diffusion equation. The general linear
method and spectral Galerkin method was proposed by Zhang et al. [41] to solve the
nonlinear two-sided space distributed-order diffusion equations.

However, it is worth noting that the diffusion coefficients in (1.2) are constants,
and most of the previous work dealt with the problem that the diffusion coefficients
are constants, but the diffusion coefficients often depend on the time or space variable
in some practical problems [10, 13, 24, 29, 31, 36, 40, 44]. Based on model (1.2), we
consider the following two-dimensional two-sided space distributed-order fractional
diffusion model with variable diffusivity coefficients:

d d y % y
Butryt) — [ w(a)[dx (ku(x v, o) Zub ) —ku(x,y,ooW)

+a <k21(x vy o) ZHERD oy (x, y,a)%y{,t))}daJrf(x,y,t,u),
O<a<l, (x,y,1)eQx][0,T],

ulx,y,t) =0, (x,y)ea, te(0,T],

ux,y,0) =opx,y), (x,y) e,

(1.3)

where Q@ = (a,b) x (¢, d), ki j(x,y,a),i, j = 1,2, are nonnegative diffusion coef-
ficients, and they satisfy

oki1(x,y, a) okio(x, y, a) oka1(x, y, ) 0k (x,y, a)
<0, > 0, <0, > 0,
ax ox ay ay
(1.4)
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f is a given function, and satisfies the Lipschitz condition,

|f e,y t,u) = flx,y,t,0)] < Lilu — v, (1.5)

where L is a positive constant. Specifically, when f(x,y,t,u) = f(x,y,t), Eq.
(1.3) is a linear problem. And w(«) satisfies

1
w(@) >0, wl #0, Ve e (0,1), 0< / w(a)da < 0.
0

" %u(x,y,t) 0%u(x,y,t) 9%u(x,y,t) 9%u(x,y,t)
The definitions of operators P Ters a7 and 3

[25, 35].

In this paper, we first discretize the distribution-order integral by the Gauss—
Legendre quadrature formula, and approximate the space fractional derivative by
the weighted and shifted Griinwald—Letnikov operators [15, 34, 35]. Therefore, the
second-order accuracy approximation in space can be achieved. In addition, the Crank—
Nicolson method [7, 18, 28] are applied to achieve time discretization. Hence, a
second-order difference scheme in all variables is developed to solve (1.3). Fur-
thermore, to avoid solving large systems of linear equations, an alternating-direction
implicit scheme is constructed by adding a small perturbation to the above second-
order difference scheme. Finally, the stability and convergence of the numerical
scheme are analyzed.

The outline of this paper is organized as follows. In Sect. 2, we provide the numerical
method for solving the two-dimensional two-side space distributed-order fractional
diffusion equation with variable diffusivity coefficients. The stability and convergence
analysis are proved in Sect. 3. Section 4 presents some numerical results to show the
effectiveness of our numerical method. Finally, some conclusions are made in Sect. 5.

can be seen

2 Numerical method

Lett = % be the time step size, and b = 274, hy = M € be the space step size. And
denote t, = nt,n =0,1, .. Nx,_a+zh1,z_01 LM,y =c+ jha,
j=0,1,..., M. For convenience, we note
0 0%u(x, y,t) 0%u(x, y,t)
A 9 9 7t = k 9 9 - 4 - _k b 9 e, <
(e, x, ¥, 1) ax( nE @) O T
dky1(x, y, @) 0% (x, y, 1) R )8"‘+1u(x,y,t)
= X, Y, 0) —(————
ox xe ey gxatl
Okio(x, y, ) 0%u(x, y, 1) Py ) 3oty (x, y, 1)
_ X, y,0 YA IS
Ox 3(—x)"‘ 12 y ( )ot+l
R} 0%u(x, y, 1) 0%u(x,y,t)
B(a,x,y,t) = 5(@1(3@ y,a)T —koa(x,y, OZ)W
ko1 (x, y, ) 0%u(x, y, 1) 3t lu(x, y, 1)
= +k21(x’ yﬂa)—l
3)/ ayoc ayaJr
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0k (x, y, ) 0%u(x, y, 1) 3 lu(x, y, 1)
- +ho(x, y, o) ———
ay d(—y)¥ A(=y)*t

Ifw(a) (A(a, x, y,t) + B(a, x, y, 1)) € CV[0, 1], using Gauss-Legendre quadra-
ture formula [30, 39] to approximate the integral of Eq. (1.3), we can write (1.3) as

du(x, y,t) 1
= fzwrw(ar)[A(ar,x v, )+ Blay, x,y, D1+ f(x,y,t,u) + O(m™"),
r=1
2.1
where o, = 1+2p L and p,, w,, r = 1,...,m, are quadrature points and quadrature
weights, respectively. Let
n+1 n n+1 n
N by _Mig Tt o ey Mg Ty
M,',j = u(x;, Yjs ), ui,j = T, U i = 7,

kll = ki1 (xi, yj, o), k12 = ki2(xi, yj, o),

k271’ =k21(xi7 yjsa}’)’ k2’2’ =k22(-xiv )’j:ar),
i okii(x, y, a) i 0ki2(x, y, a)
L, ],r L, ],r
ki, = Yy (i yj,or), ki3 = oy (xi, yj» o),
i ka1 (x, y, @) i) 0k (x,y, a)
Lj.r _ . . Lj.r __ . .
kyiy = — (i, yj o), kys = oy (Xi, yj» o).

Then, using the Crank—Nicolson method and the weighted and shifted Griinwald—
Letnikov operators [25, 33, 35] to approximate Eq. (2.1), it follows that

Syt = Zwrw(ar)[A(ar,x,,y,,rnm+A(ar,xl,y,,zn)+B(ar,x,,y,,rn+1)
r=I1
Blay, xi. LY mty (2.2)
+ (ar,xuyjatn)]‘Ff xhyj,zth%’ui_j +rlj’ .
where
l T i+ : j roi+l
. . _ llx or+1 u”
Alar, Xi, yj, ta) = Zwl u; 1+1j otr-i-l Zw Ui j+1,j
i,j.r M]—H-l i, /r Mp—i+1
k12x k o+l n
wl l+1 1j T a,+1 W Uigg—1,j»
i,j.r j+1 l] r j+1

. . — 21,)’ ar l’l Otr+1 n
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ki»j,r My—j+1

P
l]

22,}) or _n
5o Z W ot
2 —

< Cr(m™" +hi+h3+ 1),

t/r Mr—j+1

C(r+1 n
a,+1 Z Wy Ui j+i1-1>

. . . . . n+4i .
with C, is a positive constant. Approximating f (x,-, Vist, Ll 2) with Taylor

expansion [36], (2.2) can be converted into

r=1

Zwrw(ar)[A(ar’xu Yjstnt1) + Aoy, Xiy yjs tn) + Bay, Xi, ¥js tat1)

3 1
+ B(ar, Xi, yj. t) | + f (x,',yj,tn+%, Euﬁj 5 u;; )+r” (2.3)

And let
1 w (U(Ol ) i,],r
qu?,j = *Z - ar - kllj,x
4 hy

1=0
i+1

j+!1
1 < wro(ey) i
no_ - r r i,j.r A n _
Syui j =4 > przamll L1 dowiul ik
2
i,j,r
(k” Zw

Mi—i+1
ljr
ks Z wz - 1.j

My—j+1

i,j,r O n
2,y Z Wy U jyi—1 )]
1=0
M—i+1
tjr o+l n
Z W “t+1—1,.i>’

My—j+1

ut+1n
ljl+1+k22 Z w UG

Then, omitting r;’j, replacing uf‘/. with U,.’}, Eq. (2.3) can be written as

(1—r6 — 10y — Tdy —ray)
1

3
+tf (x,,y,, n+1,—U-’] - 35U

2 2

U”‘Irl (1+r8 + 10, + 16, +TO'})U

2J

" 1>, l<i<M—1,1<j<M—1.

(2.4)

Further, Eq. (2.4) can be expressed as the following matrix

(I+HU"! =

where

I—H)U"+<tF", (2.5)

H = (Hjy j)) (M=) (Ma—D)x (M —1)(M—1) = H1 + H>,
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= diag(H (1), Hy(2), . ..,

1 <k <M—1, Hy = (hiy j,) (Mi—1)(Ma—

with h; —dlag(hy (1), hy i@,

] 41}1’1“’,(% (ﬁkl o lmﬂl _,_k’ller ;x,]H), Forj<i—1,
r=
il —n:];aw'(ar) (%(kz r a,+1 +k’i’2k"w3"“) n (k,i,lk: @ _ ki’zli;:wg’)) Cferj—io1,
r=
h';(,j(k) = il _T':;lg),(ar) (%(kl ko ot,+l kli,zk,r ot,+l) + (kzllerwtlx ktlzerwl ) L forj=i,
r=
r’:] —11:;,2(%) (ﬁ(kl kr ar+1 +k112k' Otr+l) + (klllk):w(o)(, kl]zk,:wgl )> , for ] —it 1’
rgl 7rw,w(m (ﬁk;zk’w?rtlrl kllzer 3"1+1) , forj>i+l,
é: 43‘);'7%)'(%) (hiklzcll T ;X'TL +klzcllvr ;X'jﬂ)s forj<i-—1,
rg %g;(a’) (1 (kk gL ot,+1 +k]2( JELr ot,+1) + (kléll; k’zczl;wor)) . forj=i—1,
= £ = (a0 00 it ) o
r=
3 et (G ™ kg 4 0w k) forj =i,
ré ﬂ‘u‘v’;{‘zj’(%) (%kg rw;‘viﬁl k’izlyr wi ,H), forj>i+1,

Unz(U{l’l, Uél)l,...,
n=(f1n’l,f2n’1,...,

3 1
Il = f(xi’yf’%r;v SULs

2

n
UM]—I,]’ ceey
n
fM]f],l""’

--U

Hy(Ma — 1)) with Hy (k) = (hf

My—1D)x(M—1)(Ma—1) =
,h?j(Ml — 1)), and

n
Ul,Mz—l’ ceey

f]n’M27]’~--7

n—1
ij )

K (=D x (b1 ~1)»
(hi, ) (Ma—1D)x (Ma—1)

T
n
UM]—I,Mz—l) ’

T
f/(l/llfl,szl) ’

To avoid solving large systems of linear equations, we add a small perturbation 73 (8, +

1
2

+
o) 8y + oy)(?tu?,j

n+l1

(1 =8¢ — o) (1 — 78y — oy ) uf

= (l—l—téx+rax)(1+18y+ray)ul'<'!j+rf (x,-,yj,thr%,

where

n
IR; j

IA

Cr(m™"

+ 3+ 13+ 1),

1
o(m™"+ ‘L'h + ‘L’hz + 1) 4+ 138, + 0x)(8y + (’)’)‘S’M?jz

on both sides of (2.3) to construct the following ADI scheme

3 n 1 n
Eui’j_iu +le,
(2.6)
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8 Y.Wang et al.

where Cp is a constant. Omitting R” , replacing u . with U{;, (2.6) can be written as

(1 — 18 — t0y) (1 — T8y — 70y) U"+l

3 I .-
= (418 +10) (1 + T8y +70y) U, + T f (x,-, Virlysds EUi'fj - EUirfj 1).
@7

Further, (2.7) can be expressed as the following matrix

(I + H)(I + H)U™ = (I — H)(I — H)U" + tF". 2.8)
Then, Ul.”;'l can be solved by the following two steps:
(I =18 —to)U/;

3 n 1 n—1
=(1+r8x+rax)( + 1dy +ray)U +f(xi.y), n+1,2U _EUi,j s

(1-18,— wy)U"+1 U, (2.10)

where the boundary and initial conditions are

1

UX’II,J' =u(b, yj,ta) =0, Uirsz =u(x;i,d, 1) =0,
U,-(?j =g@la+ihy,c+ jho).
Us; =0, Uy ;=0 j=01,... M.

U(’)l’jZM(aayj’tn)ZO’ U(TOZM(.XZ',C,[")ZO,

3 Numerical analysis

3.1 Numerical analysis for the difference scheme (2.4)

In this subsection, we first present the following Lemma which are introduced to
prove the solvability, convergence and stability of the difference scheme (2.4) will be

analyzed and discussed.

Lemma 1 [25, 33, 35] Assume that 0 < 8 < 2, when 0 < 8 < 1, {wf} satisfy

B _ B B _ 2-p—p’ B _ BB +B—4)
0 =17, W ="5—>0 wy= 7 ’
00 M 3.1
w2ﬂ<w3ﬁ<~-~<0, wa:O, Zw;g>0,le. S
1=0 [=0
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A second-order difference scheme for two-dimensional... 9

When 1 < 8 < 2, {wlﬁ} satisfy

B_ B B _ 2—B—p* B _ B(B*+B—4)
wy =5, wp =—5— <0, wy =="—F—,
0 M (3.2)
1>w€>w§3>~-~>0, Zwﬁ:O, Zw;3<0,M22.
1=0 =0

oy

Remark 1 According to Lemma 1, when 0 < o« < 1, ZMl lwl = 0 and
2 10711;51 w;” <0, M > 2. In addition, ZMI’I @+l _gand Y 107117&1 w;x,+1 -
O Ml > 3,

Theorem 1 Suppose that 0 < o, < 1, My, My > 3, k; j(x,y, ), i, ] = 1,2, satisfy
condition (1.4), then the difference scheme (2.4) is uniquely solvable.

Proof In order to prove the unique solvability of the difference scheme (2.4), we

need to prove I 4+ H is strictly diagonally dominant. For all i = 1,..., M — 1,
k=1,2,..., M, — 1, by means of Remark 1, we have
Mi—1
X
> Ik )]
J=Llj#i

i—2 1
_errw(otr)z ket ik o
h“' el Wi jt+1 1x Wimjt1
j=1

Tw,w(o 1
+Z rha(, - <h1(k111kr SR T+ Rl - kg 8">)

Twrw(ar) 1 T

Mi—1

m
Twro(a,) 1 ik,r ot,+1 ik,r we
+Z 450" Z </’l]k / —i+1 kl2x Jj—i+1

r=l1 1 j=i+2
Tw,o(a) ! M
r r l Jkor ar+1 ik,r Z aor+1
= Z ha,+l kit Yo wi T kg w;
r=1 =0, j#1 j=0,j#1
m i My—i
n Z Twro(ar) ki,k,r Z kt kr Z ar
4har 11.x w 12,x w;
j=0,j#1 j=0,j#1
L Tw w (o)
< 2 (R k)
4pert!
r=1 1
" Tw w (o)
r r ik,r a, ik,r ot, _ gx
+ Y T (ke k) = . (3.3)
r=1 1
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10 Y.Wang et al.

Thus, H, (k) is strictly diagonally dominant, furthermore, H; is strictly diagonally
dominant. Similarly, hly ; (k) > Z?/Izzl_j £i |hiy ¥ (k)|, Hy is strictly diagonally dominant.
Therefore, I + H is strictly diagonally dominant. In other words, the matrices I + H
is invertible, which guarantees the difference scheme (2.4) is uniquely solvable. O

Lemma 2 Suppose that 0 < «r < 1, My, My > 3, ki’j(x, y,a), i, j = 1,2, satisfy
condition (1.4), then the eigenvalues of I + H are all greater than 1.

Proof Based on the Greschgorin’s theorem [12, 17], the eigenvalues {};} of matrix
H, (k) satisty

Mi—1
i =il < > k0.
j=1j#i
then using Theorem 1, it follows that
Mi—1
M= hi )= Y A ()] >0,
j=1j#

namely, the eigenvalues of the matrix H, (k) are all greater than 0. Furthermore, since

H; is a block diagonal matrix, the eigenvalues of H; are also all greater than 0.

Similarly, it can be verified that the eigenvalues of H; are all greater than 0. Let A1 and

X2 be any eigenvalues of Hy and Hj, respectively, then there are A1 > 0 and A, > 0,

thus the eigenvalues of / + H are all greater than 1, O
Now, suppose that (1.3) has aunique sufficient smooth solution u € C;:i:? (2 x[0,T),

let Ul” j and ﬁl” j be the solution and numerical solution of the difference scheme (2.4),

respectively. Define € j= ur i 171.” I substitution into (2.4) leads into

(1 =18 — tox — T8y — TOy) el."jl = (1418 + Tox + 18, + T0y) €

31 -JUR DU
w1 (oot 301, = 3007 ) = (st 57 = 5757 )

n
LJ

(3.4)
And (3.4) can be written as
(I + H)"™' = — H)é" +1G", (3.5)
where
n __ (,.n n n n n T
€ = (€] 1 €5 1s e €yt 1r e €l Myt R L My—1) s
T
G" = (8111,1’ 83,17 . "’ganfl,l’ '--’8111,M271’ ""gx/llfl,szl) >
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A second-order difference scheme for two-dimensional... 1

with

3 I 3. 1~
g =1 (xi’yf’%;’ FUL =3Vl > - <xi’yf’tn+;f FUiL =501 ) :

Let 1; ; be any eigenvalues of H, then the eigenvalues of / + H and / — H are 1 +1; ;
and 1 — A; ;, respectively. From Lemma 2, we know A; ; > 0, thus 1 +2; ; > 1. And
let (1 + Ap,q) be the eigenvalue corresponding to row (M — 1)(g — 1) + p of matrix
I + H, then (1 — kp,q) be the eigenvalue corresponding to row (M — 1)(g — 1)+ p
of matrix I — H. Further, we have

Mi—1 My—1
D> Hot g1t p.(Ma— 1) (- D4i€i.j = Apg€p.g- (3.6)
i=1 j=1

Then, we present the following Theorem based on Eq. (3.6) to illustrate the stability
of the difference scheme (2.4).

Theorem 2 Suppose that0 < a < 1, k; j(x,y, ), i, j = 1, 2, satisfy condition (1.4),
then the difference scheme (2.4) is unconditionally stable.

Proof Denote ||€"t!||5 |e”+1| = MaXi<j<M,—1,1<j<Mp—1 |en+ |, it follows from

(3.5) and (3.6) that

(14 2p0) €p|

P.q
m p+l M—1
_|nt1 twroler) [ pg.r p.q.r
= 6p,q 72 AR%r k]]x pr I+161q k12x Z wl p+l€lq
—l 1 I=p—1
m q+1 My—1
Twro(a) kpqr n+1 kpqr
—274;105, 21y qu 1+1€p0 T Ky Z Wo' 41 pl
—l 2 I=q—1
m p+1 Mi—1
_thrw(ar) KPear @l ntl kpqr Z ot
4_hoz,—o—l 11 p—Il+1-1q I—p+1-l.q
r=I1 1 =1 I=p—1
m q+1 My—1
_errw(ar) kp,qrzwa,+1 et g Z Wl
ap2r ] 21 g—1+1€p.1 22 g—1+1€p.1
r=1 2 I=g—1
m p+l M;—1
Twro(@) [ pg.r ar n Pq-r ay n
Z e ki pr—l+1€l,q ki3 Z Wi pt1€1.q
r=1 I=p—1
g+1 My—1
Twro(ar) K s
+Z T kat.y qu L€ = KN D wie,
I=q—1
" tw w(ay) o M
r r p.q.r a,+1 p.q.r a+1
+274ha,+| ki Z“’p 1+1€0q T k12 Z W i€l
r=1 1 I=p—1
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12 Y.Wang et al.

m Tw a)(a ) g+1 My—1
r r Pq r a -+l n p.q.r ar+1 "
+Z ky qu 111€p0 Tk Z W14 1€p.1

op+1
r=1 4h2 I=q—1

3 1o 3 |IPUR
“(f<x”’y“n+“z”z’3q 207 ) = (et 305 5753 ))|
= ‘ (1=2pq) €p.q

3 i EPOR P
H(f(x”’yq’ e M‘EUZ‘I) f<x”’yq’ g 2Uzq_§UZ'q>)

)

3.7
using the Lipschitz condition (1.5), we have
+1 —1
|+ apa) epil]| = 0= rpal|en| +ericr (jeng | +]ed]). G
where C is a positive constant, further,
e"+1‘<ﬂ | Llclen‘ Llclnl‘
P4 = 14 Apy Tt apg 1Pl T T 0, I
< (1+zL1c1)‘e;,q’+rLlcl ’e;;), 3.9)
namely,
+1 -1
et et = Lic (e + ] ) (3.10)
Summing up for n from 1 to k, we have
k k
k41 1 l -1
e =l e (e 2 1L)
k
< HEOHOO—F3TLlC1;HGZHOO, 3.11)
applying the Gronwall inequality [12] to above inequality yield
‘ et H < exp3LICT) HeOH . (3.12)
[e ) o
This completes the proof. O

Now, we consider the convergence of the difference scheme (2.4). Let u” and

u’ be the exact solution and numerical solution of (1.3), respectively. Define e L=

n
Uj—u /ande (el1’621""’eM1—1,1’""el,Mz—l’""eMl—l,Mz—l) . From
2.3) and (2.4), we get
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(1—1'8 — 10y — Tdy —ta))e’”j'l (1—1—1'8 + Toy + Ty +ray) i

3 1 . 3 1 ,_
+r(f (xi,yj,tm_%, EU’n/ —EUlffjl) —f(xi,yj,t,H_%, Euf'j 75141"’,/‘1)) + ;.
= l<i<M —1,1<j<M—1,
=0, €ly=0. ¢} ;=0 ¢, =0, 0<n<N. (3.14)

Then, we present the following Theorem based on Eq. (3.6) to illustrate the conver-
gence of the difference scheme (2.4).
Theorem 3 Suppose that 0 < o < 1 and t is small enough, k; j(x,y,a), i, j =12,
satisfy condition (1.4), then the error of the difference scheme (2.4) satisfy

" = €T expGLICIT) (m™" + K+ 13 +72), 0=n=N, (1)

where C| and C, are positive constants.

Proof Denote ||E"||os = lef | = maxi<i<m,—1,1<j<my—1 1€} ], it follows (3.13)
that

|1+ 2p) €3]

+1 Mi—1
_ |+l 12 Twro (@) kP I’X: ntl _ ppdsr ]X: n+1
=|%ra T 3 X% 11,x wp 1+1€1.4 12,x w” p+1%g
r=1 1 I=p—1
m Tw w(a ) q+1 My—1
rotor p.q.r p.q.r o n+1
Z e Gy Twar et — kTN wir et
r=1 1=0 I=g—1
p+1 M;—1
_ 72 Tw,w (o) kP Zwa,Jrl en+l pqr Z wa,+l n+l1
a,+l 11 p—1+1%1l.q I—p+1 lq
r=I1 =1 I=p—1
1 m q+1 Mr—1
_,ZM kp,qﬁrzwarﬂ Ly T Z w1 gt
har-H 21 q—1+1%p,1 22 q—I1+1 pl
r=1 2 I=q—1
m p+1 Mi—1
Z e lz wrw(o‘r> k”q’Zw“' o — kLY e
= 1€pyq 4 11,x p—I+1%l.q 12,x I—p+1%l.q
=1 l = I=p—1
q+1 My—1
1 & twrwlar)
p.q.r ar n Pgq.r o n
Il R e — ks D wiliaeh,
r=1 2 1=0 I=q—1
p+1 My—1
1 rw,a)(ar)
- Pq.r o+l n pq Z ay+1
*y presal it 2wyl + K Wi g€y
r=1 1 =1 I=p—1
q+1 Mr—1
1 & twro(ar)
- pP.q,r a4+l n Z a+1 n
ty por DB HTAE S Wo—1+1€p.1
r=1 2 = I=q—1

_ 3 T 3 -
+r<f(xp,yq,tn+;,2U§q—iU;q> f(’cl”yti*tw%’i”z.q 2';,(1))4—”;([
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14 Y.Wang et al.

= ’ (] - )‘p.q) eZ,q

N 3 n 1 n—1 3 1 n—1 n
A A ET IR 2qu_§qu =X Yar by ) 7 g T34 )) Tl

(3.16)
where r" = (r{”l, ré”l, R ”/74171,1’ ... ,r{’yszl, R rlrll/l]fl,szl)T' Using the Lip-
schitz condition (1.5), we have

+1 -1
‘(1+)‘P»4) ’ ‘ |1 Pq“e;,q‘+rL1C1 (‘ez,q}"' enq‘>+f||rn”oo
(3.17)
where C is a positive constant, further,
n+1‘ )‘Pq ‘ tLiCy |, ‘ tLiCy en—l‘ T 12 ||rn”
- 1+)» L4+Apq | L+Apq b
< ’+rL1C1 - 1‘+r||r || (3.18)
namely,
+1 —1
et~ el =i ([ o+ e )+l 39

Summing up for n from 1 to k, and notice ”eo H

= (0, we have
o0
k k k
o] < ] e (S e L)+ 2o
e < e TL1Cq e + e + T|\r
o° o° =1 o =1 o0 =1 o°
k k
<fel s ] e
o =1 Rt o

k k
:3tL1CleelHOO+ZrHrle, (3.20)
=1 =1

applying the Gronwall inequality [12] to above inequality yield

et H < C,Texp(3LiCiT) (m ( T+ b 4. 3.21)
o
This completes the proof. O

3.2 Numerical analysis for the difference scheme (2.7)

In this subsection, the solvability, convergence and stability of the difference scheme
(2.7) will be analyzed and discussed.
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A second-order difference scheme for two-dimensional... 15

Theorem 4 Suppose that 0 < o, < 1, k; j(x,y, @), i, j = 1,2, satisfy condition
(1.4), then the difference scheme (2.7) is uniquely solvable.

Proof In order to prove the unique solvability of the difference scheme (2.7), we need
to prove I + H; and I 4 H> are strictly diagonally dominant. By means of Theorem 1,
we know Hj and H; are strictly diagonally dominant. Therefore, I + H; and I + H»
are strictly diagonally dominant. In other words, the matrices / + H; and I 4+ H; are
invertible, which guarantees the difference scheme (2.7) is uniquely solvable. O

Lemma 3 Suppose that 0 < a, < 1, My, My > 3, k; j(x,y, ), i, j = 1,2, satisfy
condition (1.4), then the eigenvalues of I + H| and I + H» are all greater than 1.

Proof Using Lemma 2, we know the eigenvalues of H; and H, are all greater than 0.
Thus, the eigenvalues of I + H; and I + H» are all greater than 1, O

Suppose that (1.3) has a unique sufficient smooth solution u € C;:i,:? (2 x[0,T),

let U/ j and ﬁi” j be the solution and numerical solution of the difference scheme (2.7),
respectively. Define € j= ur i l~]l.” I substitution into (2.7) leads into

n+1
i.j

=1+ 18 +10y) (1 + 78y + T0y) e

3 _ 3~ 1~
o (f (’“"’ Vit 3V~ 5 UL 1) -/ (x"’yf’ hiye 3V = 30 1)) '

(1 =8 — 7o) (1 — 8, — T0y) €

(3.22)
Further, (3.22) can be expressed as the following matrix
We'tl = Ke" +1G", (3.23)
where
W = Wi i) —)Ma—D)x M —hMa—1) = (I + H)(I + Hp),
and

K = (K|, j) (M- 1)(My—1)x (M —1)(Ma—1) = (I — H1)(I — H>).

Let A; j and p; ; be any eigenvalues of / + H; and I + H, respectively, then the
eigenvalues of W and K are (1+4; ;)(1+p; ;) and (1 —A; ;)(1—p;, ;), respectively.
From Lemma 3, weknow 1+4; ; > land 1+u; ; > 1.Andlet(1 + );p,q) (1 + ,up,q)
be the eigenvalue corresponding to row (M — 1)(¢ — 1) + p of matrix W, then
(1 — )»p’q) (1 - /L,,,q) be the eigenvalue corresponding to row (My — 1)(g — 1) + p
of matrix K. Further, we have

Mi—1 My—1

S Wan-ng-npn-niG-ni€i = 1+ Apg) (1+ tpg) €pg. (3:24)
i=1 j=1
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16 Y.Wang et al.

and
Mi—1 My—1

Y Y Kot-nag—1tpi-1G-nti€i i = (1= 2pg) (1= 1pg) €p.q-
=1 j=1

(3.25)

Then, we present the following Theorem based on Egs. (3.24), (3.25) to illustrate the
stability of the difference scheme (2.7).

Theorem 5 Suppose that0 <« < 1, k; j(x,y, ), i, j = 1,2, satisfy condition (1.4),
then the difference scheme (2.7) is unconditionally stable.

Proof Denote ||€"T!|| = |€"H]] = max "1 it follows from
pq

l<i<Mi—11<j<Mp—1 '/
(3.23), (3.24) and (3.25) that

‘(1 +pg) (1+ ipg) 621}1’

= =2 (=)

3 n 1 n—1 3 rn 1 rin—1
o (f (x”’yé?”»w%’ 2Ura 73 ) -/ (xP’WH%’ 2Vra =34 )) ‘

(3.26)
Using the Lipschitz condition (1.5) yiled
)(1 + )‘p,q) (1 + P‘p,q) 6;;1‘
< (1= 2pg) (1= ) €|+ tLiCr e [+ emici |t G2n)
where C is a positive constant. Using Lemma 3, it follows that
n+l‘ - (1=2pq) (1= pyg) & ‘ 4 tLiC & ‘
PETT I H 2pg) (T mpg) [T (T 2pg) (T4 pg) 171
tL1Cy n—l‘
(L4 2pg) (L4 1pg) 171
< e;,q‘ +1LiC e;‘,’q‘ +TLiCylen ! (3.28)
namely,
et el = erc (et + e ) (3.29)
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Summing up for n from 1 to k, we have

k k
i T S IR M L RN
HG ”oo_ € oo+t -1 ; € oo+§ € o0
k
S”GOH +3rL1Clz”el” , (3.30)

applying the Gronwall inequality [12] to above inequality yield

e”“”m < exp3LICT) ”EOHOO. 3.31)

This completes the proof. O

Now, we consider the convergence of the difference scheme (2.7). Let u” and

u be the exact solution and numerical solution of (1.3), respectively. Define el =

n
U — /ande (el1’821""’eM1—1,1’""el,Mz—l’""eMl—l,Mg—l) . From
(2 3) and (2.7), we get

(=18 —70y) (1 — T8y —10y) ¢ 7' = (1 + 18 + 700) (1 + T8, + 70y) €]

. . 3Un 1Un 1 d . X 3 n 1 R
+7 f x,,yj,ln+l,2 11_5 ij _f xl,y,,t“%,iui,j—iul, +7 ij>
(3.32)
e, =0, 1<i<M -1 1=<j<M—1,
eg’j = 0, eﬁo = O, e"M]’j = O, el}:l,Mz = O’ 0 <n< N. (333)

Then, we present the following Theorem based on Egs. (3.24), (3.25) to illustrate the
stability of the difference scheme (2.7).

Theorem 6 Suppose that 0 < o < 1 and t is small enough, k; j(x,y,a), i, j=1,2,
satisfy condition (1.4), then the error of the difference scheme (2.7) satisfy

|¢"|. < CrRT exp3LiCiT) (m‘”+h +h2+r) 0<n<N. (334

where C1 and Cg are positive constants.

Proof Denote ||E" || = |e"+1| = Mmax|<j<m —1,1<j<mr—1 Ie 1|, it follows from
(3.32), (3.24) and (3.25) that

(1 2p0) (14 1) €1

= ‘ (1 - )‘p,q) (1 - “nq) e;l:,q
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18 Y.Wang et al.

3 [ 3 I
o (f (xf“”f”w%* 2Yra = 3ra ) - ("f”y‘f”wé’ 3"pa = 34 >) il

= [(1=2pg) (1= 1p.g)| e;:;‘ trliC eZ,q! +rLhiC eZqu‘ +7 R (3.35)
where R" = (R} |, RS ,....R}y i1 - Ry 1ooo o Ry )" Using
Lemma 3, it follows that

n+1‘ - (1 - )‘p,q) (1 - V“p,q) o ’ tLiC o ‘

pal= (1 + )‘p,q) (1 + Mp,q) e (1 + )‘pyq) (1 + “p,q) e

TL1C n ) T n

+ e + R
(Lt pg) (L+mpg) TP (Lt dpg) (14 1pg) %]
< e’;,q’ ++1LCy e;’q‘ +tLiCy e;fql’ +1 ||R"||OO, (3.36)
namely,

Jer ] =l = zzici (le |+ | ) + e IR - 33D

Summing up for n from 1 to k, and notice ”eo || o= 0, we have

k k k
o = ] e (] e L)+ 2o ]
€ =|e TL1Cy e + e + TR
* o =1 RNt o =1 o
k k
el s ] 42 ¢
o =1 R o

k
=31L,C Z
=1

6‘l

k
Rl” )
OO+;TH N (3.38)

applying the Gronwall inequality [12] to above inequality yield

et H < CrT exp(3L1C1T) (m_v +h b3+ Tz) : (3.39)
[e¢)

This completes the proof. O

4 Numerical examples
In this section, we give three examples to demonstrate the accuracy and efficiency of
the numerical schemes (2.4) and (2.7). All numerical results are carried out by Matlab

R2018a software, and the computation time (CPU) is measured in seconds. The errors
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are given by

Eoo(h1, hy, T) = max ul —u(x;, yi, )l
OO( 1,12, ) 1§[§M1,l§j§M2| i,] ( L )’19 n)|
1<n<N

And in Example 1 and Example 2, the spatial direction and the temporal direction
convergence orders are given by

Ec(h1, ha, T) Ec(h1, ha, T)
order, = log, or order; =logy | ———— | .
EOO(hl/zv h2/2’ T) Eoo(hl,hZ, T/z)

In Examples 1-3, when T = h| = h», the convergence orders are given by

Eco(hy, ha, T)
ordero, = log, .

Ex(h1/2,h2/2,7/2)

Example 1. Consider the model (1.3) with 7 =2, Q = (0, 1) x (0, 1), w(x) =

2cos(5), kn(x,y,0) = ka(x,y, @) = # kia(x, y, ) = kan(x,y,a) =
%, fx,y,t,u)y= f(x,y,1), f(x,y, 1) and ¢(x, y) are determined by the exact
solution u(x, y, 1) = e "x2(1 — x)2y2(1 — y)%.

This is a linear numerical example. The errors and the convergence orders of the
numerical schemes (2.4) and (2.7) in the spatial and temporal directions are shown in
Tables 1 and 2, respectively. As can be seen from Tables 1 and 2 that the convergence
orders are closed to theoretical results. And as can be seen from the numerical results,
numerical scheme (2.7) has a slightly higher error than numerical scheme (2.4), but
the CPU time of numerical scheme (2.7) is lower than that of numerical scheme (2.4),
especially when the number of nodes is larger, which indicates that numerical scheme
(2.7) is more suitable for dealing with large and sparse systems of linear equations.
Figure 1 give the maximum errors of the numerical schemes (2.4) and (2.7) for solving
Example 1 in distributed order. From it, we can observe that the error hardly changes
anymore when the number of quadrature nodes increases to a certain number, this
suggests that errors in the numerical scheme at this point are dominated by errors
in space and time. Therefore, in the calculation process, we compute distribution-
order integral using Gauss—Legendre quadrature rule with m = 4. Table 3 gives the
maximum errors and convergence orders of numerical scheme (2.7) based on different
« when the number of spatial nodes is the same as the number of temporal nodes, in
which case the model (1.3) can be reduced to two-sided space fractional diffusion
equations with variable coefficients [13]. Figures 2 and 3 present the approximation
solution at T = 41—0, m = 4 as can be seen from the Figs. 2 and 3, the numerical
solution is in well accordance with the exact solution, it’s verified the validity of the
two numerical schemes.

Example 2. Consider the model (1.3) with T = 1, Q = (0,1) x (0, 1),

(@) = =20@ = aycos (M5), kii(x v, @) = kai(x, y,0) = kia(r, v, @) =

kp(r.y @) = —— f(ry.tou) = f(x,y.0) + g, f(x,y.t,u) and
2COS((T)
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Table1 The numerical results of numerical scheme (2.4) and numerical scheme (2.7) in the spatial direction
with N = 1000, m = 4

hy =hy The numerical scheme (2.4) The numerical scheme (2.7)

E ordery, CPU E ordery, CPU
11—0 2.3206e—05 - 3.1295 2.3212e—05 - 3.1023
21—0 5.7156e—06 2.0215 13.2993 5.7268e—06 2.0191 10.9897
% 1.4096e—06 2.0196 179.5699 1.4153e—06 2.0166 69.2099
81—0 3.4148e—07 2.0454 >1h 3.4722e—07 2.0272 874.2657
o - - - 8.5267e—08 2.0258 >2h

Table 2 The numerical results of numerical scheme (2.4) and numerical scheme (2.7) in the temporal
direction with M| = M, =100, m = 4

T The numerical scheme (2.4) The numerical scheme (2.7)
E ordery CPU E order CPU
% 2.2500e—05 - 58.2319 3.1152e—05 - 17.8608
2‘—0 5.5509e—06 2.0191 116.7743 7.6905e—06 2.0182 35.0599
% 1.3750e—06 2.0133 233.1773 1.8940e—06 2.0216 70.9473
% 3.4435e—07 1.9975 532.4373 4.6960e—07 2.0119 143.0522
ﬁ - - - 1.3189¢—07 1.8321 286.9074
10

—&— The numerical scheme (2.4)
i —+—— The numerical scheme (2.7)

10

1078 :
10° 10"

Fig. 1 Distributed-order errors of the numerical schemes (2.4) and (2.7) for Example 1
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Table 3 The numerical results of numerical scheme (2.7) for Example 1 with m = 4

T=hy=hp a=03 a=0.5 a=0.8

E orderso E orderso E orderso
% 3.2084e—05 - 3.5139e—05 - 3.2407e—05 -
21—0 7.8786e—06 2.0258 8.6153e—06 2.0281 7.9141e—06 2.0338
% 1.8963e—06 2.0548 2.1145e—06 2.0266 1.9582e—06 2.0149
% 4.9157e—07 1.9477 5.3167e—07 1.9917 4.8990e—07 1.9990
ﬁ 1.5189e—07 1.6944 1.7036e—07 1.6419 1.3189e—07 1.6494

u(x,y,2)

(a) Approximation solution (b) Exact solution

Fig.2 Exact solution and approximation solution of numerical scheme (2.7) for Example 1

x10% x10*

u(x,y,2)
u(x,y,2)

(a) Approximation solution (b) Exact solution

Fig.3 Exact solution and approximation solution of numerical scheme (2.7) for Example 1

@(x, y) are determined by the exact solution u(x, y, 1) = 3x*(1 — x)*y*(1 — y)*.

This example can be reduced to model (1.1) with x(8) = —2I'(§ — B) cos(%).
When g(u#) = 0, this is a linear numerical example. The errors and the convergence
orders of the method in [2] and the numerical scheme (2.7) in the spatial and temporal
directions are shown in Tables 4 and 5, respectively. From Table 4, it can be seen that
when the number of spatial nodes is small, the numerical scheme (2.7) has less error
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Table4 The errors and the convergence orders of Example 2 in the spatial direction with N = 1000, m = 4

hy =hy The method in [2] The numerical scheme (2.7)

E ordery, CPU E ordery, CPU
% 2.0588e—05 - 1 8.3009e—07 - 2.6963
21—0 1.2891e—06 3.9973 4 2.0937e—07 1.9872 8.7535
% 8.0608e—08 3.9993 15 5.2633e—08 1.9920 47.1824
% 5.0386e—09 3.9998 31 1.3059e—08 2.0109 434.2656
ﬁ 3.1460e—10 4.0014 55 3.1036e—09 2.0731 >1h

Table 5 The errors and the convergence orders of Example 2 in the temporal direction with M} = M, =
100, m =4

T The method in [2] The numerical scheme (2.7)

E order; CPU E order; CPU
% 1.8571e—04 - 3 1.9356e—06 - 10.8942
% 5.2127e—05 1.8329 8 5.3777e—-07 1.8477 21.3948
% 1.3143e—05 1.9877 17 1.3243e—07 2.0218 43.6896
81*0 3.2928e—06 1.9969 29 2.7006e—08 2.2939 68.4498
ﬁ 8.2467e—07 1.9974 53 5.2637e—09 2.3591 136.3546

than the method in [2], but when the number of nodes is large, the method in [2] is more
advantageous than the numerical scheme (2.7) and the convergence order is higher
than that of the numerical scheme (2.7). As can be seen from Table 5, the numerical
scheme (2.7) has a lower error than the method in [2], but the CPU time is more than
the method in [2]. When g(u) = —u(l + u), this is a nonlinear numerical example.
And assume T = h; = hp, m = 4 in this example. The errors and the convergence
orders of the numerical scheme (2.4) and the numerical scheme (2.7) are shown in
Table 6. The numerical results show that the convergence order is consistent with the
theoretical value, verifying the accuracy of the numerical scheme. And Fig. 4a gives
the max absolute errors of the numerical schemes (2.4) and (2.7) for different values
of T.

Example 3. Consider the model (1.3) with T = 1.5, Q = (0,1) x (0, 1),

42 —xy2
w@) = 2¢% ki (x,y,0) = 552 ko (x, y, @) = T kp(x, y, ) = B
2
ko(x,y.) = R fGoynu) = gw), gw) = u(l + u), px,y) =

sin(Dx3(1 — x)3y3(1 — y)3.

This is a nonlinear numerical example without exact solution, thus, we take the
approximate solutions with m = 4, N = 1000 and M| = M> = 100 as reference
solutions in this example. And assume 7 = k| = hy, m = 4 in this example. Table
7 give some numerical results when different values of t are taken. From Table 7, it
can be concluded that the convergence orders of both two numerical schemes is close
to 2, and the error of numerical scheme (2.4) is lower than that of numerical scheme

@ Springer



A second-order difference scheme for two-dimensional... 23

Table 6 The numerical results of numerical scheme (2.4) and numerical scheme (2.7) for Example 2

t=hy=hy The numerical scheme (2.4) The numerical scheme (2.7)
E orderso CPU E ordersg CPU
% 7.1119e—07 - 0.0359 1.1755e—06 - 0.0249
21—0 1.8097e—07 1.9745 0.2909 3.3620e—07 1.8059 0.2380
% 4.5778e—08 1.9830 3.7275 8.7050e—08 1.9494 1.8084
% 1.1521e—08 1.9904 107.6790 2.1919e—08 1.9897 30.9019
1

- 5.4843e—09 1.9988 832.9684

5
3
|

Table 7 The numerical results of numerical scheme (2.4) and numerical scheme (2.7) for Example 3

t=hy=hy The numerical scheme (2.4) The numerical scheme (2.7)
E orderso CPU E orderso CPU

% 5.9528e—06 - 0.0520 1.1781e—05 - 0.0326
2—10 1.4523e—06 2.0352 0.3551 2.9456e—06 1.9998 0.2810
4—10 3.6289%¢—-07 2.0004 5.8638 7.4071e—07 1.9916 2.5310
% 9.0869¢—08 1.9980 155.0424 1.8882e—07 1.9719 49.7262
llﬁ - - - 5.5687¢—08 1.7616 1391.6883
10 ° —8— The numerical scheme (2.4) 1074 —H8— The numerical scheme (2.4)

—+— The numerical scheme (2.7) —+— The numerical scheme (2.7)
10 10

i
107 10
108 107
10 . 10® .
107 102 10 107 102 108
(a) Example 2 (b) Example 3

Fig.4 The max absolute errors of the numerical schemes (2.4) and (2.7)

(2.7), which is consistent with the theoretical analysis. Moreover, the CPU time of the
numerical scheme (2.7) is lower than that of the numerical scheme (2.4). Especially
when the number of nodes is large. This indicates that the numerical scheme (2.7) is
better suited to handle large systems of sparse linear equations. Figure4b gives the
max absolute errors of the numerical schemes (2.4) and (2.7) for different values of t.
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5 Conclusion

In this paper, we developed a second order in both space and time numerical scheme
for two-dimensional two-sided space distributed-order fractional diffusion equation
with variable coefficients. In addition, a small perturbation is added to this numerical
scheme to construct an alternating-direction implicit scheme. Subsequently, we proved
that the difference scheme is unconditionally stable and convergent with the accuracy
of O(m™" + h% + h% + 72). Finally, some numerical results are given to show the
stability and convergence of our numerical scheme. And the numerical results indicates
that the numerical scheme (2.7) is better suited to handle large systems of sparse
linear equations. However, the model in this paper is too restrictive on the diffusion
coefficient, and the computational cost of the numerical scheme is too high. In future
work, we will work on developing higher-order numerical methods or developing fast
iterative algorithms to solve models with less restriction on diffusion coefficients.
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