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Abstract
In this manuscript, we introduce the notion of interval-valued picture (S, T )-fuzzy
graphs (IVP-(S, T )-fuzzy graphs) which is the interplay between (S, T )-norms and
picture fuzzy graphs. Interval-valued picture (S, T )-fuzzy graphs (IVP-(S, T )-fuzzy
graphs) is also the extension of the picture fuzzy graphs. Since interval-valued picture
fuzzy sets (IVPFSs) is the most extended form of the fuzzy sets to deal uncertain-
ties, interval-valued picture (S, T )-fuzzy graphs (IVP-(S, T )-fuzzy graphs) would
be more efficient to deal with the problems containing vagueness. For the sake of
investigation, firstly we introduce and apply various operations like union, join, carte-
sian product, direct product, lexicographic product, ring sum, complement etc to
interval-valued picture (S, T )-fuzzy graphs. Then, we study the structural proper-
ties of interval-valued picture (S, T )-fuzzy graphs (IVP-(S, T )-fuzzy graphs) through
homomorphism, co-weak homomorphism, isomorphism etc. Afterwards, we initiate
different types of interval-valued picture (S, T )-fuzzy graphs such as regular, total
regular, constant etc. Moreover, we also explore some relationships among different
types of interval-valued picture (S, T )-fuzzy graphs. Finally, we provide an applica-
tion of interval-valued picture (S, T )-fuzzy graphs (IVP-(S, T )-fuzzy graphs) towards
multiple attribute decision-making (MADM).
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1 Introduction

Fuzzy sets (FSs) was first introduced by Zadeh in [1] which become an efficient tool
to deal the problems containing uncertainties. Corresponding to any non-empty set,
the fuzzy set gives us the degree of membership of an object. Afterwards, numerous
generalized forms of fuzzy sets were introduced in the literature. Zadeh [2] himself
introduced the very first generalization of fuzzy sets named interval-valued fuzzy sets
(IVFSs). In IVFSs, a closed sub-interval of [0, 1] is used to express the membership
degree of an object instead of a number aswas considered in the case of fuzzy sets. Sub-
sequently, Atanassov [3] proposed the term intuitionistic fuzzy sets (IFSs) in which he
introduced two values that are membership and non-membership under the condition
that the sum of both values must belong to a closed unit interval [0, 1]. Furthermore,
he also introduced the notion of interval-valued intuitionistic fuzzy sets (IVIFSs) [4]
in which both the values are the closed sub-intervals of [0, 1]. Following the work of
Zadeh and Atanassov another important generalization of FSs and IFSs named picture
fuzzy sets (PFSs) was introduced by Cuong [5]. He also explored few new operations
and characterizations of PFSs. Actually, PFS is the direct generalization of an IFS
with the addition of another value called “abstinence value”. In a PFS we allocate
three memberships values to an object that are positive, negative and neutral. Bo et al.
[6] defined many operations and relations on PFSs. Cuong et al. [7] added different
types of fuzzy logical operators in the theory of PFSs. The term interval-valued picture
fuzzy sets (IVPFSs) was proposed in [8]. In IVPFSs, all of the three values consist
of the closed sub-intervals of [0, 1]. Like PFS, in IVPFS the sum of the supremum
of all three sub-intervals must lie within [0, 1]. Evidently, IVPFSs are more general-
ized form of the fuzzy sets as compared to the other generalizations of FSs like IFSs,
IVFSs, IVIFSs and PFSs. Recently, W. A. Khan et al. introduced several new relations
on bipolar picture fuzzy sets (BPPFSs) [9]. For more on generalizations of FSs, one
may consult [10–13].

The notions of triangular norms and conorms were first introduced by Schweizer
and Sklar in [14, 15]. These operators are widely used in different fields such as multi-
criteria decision support, fuzzy logics, fuzzy set theory and several fields of information
sciences. For further details about these operators, one may consult [16–19]. Cuong
et al. [7] also studied these operators in the setting of PFSs.

The study of the graph theory based on fuzzy sets become an attractive field for
the researchers due to having many applications in different field of sciences. Firstly,
Rosenfeld introduced the concepts of fuzzy graphs(FGs) [20]. Bhattacharya [21] incor-
porated few new terms in the fuzzy graphs theory. Different new operations were
explored and applied on fuzzy graphs (FGs) in [22]. Complement of fuzzy graphs
(FGs) was investigated in [23]. Subsequently, the extended form of the FGs termed
interval-valued fuzzy graphs (IVFGs) was introduced in [24]. Rashmanlou and Pal
studied some properties of highly irregular interval-valued fuzzy graphs in [25]. Intu-
itionistic fuzzy graphs (IFGs) were explored in [26].Many operations were introduced
and applied to IFGs in [27]. The concepts of the complex intuitionistic fuzzy graphs
along with its applications towards networking were discussed in [28]. Ring sum in
product intuitionistic fuzzy graphs was discussed in [29] by Borzooei and Rashman-
lou. Borzooei et al. [30] introduced the notion of t-fuzzy graphs(t-FGs). The notion
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of interval-valued intuitionistic (S, T )-fuzzy graphs (IVI-(S, T )-fuzzy graphs) was
introduced in [31, 32]. Recently, Zuo et al. [33] introduced the term picture fuzzy
graphs(PFGs). They also introduced some operations on PFGs and explored some
applications of PFGs in social networking. Consequently, the notion of picture fuzzy
multi-graph (PFMG)was explored in [34].Muhiuddin et al. [35] introduced the notion
of cubic graphs along with application. Poulik and Ghorai solved some real world
problems using generalizations of FGs in [36, 37]. Moreover, Poulik [38] introduced
Randic index for bipolar fuzzy graphs along with application. Further extended form
of the PFGs termed regular picture fuzzy graphs (RPFGs) along with its applications
in networking was discussed in [39]. Koczy et al. [40] further added some new terms in
PFGs. They also provided evidences that the PFGs are more effective than the FGs and
IFGs. Recently, the concepts of balanced picture fuzzy graphs (balanced PFGs) [41]
has also been added in the literature. Amanathulla et al. [42] discussed the application
of PFGs in MADM problem. Recently, Khan et al. introduced the notion of bipolar
picture fuzzy graphs along with its application towards social networking [43] and
the notion of Cayley picture fuzzy graphs along with its application in interconnected
networks [44]. For more on fuzzy graphs theory, one may consult [21–23, 45–48].

Currently, many researchers studied different problems containing uncertainties
through FGs and its generalizations. In our study, we focus to deal with such problems
in the picture fuzzy environment with (S, T )-norms. Since IVPFSs is the most gener-
alized form of FSs inwhichwe consider themembership, neutral and non-membership
degrees on the interval [0, 1]. Therefore, our newly established structure termed IVP-
(S, T )-fuzzy graphs would be more useful as compared to the other generalizations
of FGs to deal with uncertain real world problems.
We describe the motivations, limitations and novelty of our work as follows.

1. The generalization of FGs termed t-FGs and the generalization of IFGs named
IVI-(S, T )-fuzzy graphs motivated us to introduce the notion of IVP-(S, T )-fuzzy
graphs which is the generalization of PFGs.

2. Our proposed structure can be applied in such circumstances where the traditional
FGs and its other generalizations fail. In such cases the notion of IVP-(S, T )-
fuzzy graphs can be used by choosing the most suitable types of (S, T )-norms
according to the situations. Moreover, some other norms such as Dombi (S, T )-
norms, Hamacher (S, T )-norms, Einstein (S, T )-norms, Yager (S, T )-norms,
Frank (S, T )-norms etc can be adjusted in the setting of IVP-(S, T )-fuzzy graphs.

3. Since interval-valued picture fuzzy sets (IVPFSs) is the most extended form of
the FSs to deal with the problems containing uncertainties, interval-valued picture
(S, T )-fuzzy graphs (IVP-(S, T )-fuzzy graphs) would be more efficient to deal
such problems.

4. The domain of IVP-(S, T )-fuzzy graphs is very vast, we can twist it towards FGs,
IVFGs, t-FGs, IFGs, IVI-(S, T )-fuzzy graphs and PFGs by assigning different
memberships values. Thus the qualitative characteristics of FGs, IVFGs, t-FGs,
IFGs, IVI-(S, T )-fuzzy graphs, PFGs are combined in a single IVP-(S, T )-fuzzy
graphs.

5. We present the most useful method along with an efficient algorithm to solve the
problems occurring in MADM through IVP-(S, T )-fuzzy graphs. In this regard,
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we provide a numerical example as an evidence which reflects that IVP-(S, T )-
fuzzy graphs is more efficient and is easy to apply.

This paper consists of five sections. In Sect. 2, we provide the necessary definitions and
terminologies which are useful in understanding the forthcoming sections. In Sect. 3,
we initiate the notion of interval-valued picture (S, T )-fuzzy graphs (IVP-(S, T )-
fuzzy graphs) followed by various operations like union, join, ring sum, complement,
cartesian product, direct product, lexicographic product etc to interval-valued picture
(S, T )-fuzzy graphs. Homomorphism and co-weak homomorphism of IVP-(S, T )-
fuzzy graphs are also discussed. Different types of IVP-(S, T )-fuzzy graphs such
as regular, total regular and constant IVP-(S, T )-fuzzy graphs are also introduced.
In Sect. 4, we provide the application of IVP-(S, T )-fuzzy graphs towards multi-
attribute decision making theory. We also provide a numerical example and algorithm
for convincing the practicality of our theoretical structure. In Sect. 5, we highlight the
worth, limitations and possible extensions of the work presented in this study.

2 Preliminaries

An interval number denoted by σ is an interval expressed as σ = [σ−, σ+], with
0 ≤ σ− ≤ σ+ ≤ σ and D[0, 1] is the collection of all interval-numbers. The interval
[σ, σ ] is identified with the numbers σ ∈ [0, 1].
Now for any collection of interval numbers say σ̃i = [σ−

i , σ+
i ] ∈ D[0, 1] and i ∈ I ,

their supremum and infimum are

I n f (σ̃i ) =
[∧
i∈I

σ−,
∧
i∈I

σ+
]

and

Sup(σ̃i ) =
[∨
i∈I

σ−,
∨
i∈I

σ+
]

.

Moreover, for any two interval numbers σ̃1, σ̃2 ∈ D[0, 1], we have
(i) σ̃1 ≤ σ̃2 iff σ−

1 ≤ σ−
2 and σ+

1 ≤ σ+
2

(i i) σ̃1 = σ̃2 iff σ−
1 = σ−

2 and σ+
1 = σ+

2
(i i i) σ̃1 < σ̃2 iff σ̃1 ≤ σ̃2 and σ̃1 �= σ̃2
(iv) kσ̃ = [kσ−, kσ+] where k ∈ [0, 1].
Here, (D[0, 1],≤,∨,∧) is a complete lattice with 0 = [0, 0] and 1 = [1, 1] are
the smallest and largest element, respectively. Similarly, an interval number fuzzy set
(i.e., F on X) is the set F = {(s, [μF−(s), μF+(s)]) : s ∈ X}, where μF− and μF+
are two fuzzy subsets of s such that μF− ≤ μF+ , for all s ∈ X . By stating μF =
[μF−(s), μF+(s)] we see that F = {(s, μF ) : s ∈ X}, where μF (s) : S → D[0, 1].
Definition 1 [49] A t-norm (s-norm) is the function λ : [0, 1] × [0, 1] → [0, 1]
satisfying
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1. λ(s, 1) = s (λ(s, 0) = s)
2. (λ(s, t) = (λ(t, s))
3. (λ(λ(s, t), u) = (λ(s, (λ(t, u))

4. λ(s, u) ≤ λ(s, w) where u ≤ w

for all s, t, u, w ∈ [0, 1].
If for all σ ∈ [0, 1] we have λ(σ, σ ) = σ , then λ is an idempotent t-norm (resp.,

s-norm). For idempotent t-norm (resp., s-norm) λ is the map λ : D[0, 1]×D[0, 1] →
D[0, 1] defined by λ(σ̃1, σ̃2) = [λ(σ−

1 , σ−
2 ), λ(σ+

1 , σ+
2 )] is also idempotent and is

said to be an idempotent interval t-norm (resp., s-norm).

Definition 2 [1] A FS P̄ in T is the set P̄ = {p, ξP̄ (p) : p ∈ T }, where ξP̄ (p) : T →
[0, 1] denotes the membership degree of p to FS P̄ .

Definition 3 [2] An IVFS P̄ in T can represented as P̄ = {p, ξP̄ (p) : p ∈ T }, where
ξP̄ (p) : T → P([0, 1]) is a closed interval in [0, 1]. ξP̄ (p) is sub-interval of [0, 1]
and represents the membership degree of p.

Definition 4 [3] An IFS P̄ in T is the collection P̄ = {p, ξP̄ (p), ψP̄ (p) : p ∈ T },
where ξP̄ (p) : T → [0, 1] andψP̄ (p) : T → [0, 1] represents themembership degree
and non-membership degree of p, respectively such that 0 ≤ ξP̄ (p) + ψP̄ (p) ≤ 1 for
all p ∈ T .

Definition 5 [4] An IVIFS on a non-empty set T is defined by Atanassov in the form
of

P̄ = {(p, M̃P̄ (p), ÑP̄ (p) : p ∈ T }

where M̃P̄ (p), ÑP̄ (p) are IVFSs on T such that

0 ≤ SupM̃P̄ (p) + SupÑP̄ (p) ≤ 1

IVIFSs are represented by P̄ = (M̃P̄ (p), ÑP̄ (p)).

Definition 6 [5] A PFS P̄ in T can be described as P̄ = {p, ξP̄ (p), ψP̄ (p), ζP̄ (p) :
p ∈ T }, where ξP̄ (p) : T → [0, 1], ψP̄ (p) : T → [0, 1] and ζP̄ (p) : T → [0, 1]
represents the membership, neutral membership and non- membership degree of p,
respectively with ξP̄ (p), ψP̄ (p), ζP̄ (p) ≤ 1, for all p ∈ T

Definition 7 [50] An IVPFS on a non-empty set T is defined as

P̄ = {(p, M̃P̄ (p), ÑP̄ (p), ÕP̄ (p) : p ∈ T }

where M̃P̄ (p), ÑP̄ (p) and ÕP̄ (p) are IVFSs (i .e., M̃P̄ (p) : T → D[0, 1], ÑP̄ (p) :
T → D[0, 1] and ÕP̄ (p) : T → D[0, 1]) on T such that

0 ≤ SupM̃P̄ (p) + SupÑP̄ (p) + SupÕP̄ (p) ≤ 1

IVPFSs is represented by P̄ = (M̃P̄ (p), ÑP̄ (p), ÕP̄ (p)).
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Definition 8 [51] The score function for any interval-valued picture fuzzy number
α = {[pl , pu], [ql , qu], [rl , ru] : 0 ≤ pu + qu + ru ≤ 1} is defined as

scor(α) = pl − ql − rl + pu − qu − ru

3

Definition 9 [33]AFGG for any non-empty set V of vertices is given byG = (V , E),

where V is fuzzy subset of V and E is a fuzzy relation (symmetric) on V , i.e., V :
V → [0, 1] and E : V ×V → [0, 1]with E(p, q) = (V (p)∩V (q)), for all p, q ∈ E .

Definition 10 [24]An IVFGon agraphG∗ = (V̄ , Ē) can be described asG = (V , E),
where V = [p−

V , p+
V ] is IVFS on V̄ and E = [p−

E , p+
E ] is IVFS on Ē .

Definition 11 [52] An IFG on any graph G∗ = (V̄ , Ē) is G = (V , E), where V =
(ψV , φV ) is a IFS on V̄ and E = (ψE , φE ) is an IFS on Ē = V̄ × V̄ with jk ∈ Ē

ψE ( j, k) ≤ min(ψV ( j), ψV (k))

φE ( j, k) ≤ max(φV ( j), φV (k))

Definition 12 [31] An interval-valued intuitionistic (S, T )-fuzzy graph on G∗ =
(V̄ , Ē) is an ordered pair (V , E), where V = (M̃V , ÑV ) is an IVIFS on V̄ and
E = (P̃E , Q̃E ) is an IVIFS on Ē such that for all j, k ∈ V̄ , we have

P̃E { j, k} ≤ T {M̃V ( j), M̃V (k)}
Q̃E { j, k} ≥ S{ÑV ( j), ÑV (k)}

Definition 13 [33] A PFG on any graph G∗ = (V̄ , Ē) is given by G = (V , E), where
V = (ψV , φV , ϕV ) is a PFS on V̄ and E = (ψE , φE , ϕE ) is a PFS on Ē = V̄ × V̄
such that for each jk ∈ Ē

ψE ( j, k) ≤ min(ψV ( j), ψV (k))

φE ( j, k) ≤ min(φV ( j), φV (k))

ϕE ( j, k) ≥ max(ϕV ( j), ϕV (k))

.

3 Interval-valued picture (S, T)-fuzzy graphs(IVP-(S, T)-fuzzy graphs)

In this section, we initiate the concepts of IVP-(S, T )-fuzzy graphs. Throughout, we
use the norms T (x, y) = (x1 ∧ y1, x2 ∨ y2) and S(x, y) = (x1 ∨ y1, x2 ∧ y2), unless
otherwise we specify.

Definition 14 An IVP-(S, T )-fuzzy graph on V is an ordered pair (A, B), where A =
(M̃A, ÑA, ÕA) is an IVPFS on V and B = (P̃B, Q̃B, R̃B) is an IVPFS on E such that
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for all m, n ∈ V , we have

P̃B{m, n} ≤ T {M̃A(m), M̃A(n)}
Q̃B{m, n} ≤ T {ÑA(m), ÑA(n)}
R̃B{m, n} ≥ S{ÕA(m), ÕA(n)}.

Example 1 Let G∗ = (V , E), where V = {u, v} and E = {uv}. Then the graph
G = (A, B) defined on G∗ shown in Fig. 1 can be described as

A =
〈
V ,

(
u

[0.4, 0.4] ,
v

[0.2, 0.4] ), (
u

[0.2, 0.4] ,
v

[0.3, 0.4]
)

,

(
u

[0.1, 0.2] ,
v

[0.3, 0.3]
)〉

B =
〈
E,

(
uv

[0.3, 0.4]
)

,

(
uv

[0.3, 0.3] ), (
uv

[0.1, 0.3]
)〉

Clearly, A and B are interval-valued picture fuzzy subsets of V and E = V × V ,
respectively. By using the norms T (x, y) = (x1 ∧ y1, x2 ∨ y2) and S(x, y) = (x1 ∨
y1, x2 ∧ y2), we have

P̃B{m, n} ≤ T {M̃A(m), M̃A(n)}
[0.3, 0.4] ≤ T ([0.4, 0.4], [0.2, 0.4])
[0.3, 0.4] ≤ [0.2, 0.4]
Q̃B{m, n} ≤ T {ÑA(m), ÑA(n)}
[0.3, 0.3] ≤ T ([0.2, 0.4], [0.3, 0.4])
[0.3, 0.4] ≤ [0.2, 0.4]

and

R̃B{m, n} ≥ S{ÕA(m), ÕA(n)}
[0.1, 0.3] ≥ S([0.1, 0.3], [0.3, 0.3])
[0.3, 0.3] ≥ [0.3, 0.3].

Hence the graph in Fig. 1 is an IVP-(S, T )-fuzzy graph.

Definition 15 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be the underlying graphs of
two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then

Fig. 1 IVP-(S, T )-fuzzy graph
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their union G1 ∪ G2 is the ordered pair (A, B), where A = (M̃A, ÑA, ÕA) and
B = (P̃B, Q̃B, R̃B) are IVPFSs on V = V1 ∪ V2 and E = E1 ∪ E2, respectively with

1. M̃A(s) = ˜MA1(s), if s ∈ V1 and s /∈ V2 M̃A(s) = ˜MA2(s), if s ∈ V2 and s /∈ V1
and M̃A(s) = S(˜MA1(s),˜MA2(s)), if s ∈ V1 ∩ V2

2. ÑA(s) = ˜NA1(s), if s ∈ V1 and s /∈ V2 ÑA(s) = ˜NA2(s), if s ∈ V2 and s /∈ V1
and ÑA(s) = S(˜NA1(s),˜NA2(s)), if s ∈ V1 ∩ V2

3. ÕA(s) = ˜OA1(s), if s ∈ V1 and s /∈ V2 ÕA(s) = ˜OA2(s), if s ∈ V2 and s /∈ V1
and ÕA(s) = T (˜OA1(s),˜OA2(s)), if s ∈ V1 ∩ V2

4. P̃B(st) = P̃B1(st), if st ∈ E1 and st /∈ E2 P̃B(st) = P̃B2(st), if st ∈ E2 and
st /∈ E1 P̃B(st) = S(P̃B1(st), P̃B2(st)), if st ∈ E1 ∩ E2

5. Q̃B(st) = ˜QB1(st), if st ∈ E1 and st /∈ E2 Q̃B(st) = ˜QB2(st), if st ∈ E2 and

st /∈ E1 Q̃B(st) = S(˜QB1(st),˜QB2(st)), if st ∈ E1 ∩ E2

6. R̃B(st) = ˜RB1(st), if st ∈ E1 and st /∈ E2 R̃B(st) = ˜RB2(st), if st ∈ E2 and

st /∈ E1 R̃B(st) = T (˜RB1(st), P̃B2(st)), if st ∈ E1 ∩ E2.

Proposition 1 The union of two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 =
(A2, B2) defined on G∗

1 = (V1, E1) and G∗
2 = (V2, E2) is an IVP-(S, T )-fuzzy graph.

Proof Let st ∈ E1 ∩ E2. Then we have

(P̃B1 ∪ P̃B2)(st) = S(P̃B1(st), P̃B2(st))

≤ S(T (˜MA1(s),˜MA1(t)), T (˜MA2(s),˜MA2(t))

= T (S(˜MA1(s),˜MA2(s)), S(˜MA2(t),˜MA2(t))

= T ((˜MA1 ∪ ˜MA2)(s), (˜MA1 ∪ ˜MA2)(t))

(˜QB1 ∪ ˜QB2)(st) = S(˜QB1(st),˜QB2(st))

≤ S(T (˜NA1(s),˜NA1(t)), T (˜NA2(s),˜NA2(t))

= T (S(˜NA1(s),˜NA2(s)), S(˜NA2(t),˜NA2(t))

= T ((˜NA1 ∪˜NA2)(s), (˜NA1 ∪˜NA2)(t))

(˜RB1 ∪˜RB2)(st) = T (˜RB1(st),˜RB2(st))

≥ T (S(˜OA1(s),˜OA1(t)), S(˜OA2(s),˜OA2(t))

= S(T (˜OA1(s),˜OA2(s)), T (˜OA2(t),˜OA2(t))

= S((˜OA1 ∪˜OA2)(s), (˜OA1 ∪˜OA2)(t)).

Similarly, if st ∈ E1 and st /∈ E2 or st ∈ E2 and st /∈ E1, then

(P̃B1 ∪ P̃B2)(st) ≤ T ((˜MA1 ∪ ˜MA2)(s), (˜MA1 ∪ ˜MA2)(t))

(˜QB1 ∪ ˜QB2)(st) ≤ T ((˜NA1 ∪˜NA2)(s), (˜NA1 ∪˜NA2)(t))
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and

(˜RB1 ∪˜RB2)(st) ≥ T ((˜OA1 ∪˜OA2)(s), (˜OA1 ∪˜OA2)(t))

. �

Definition 16 The join of the two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 =
(A2, B2) over G∗

1 = (V1, E1) and G∗
2 = (V2, E2) is represented by G1 + G2 is the

ordered pair (A, B), where A = (M̃A, ÑA, ÕA) and B = (P̃B, Q̃B, R̃B) are IVPFSs
on V = V1 ∪ V2 and E = E1 ∪ E2 ∪ E ′ (where E ′ consists of all the edges of V1 and
V2), respectively satisfying

1. M̃A(s) = ˜MA1(s), if s ∈ V1 and s /∈ V2
M̃A(s) = ˜MA2(s), if s ∈ V2 and s /∈ V1
and M̃A(s) = S(˜MA1(s),˜MA2(s)), if s ∈ V1 ∩ V2

2. ÑA(s) = ˜NA1(s), if s ∈ V1 and s /∈ V2
ÑA(s) = ˜NA2(s), if s ∈ V2 and s /∈ V1
and ÑA(s) = S(˜NA1(s),˜NA2(s)), if s ∈ V1 ∩ V2

3. ÕA(s) = ˜OA1(s), if s ∈ V1 and s /∈ V2
ÕA(s) = ˜OA2(s), if s ∈ V2 and s /∈ V1
and ÕA(s) = T (˜OA1(s),˜OA2(s)), if s ∈ V1 ∩ V2

4. P̃B(st) = P̃B1(st), if st ∈ E1 and st /∈ E2
P̃B(st) = P̃B2(st), if st ∈ E2 and st /∈ E1
P̃B(st) = S(P̃B1(st), P̃B2(st)), if st ∈ E1 ∩ E2

5. Q̃B(st) = ˜QB1(st), if st ∈ E1 and st /∈ E2

Q̃B(st) = ˜QB2(st), if st ∈ E2 and st /∈ E1

Q̃B(st) = S(˜QB1(st),˜QB2(st)), if st ∈ E1 ∩ E2

6. R̃B(st) =˜RB1(st), if st ∈ E1 and st /∈ E2

R̃B(st) =˜RB2(st), if st ∈ E2 and st /∈ E1

R̃B(st) = T (˜RB1(st), P̃B2(st)), if st ∈ E1 ∩ E2

7. P̃B(st) = T (˜MA1(st),˜MA2(st))

P̃B(st) = T (˜NA1(st),˜NA2(st))

P̃B(st) = S(˜OA1(st),˜OA2(st)), if st ∈ E ′.

Remark 1 If G1 and G2 are two IVP-(S, T )-fuzzy graphs, then G1 + G2 is also an
IVP-(S, T )-fuzzy graph.

Definition 17 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be the underlying graphs of
two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then
their ring sum G1 ⊕ G2 is the ordered pair (A, B), where A = (M̃A, ÑA, ÕA) and
B = (P̃B, Q̃B, R̃B) are IVPFSs on V = V1 ∪ V2 and E = E1 ∪ E2, respectively with

1. M̃A(s) = ˜MA1(s), if s ∈ V1 and s /∈ V2
M̃A(s) = ˜MA2(s), if s ∈ V2 and s /∈ V1
and M̃A(s) = S(˜MA1(s),˜MA2(s)), if s ∈ V1 ∩ V2
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2. ÑA(s) = ˜NA1(s), if s ∈ V1 and s /∈ V2
ÑA(s) = ˜NA2(s), if s ∈ V2 and s /∈ V1
and ÑA(s) = S(˜NA1(s),˜NA2(s)), if s ∈ V1 ∩ V2

3. ÕA(s) = ˜OA1(s), if s ∈ V1 and s /∈ V2
ÕA(s) = ˜OA2(s), if s ∈ V2 and s /∈ V1
and ÕA(s) = T (˜OA1(s),˜OA2(s)), if s ∈ V1 ∩ V2

4. P̃B(st) = P̃B1(st), if st ∈ E1 and st /∈ E2
P̃B(st) = P̃B2(st), if st ∈ E2 and st /∈ E1
P̃B(st) = 0, if st ∈ E1 ∩ E2

5. Q̃B(st) = ˜QB1(st), if st ∈ E1 and st /∈ E2

Q̃B(st) = ˜QB2(st), if st ∈ E2 and st /∈ E1
Q̃B(st) = 0, if st ∈ E1 ∩ E2

6. R̃B(st) =˜RB1(st), if st ∈ E1 and st /∈ E2

R̃B(st) =˜RB2(st), if st ∈ E2 and st /∈ E1
R̃B(st) = 0, if st ∈ E1 ∩ E2.

Remark 2 If G1 and G2 are two IVP-(S, T )-fuzzy graphs, then G1 ⊕ G2 is also an
IVP-(S, T )-fuzzy graph.

Definition 18 Let G = (A, B) be an IVP-(S, T )-fuzzy graph, where A =
(M̃A, ÑA, ÕA) = ([M−

A , M+
A ], [N−

A , N+
A ], [O−

A , O+
A ]) is an IVPFS on V and B =

(P̃B, Q̃B, R̃B) = ([P−
B , P+

B ], [Q−
B , Q+

B ], [Q−
B , Q+

B ]) is an IVPFS on E . Then the
complement of G is Ḡ = ( Ā, B̄), where Ā = A and for B̄ we have

P̄−
B (m, n) = 0, if P−

B ≥ 0 and P−
B (m, n) = min (M−

A (m), M−
A (n)), otherwise

P̄+
B (m, n) = 0, if P+

B ≥ 0 and P+
B (m, n) = min (M+

A (m), M+
A (n)), otherwise

Q̄−
B (m, n) = 0, if Q−

B ≥ 0 and Q−
B (m, n) = min (N−

A (m), N−
A (n)), otherwise

Q̄+
B (m, n) = 0, if Q+

B ≥ 0 and Q+
B (m, n) = min (N+

A (m), N+
A (n)), otherwise

R̄−
B (m, n) = 0, if R−

B ≥ 0 and R−
B (m, n) = min (O−

A (m), O−
A (n)), otherwise

R̄+
B (m, n) = 0, if R+

B ≥ 0 and R+
B (m, n) = min (O+

A (m), O+
A (n)), otherwise

for all m, n ∈ V .

Example 2 Let G∗ = (V , E), where V = {u, v, w, x} and E = {uv, vw, uw,wx}.
An IVP-(S, T )-fuzzy graph G = (A, B) defined on G∗ shown in Fig. 2 is described
as

A =
〈
V ,

(
u

[0.3, 0.5] ,
v

[0.1, 0.4] ,
w

[0.2, 0.3] ,
x

[0.2, 0.4]
)

,(
u

[0.4, 0.6] ,
v

[0.4, 0.7] ,
w

[0.2, 0.4] ,
x

[0.3, 0.5]
)

,(
u

[0.1, 0.3] ,
v

[0.3, 0.2] ,
w

[0.3, 0.5] ,
x

[0.2, 0.3]
)〉

B =
〈
E,

(
uv

[0.3, 0.4] ,
vw

[0.2, 0.4] ,
uw

[0.3, 0.4] ,
wx

[0.2, 0.3]
)

,
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Fig. 2 IVP-(S, T )-fuzzy graph

Fig. 3 Complement of IVP-(S, T )-fuzzy graph
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(
uv

[0.4, 0.4] ,
vw

[0.3, 0.5] ,
uw

[0.4, 0.6] ,
wx

[0.2, 0.2]
)

,(
uv

[0.1, 0.3] ,
vw

[0.2, 0.7] ,
uw

[0.1, 0.2] ,
wx

[0.1, 0.6]
)〉

The complement of G denoted by Ḡ = ( Ā, B̄) is shown in Fig. 3 and is verified as

Ā =
〈
V ,

(
u

[0.3, 0.5] ,
v

[0.1, 0.4] ,
w

[0.2, 0.3] ,
x

[0.2, 0.4]
)

,(
u

[0.4, 0.6] ,
v

[0.4, 0.7] ,
w

[0.2, 0.4] ,
x

[0.3, 0.5]
)

,(
u

[0.1, 0.3] ,
v

[0.3, 0.2] ,
w

[0.3, 0.5] ,
x

[0.2, 0.3]
)〉

B̄ =
〈
E,

(
ux

[0.2, 0.4] ,
vx

[0.1, 0.4]
)

,(
ux

[0.3, 0.5] ,
vx

[0.3, 0.5]
)

,

(
ux

[0.1, 0.3] ,
vx

[0.2, 0.2]
)〉

Clearly, Ḡ is an IVP-(S, T )-fuzzy graph.

Theorem 1 The complement of an IVP-(S, T )-fuzzy graph is an IVP-(S, T )-fuzzy
graph.

Proof Straightforward. �

Definition 19 Let G∗

1 = (V1, E1) and G∗
2 = (V2, E2) be the underlying graphs of

two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then
their cartesian product G1×G2 is the ordered pair (A, B), where A = (M̃A, ÑA, ÕA)

and B = (P̃B, Q̃B, R̃B) are IVPFSs in V = V1 × V2 and E = {(s, s2)(s, t2) :
s ∈ V1, s2t2 ∈ E2} ∪ {(s1, s2)(t1, t2) : s ∈ V1, s1t1 ∈ E1, s2t2 ∈ E2}, respectively
satisfying

1.

M̃A(s1, s2) = T (M̃A(s1), M̃A(s2)), ÑA(s1, s2)

= T (ÑA(s1), ÑA(s2),˜OA(s1, s2)

= S(ÑA(s1), ÑA(s2)

for all (s1, s2) ∈ V1 × V2
2.

P̃B((s, s2), (s, t2)) = T (˜MA1(s), P̃B2(s2t2))

Q̃B((s, s2), (s, t2)) = T (˜MA1(s),˜QB2(s2t2))
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and

R̃B((s, s2), (s, t2)) = S(˜MA1(s),˜RB2(s2t2))

where s ∈ V1, s2t2 ∈ E2
3.

P̃B((s1, u), (t1, u)) = T (P̃B1(s1t1),˜PA2(u))

Q̃B((s1, u), (t1, u)) = T (˜QB1(s1t1),˜QA2(u))

and

R̃B((s1, u), (t1, u)) = S(˜RB1(s1t1),˜RA2(u))

where u ∈ V2, s1t1 ∈ E1.

Remark 3 If G1 and G2 are two IVP-(S, T )-fuzzy graphs, then G1 × G2 is also an
IVP-(S, T )-fuzzy graph.

Definition 20 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be the underlying graphs of two
IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then their
direct product G1 ∗ G2 is the ordered pair (A, B), where A = (M̃A, ÑA, ÕA) and
B = (P̃B, Q̃B, R̃B) are IVPFSs on V = V1 ∪ V2 and E = {(s1, s2)(t1, t2) : s1, t1 ∈
E1, s2t2 ∈ E2}, respectively satisfying

1. M̃A(s1, s2) = T (M̃A(s1), M̃A(s2))
ÑA(s1, s2) = T (ÑA(s1), ÑA(s2))
ÕA(s1, s2) = S(ÕA(s1), ÕA(s2))
where (s1, s2) ∈ V1 × V2

2. P̃B((s1, s2), (t1, t2)) = T (P̃B1(s1t1), P̃B2(s2t2))

Q̃B((s1, s2), (t1, t2)) = T (˜QB1(s1t1),˜QB2(s2t2))

R̃B((s1, s2), (t1, t2)) = S(˜RB1(s1t1),˜RB2(s2t2))
where s1t1 ∈ E1 and s2t2 ∈ E2.

Proposition 2 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be the underlying graphs of
two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively., then
G1 ∗ G2 is also an IVP-(S, T )-fuzzy graph.

Proof Let s1t1 ∈ E1 and s2t2 ∈ E2. Then, we have

(P̃B1 ∗ P̃B2)((s1, s2), (t1, t2)) = T (P̃B1(s1t1), P̃B2(s2t2))

≤ T (T (˜MA1(s1),˜MA1(t1)), T (˜MA2(s2),˜MA2(t2))

= T (T (˜MA1(s1),˜MA2(s2)), T (˜MA1(t1),˜MA2(t2))

= T ((˜MA1 × ˜MA2)(s1, s2), (˜MA1 × ˜MA2)(t1, t2))

(˜QB1 ∗ ˜QB2)((s1, s2), (t1, t2)) = T (˜QB1(s1t1),˜QB2(s2t2))
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≤ T (T (˜NA1(s1),˜NA1(t1)), T (˜NA2(s2),˜NA2(t2))

= T (T (˜NA1(s1),˜NA2(s2)), T (˜NA1(t1),˜NA2(t2))

= T ((˜NA1 ×˜NA2)(s1, s2), (˜NA1 ×˜NA2)(t1, t2))

(˜RB1 ∗˜RB2)((s1, s2), (t1, t2)) = S(˜RB1(s1t1),˜RB2(s2t2))

≥ S(S(˜OA1(s1),˜OA1(t1)), S(˜OA2(s2),˜OA2(t2))

= S(S(˜OA1(s1),˜OA2(s2)), S(˜OA1(t1),˜OA2(t2))

= S((˜OA1 ×˜OA2)(s1, s2), (˜OA1 ×˜OA2)(t1, t2)).

This completes the proof. �

Definition 21 Let G∗

1 = (V1, E1) and G∗
2 = (V2, E2) be the underlying graphs of two

IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then their
lexicographic product G1 · G2 is the ordered pair (A, B), where A = (M̃A, ÑA, ÕA)

and B = (P̃B, Q̃B, R̃B) are IVPFs on V = V1 × V2 and E = {(s1, s2)(t1, t2) : s ∈
V1, s2t2 ∈ E2} ∪ {(s1, s2)(t1, t2) : s1, t1 ∈ E1, s2t2 ∈ E2}, respectively satisfying

1. M̃A(s1, s2) = T (˜MA1(s1),˜MA2(s2))

ÑA(s1, s2) = T (˜NA1(s1),˜NA2(s2))

ÕA(s1, s2) = S(˜OA1(s1),˜OA2(s2))
where (s1, s2) ∈ V1 × V2

2. P̃B((s, s2), (s, t2)) = T (˜MA1(s1), P̃B2(s2t2))

Q̃B((s, s2), (s, t2)) = T (˜NA1(s1),˜QB2(s2t2))

R̃B((s, s2), (s, t2)) = S(˜RA1(s1),˜RB2(s2t2))
where s ∈ V1, s2t2 ∈ E2

3. P̃B((s1, s2), (t1, t2)) = T (P̃B1(s1t1), P̃B2(s2t2))

Q̃B((s1, s2), (t1, t2)) = T (˜QB1(s1t1),˜QB2(s2t2))

R̃B((s1, s2), (t1, t2)) = S(˜RB1(s1t1),˜RB2(s2t2))
where s1t1 ∈ E1, s2t2 ∈ E2.

Proposition 3 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be the underlying graphs of
two IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then
G1 · G2 is also an IVP-(S, T )-fuzzy graph.

Proof Let s ∈ V1, s2t2 ∈ E2. Then, we have

(P̃B1 · P̃B2)((s, s2), (s, t2)) = T (˜MA1(s), P̃B2(s2t2))

≤ T (˜MA1(s), T (T (˜MA2(s2), T (˜MA2(t2))

= T (T (˜MA1(s),˜MA2(s2)), T (˜MA1(s),˜MA2(t2)))

= T ((˜MA1,
˜MA2)(s, s2), (˜MA1 ,

˜MA2)(s, t2))

(˜QB1 · ˜QB2)((s, s2), (s, t2)) = T (˜NA1(s),˜QB2(s2t2))

≤ T (˜NA1(s), T (T (˜NA2(s2), T (˜NA2(t2))
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= T (T (˜NA1(s),˜NA2(s2)), T (˜NA1(s),˜NA2(t2)))

= T ((˜NA1 ,
˜NA2)(s, s2), (˜NA1 ,

˜NA2)(s, t2))

(˜RB1 ·˜RB2)((s, s2), (s, t2)) = S(˜OA1(s),˜RB2(s2t2))

≥ S(˜OA1(s), S(S(˜OA2(s2), S(˜OA2(t2))

= S(S(˜OA1(s),˜OA2(s2)), S(˜OA1(s),˜OA2(t2)))

= S((˜OA1 ,
˜OA2)(s, s2), (˜OA1 ,

˜OA2)(s, t2)).

If s1t1 ∈ E1, s2t2 ∈ E2, then we have

(P̃B1 · P̃B2)((s1, s2), (t1, t2)) = T (P̃B1(s1t1), P̃B2(s2t2))

≤ T (T (˜MA1(s1),˜MA1(t1)), T (˜MA2(s2),˜MA2(t2)))

= T (T (˜MA1(s1),˜MA1(s2)), T (˜MA2(s2),˜MA2(t2)))

= T ((˜MA1 ,
˜MA2)(s1, s2), (˜MA2 ,

˜MA2)(t1, t2))

(˜QB1 · ˜QB2)((s1, s2), (t1, t2)) = T (˜QB1(s1t1),˜QB2(s2t2))

≤ T (T (˜NA1(s1),˜NA1(t1)), T (˜NA2(s2),˜NA2(t2)))

= T (T (˜NA1(s1),˜NA1(s2)), T (˜NA2(s2),˜NA2(t2)))

= T ((˜NA1 ,
˜NA2)(s1, s2), (˜NA2 ,

˜NA2)(t1, t2))

(˜RB1 ·˜RB2)((s1, s2), (t1, t2)) = S(˜RB1(s1t1),˜RB2(s2t2))

≥ S(S(˜OA1(s1),˜OA1(t1)), S(˜OA2(s2),˜OA2(t2)))

= S(S(˜OA1(s1),˜OA1(s2)), S(˜OA2(s2),˜OA2(t2)))

= S((˜OA1 ,
˜OA2)(s1, s2), (˜OA2 ,

˜OA2)(t1, t2)).

�

Definition 22 Let G∗

1 = (V1, E1) and G∗
2 = (V2, E2) be the underlying graphs of two

IVP-(S, T )-fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2), respectively. Then

1. a homomorphism f is a mapping f : V1 → V2 with
(a) ˜MA1(s1) ≤ ˜MA2( f (s1)),˜NA1(s1) ≤ ˜NA2( f (s1)),˜OA1(s1) ≥ ˜OA2( f (s1)), for
all s1 ∈ V1
(b) P̃B1(s1s2) ≤ P̃B2( f (s1))( f (s2)),˜QB1(s1s2) ≤ ˜QB2( f (s1))( f (s2)),
˜RB1(s1s2) ≥˜RB2( f (s1))( f (s2)), for all s1s2 ∈ E1

2. a bijective homomorphism f : G1 → G2 is called a weak isomorphism, if
˜MA1(s1) = ˜MA2( f (s1)),˜NA1(s1) = ˜NA2( f (s1)),˜OA1(s1) = ˜OA2( f (s1)), for all
s1 ∈ V1

3. co-weak isomorphism is a bijective homomorphism f : G1 → G2, if
P̃B1(s1s2) = P̃B2( f (s1))( f (s2)),˜QB1(s1s2) = ˜QB2( f (s1))( f (s2)),
˜RB1(s1s2) =˜RB2( f (s1))( f (s2)), for all s1s2 ∈ E1.
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A bijective homomorphism g : G1 → G2 is called an isomorphism, if it satisfies
conditions (2&3).

3.1 Regular IVP-(S, T)-fuzzy graphs

Definition 23 The degree of vertex s of any IVP-(S, T )-fuzzy graph is described

as deg(s) = (degM (s), degN (s), degO(s)), where degM (s) = ∑
s �=t

˜PB(st),

degN (s) = ∑
s �=t

˜QB(st) and degO(s) = ∑
s �=t

˜RB(st). If degM (vi ) = ki ,
degN (v j ) = k j and degO(vl) = kl , for all vi , v j , vl . Then such a graph is called
regular IVP-(S, T )-fuzzy graph of degree (ki , k j , kl).

Definition 24 The closed neighborhood degree of vertex s of any IVP-(S, T )-fuzzy
graph G = (A, B) is defined by deg[s] = (dM [s], dN [s], dO [s]), where

dM [s] = degM (s) + ˜MA(s)

dN [s] = degN (s) + ˜NA(s)

and

dO [s] = degO(s) + ˜OA(s).

If in G, every vertex has same closed neighborhood degree i.e., m = (m∗
1,m

∗
2,m

∗
3),

then such graph is a totally regular IVP-(S, T )-fuzzy graph with degree m.

Proposition 4 Let G1 and G2 be two IVP-(S, T )-fuzzy graphs. If G1 is isomorphic
to G2 and G1 is regular(totally regular) IVP-(S, T )-fuzzy graph, then G2 is also
regular(totally regular).

Proof For both the cases, let G1 is isomorphic G2. For the first case, let G1 is an
n = (n1, n2, n3)-regular IVP-(S, T )-fuzzy graph. Since

deg[s] = (degM (s), degN (s), degO(s))

=
⎛
⎝∑

s �=y

˜PB(sy),
∑
s �=y

˜QB(sy),
∑
s �=y

˜RB(sy)

⎞
⎠

= (n1, n2, n3)

we have

n1 = degM (s) = ˜PB(sy) = ˜PB(g(s)g(y)) = degMg(s)

n2 = degN (s) = ˜QB(sy) = ˜QB(g(s)g(y)) = degN g(s)

n3 = degO(s) = ˜RB(sy) = ˜RB(g(s)g(y)) = degOg(s).
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Hence, G2 is an n-regular IVP-(S, T )-fuzzy graph.
Now for second case let G1 is an m = (m1,m2,m3) totally regular IVP-(S, T )-
fuzzy graph. We defined earlier that deg[s] = (dM [s], dN [s], dO [s]) where dM [s] =
degM (s) + ˜MA(s), dN [s] = degN (s) + ˜NA(s) and dO [s] = degO(s) + ˜OA(s).
Therefore,

m1 = degM (s) + ˜MA(s) = degMg(s) + ˜MA(g(s)) = dM [g(s)]
m2 = degN (s) + ˜NA(s) = degN g(s) + ˜NA(g(s)) = dN [g(s)]
m3 = degO(s) + ˜OA(s) = degOg(s) + ˜OA(g(s)) = dO [g(s)].

It implies that G2 is an m-totally regular IVP-(S, T )-fuzzy graph. �

Definition 25 For any IVP-(S, T )-fuzzy graph G = (A, B)

1. Order of G is O(G) = (OM (G), ON (G), OO(G)), where

OM (G) =
∑
v∈V

MA(v)

ON (G) =
∑
v∈V

NA(v)

and

OO(G) =
∑
v∈V

OA(v).

2. Size of G is S(G) = (SM (G), SN (G), SO(G)), where

SM (G) =
∑
u �=v

PB(uv)

SN (G) =
∑
u �=v

QB(uv)

and

SO(G) =
∑
u �=v

RB(uv).

Definition 26 An IVP-(S, T )-fuzzy graph G = (A, B) on G∗ = (V , E) is called
constant IVP-(S, T )-fuzzy graph of degree (ki , k j , kk), if for all vi , v j , vk ∈ V , we
have dM (vi ) = ki , dN (v j ) = k j and dO(vk) = kk .

Definition 27 The total degree of a vertex v ∈ V for any IVP-(S, T )- fuzzy graph
G = (A, B) on G∗ = (V , E) is

td(v) = [dM (v) + MA(v), dN (v) + NA(v), dO(v) + OA(v)]
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.

Remark 4 We say that G is an IVP-(S, T )-fuzzy graph of total degree (r1, r2, r3), if
total degree of all vertices is same i.e., (r1, r2, r3).

Theorem 2 Let G∗ = (V , E) be the underlying graph of an IVP-(S, T )-fuzzy graph
G = (A, B) and A = (˜MA, ÑA, ÕA) be any constant function. Then the below
statements are equivalent.

1. G is a regular IVP-(S, T )-fuzzy graph

2. G is totally regular IVP-(S, T )-fuzzy graph.

Proof Let A = (M̃A, ÑA, ÕA) be any constant function, where M̃A = c1, ÑA = c2
and ÕA = c3, for all s ∈ V .
(1) �⇒ (2) : Assume that G is an n-regular IVP-(S, T )-fuzzy graph, then
(degM (s) = nm , (degN (s) = nn and (degO(s) = no, for all s ∈ V .
So,

dM [s] = degM (s) + ˜MA(s) = nm + c1,

dN [s] = degN (s) + ˜NA(s) = nn + c2

and

dO [s] = degO(s) + ˜OA(s) = no + c3

for all s ∈ V . Thus G is totally regular IVP-(S, T )-fuzzy graph.
(2) �⇒ (1) : Let G is a totally regular IVP-(S, T )-fuzzy graph, then dM [s] = k1,

dN [s] = k2, dO [s] = k3 or decM (s) + ˜MA(s) = k1, degN (s) + ˜NA(s) = k2,

degO(s)+ ˜OA(s) = k3 or degM (s)+c1 = k1, degN (s)+c2 = k2, degO(s)+c3 = k3,
for all s ∈ V , or degM (s) = k1 − c1, degN (s) = k2 − c2, degO(s) = k3 − c3, for all
s ∈ V . Thus, G is a regular IVP-(S, T )-fuzzy graph. �

Proposition 5 If an IVP-(S, T )-fuzzy graph G is both the regular and totally regular,
then A = (˜MA, ÑA, ÕA) is a constant function.

Proof Let G be a regular and totally regular IVP-(S, T )-fuzzy graph. Then

degM (s) = n1, degN (s) = n2 and degO(s) = n3, for all s ∈ V1,
dM [s] = k1, dN [s] = k2 and dO [s] = k3 for all s ∈ V1.

It follows that

dM [s] = k1 ⇔ degM (s) + ˜MA(s) = k1

⇔ n1 + ˜MA(s) = k1

⇔ ˜MA(s) = k1 − n1,
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for all s ∈ V . Similarly, ˜NA(s) = k2 −n2 and ˜OA(s) = k3 −n3, for all s ∈ V . Hence,
A = (M̃A, ÑA, ÕA) is a constant function. �


Remark 5 1. if n is odd, G is regular iff B is a constant function.
2. if n is even, G is regular iff P̃B(vi−1vi ) = P̃B(vi+1vi+2), Q̃B(vi−1vi ) =

Q̃B(vi+1vi+2) and R̃B(vi−1vi ) = R̃B(vi+1vi+2), 1 ≤ i ≤ n, where i + 1 and
i + 2 are in module n.

4 MADM using IVP-(S, T)-fuzzy graphs

Among the other generalizations of fuzzy sets, IVPFSs is the best and become an
efficient tool to deal with uncertainty. In this section, we dealMADMproblem through
interval-valued picture (S, T )-fuzzy graph. For illustration we introduce an algorithm
to solve MADM problem in the interval-valued picture fuzzy environment.
Let A = {A1, A2, ..., Am} be the set of alternatives andC = {C1,C2, ...,Cn} be the set
of attributes.w = {w1, w2, ..., wn} be aweighted vector of attributeCi , i = 1, 2, ..., n,
where wi ≥ 0 for i = 1, 2, ..., n and

∑n
i=1 wi = 1.

Let M = (bkj )m×n = (ρpk j ,qk j ,rk j )m×n be an interval-valued picture fuzzy decision
matrix, where pkj , qkj and rk j denote positive membership, negative membership and
neutral membership values of alternatives A j to attributes C j given by the decision
maker. Here positive membership value represents the extent to which any alternative
A j satisfy attributeC j given by decisionmaker, negativemembership value represents
the extent to which any alternative A j does not fulfill attribute C j given by decision
maker and neutral membership value represents the extent to which any alternative
A j does not satisfy attribute C j , given by decision maker, where pkj , qkj , rk j ∈ [0, 1]
and 0 ≤ pkj + qkj + rk j ≤ 1.

The interval-valued picture (S, T )-fuzzy relation between two attributes Ci =
(˜MAi ,

˜NAi ,
˜OAi ) = ([pli , pui ], [qli , qui ], [rli , rui ]) and C j = (˜MAj ,

˜NA j ,
˜OAj ) =

([plj , puj ], [qlj , quj ], [rlj , ruj ]) is defined as ψi j = (P̃Bi j , Q̃Bi j , R̃Bi j ), where

P̃Bi j ≤ T {˜MAi ,
˜MAj }

Q̃Bi j ≤ T {˜NAi ,
˜NA j }

R̃Bi j ≥ S{˜OAi ,
˜OAj }.

For all i, j = 1, 2, ...,m. Otherwise ψi j = ([0, 0], [0, 0], [1, 1]).
Now we provide an algorithm to solve a MADM problem using IVP-(S, T )-fuzzy
graphs. It consist of following steps.

1. Determine the impact coefficient between attributes Ci and C j using

λi j = (pli j + pui j ) + 2 − (qli j + qui j ) + 2 − (rli j + rui j )

6
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where ψi j = ([pli j , pui j ], [qli j , qui j ], [rli j , rui j ]) is an interval-valued picture fuzzy
edge between vertices Ci and C j , for i, j = 1, 2, ...,m. We have ψi i = 1 and
ψi j = ψ j i for i = j .

2. Find the attribute of the alternative Ak by

Ak = 1/3( p̃k, q̃k, r̃k) = 1/3(�n
j=1w j (�

n
i=1λi j bki ))

where bki = ([plki , puki ], [qlki , quki ], [rlki , ruki ]) is an interval-valued picture fuzzy
number.

3. Find the score function of the alternative Ak = [plk, puk ], [qlk, quk ], [rlk, ruk ] by

scor(Ak) = plk − qlk − rlk + puk − quk − ruk
3

4. Rank all the alternatives Ak depending upon the values of their score function and
select the best alternative.

5. End

4.1 Numerical example

A famous university has three campuses (i.e., E1, E2, E3) in its major cities. At the
end of every year the university has to select a “student of year” based on the overall
performance of the student throughout the year. For this, each campus first shortlist the
nameof their best student. Then, from these three students the groupof judges (decision
makers) have to decide the best one. All the selected students are highly competent.
Firstly, the overall performance of the student is expressed by the judges in term of an
interval-valued picture fuzzy number (M̃A, ÑA, ÕA) = ([pl , pu], [ql , qu], [rl , ru]),
where M̃A = [pl , pu] represents the positive attitude of student, ÑA = [ql , qu] shows
negative attitude of the student and ÕA = [rl , ru] is for the neutral attitude of student
in campus.

As the judges (decision makers) have to select the best student for the “student of
year” award, so three measurable alternatives are given below.

1. Campus one student A1
2. Campus two student A2
3. Campus three student A3

The panel of judges(decision makers) makes decision on the basis of the following
three attributes:

1. Academic record of the student C1
2. Behavior of the student in campus C2
3. Performance in extra-curricular activities C3

Theweight vector of the criteria is givenbyw = (w1, w2, w3)
T = (0.20, 0.25, 0.55)T .

On the basis of three attributes the overall performance of alternatives is measured by
judges and they give their results in the form of interval-valued picture fuzzy infor-
mation. The interval-valued picture fuzzy decision matrix M is shown in Fig. 4 below
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Fig. 4 Interval-valued picture fuzzy decision matrix

Fig. 5 Graph relationship between criteria

The relationship among the said attributes can be described by using a complete
graph G = (V , E), where V is the set of edges representing the attributes and E is
the set of edges representing the relationships among the attributes.
E = (ψ12, ψ23, ψ13), where ψ12 = ([0.2, 0.4], [0.4, 0.5], [0.2, 0.8]), ψ23 =
([0.1, 0.2], [0.2, 0.3], [0.1, 0.7]) and ψ13 = ([0.2, 0.3], [0.3, 0.5], [0.2, 0.4]).

The corresponding IVP-(S, T )-fuzzy graph is shown in Fig. 5.
We use the algorithm defined above to find out the best alternative that is the winner

of the year award.
The impact coefficient between the attributes is given below.

λ12 = (0.2 + 0.4) + 2 − (0.4 + 0.5) + 2 − (0.2 + 0.8)

6
= 0.45

λ23 = (0.1 + 0.2) + 2 − (0.2 + 0.3) + 2 − (0.1 + 0.7)

6
= 0.5

λ13 = (0.2 + 0.3) + 2 − (0.3 + 0.5) + 2 − (0.2 + 0.4)

6
= 0.516
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Nowwefindoverall criterionof alternatives givenby Ak = 1/3(�3
j=1w j (�

3
i=1λi j bki )).

So, for k = 1, we have

A1 = 1/3(�n
j=1w j (�

n
i=1λi j b1i ))

= 1/3(w1 × (λ11b11 + λ21b12 + λ31b13) + w2 × (λ12b11 + λ22b12 + λ32b13)

+ w3 × (λ13b11 + λ23b12 + λ33b13))

= 1/3(0.20 × ([0.2, 0.4], [0.2, 0.5], [0.2, 0.7] + (0.45 × [0.1, 0.4], [0.3, 0.7],
[0.3, 0.8]) + (0.516 × [0.2, 0.3], [0.1, 0.7], [0.2, 0.6])) + 0.25 × ((0.45

× [0.2, 0.4], [0.2, 0.5], [0.2, 0.7] + [0.1, 0.4], [0.3, 0.7], [0.3, 0.8] + (0.5

× [0.2, 0.3], [0.1, 0.7], [0.2, 0.6]))) + 0.55 × ((0.516 × [0.2, 0.4], [0.2, 0.5],
[0.2, 0.7]) + (0.5 × [0.1, 0.4], [0.3, 0.7], [0.3, 0.8]) + [0.2, 0.3], [0.1, 0.7],
[0.2, 0.6]))
= 1/3(0.20 × ([0.3482, 0.7348], [0.3866, 1.1762], [0.4382, 1.3696]) + 0.25

× ([0.29, 0.73], [0.44, 1.275], [0.49, 1.415]) + 0.55 × ([0.3532, 0.7064],
[0.352, 1.308], [0.4532, 1.3612]))
= 1/3([0.06964, 0.14696], [0.07732, 0.23524], [0.08764, 0.27392]

+ [0.0725, 0.1825], [0.11, 0.31875], [0.1225, 0.35375] + [0.19426, 0.38852],
[0.1936, 0.7194], [0.24926, 0.74866])
= 1/3([0.3364, 0.71798], [0.38092, 1.27339], [0.4594, 1.37633])

A1 = [0.1121, 0.2393], [0.1269, 0.4244], [0.1531, 0.4587].

For k = 2

A2 = 1/3(�n
j=1w j (�

n
i=1λi j b2i ))

= 1/3(w1 × (λ11b21 + λ21b22 + λ31b23) + w2 × (λ12b21 + λ22b22 + λ32b23)

+ w3 × (λ13b21 + λ23b22 + λ33b23))

= 1/3(0.20 × ([0.1, 0.4], [0.3, 0.6], [0.3, 0.7] + (0.45 × [0.1, 0.5], [0.2, 0.5],
[0.2, 0.4]) + (0.516 × [0.3, 0.5], [0.2, 0.7], [0.1, 0.5])) + 0.25 × ((0.45

× [0.1, 0.4], [0.3, 0.6], [0.3, 0.7]) + [0.1, 0.5], [0.2, 0.5], [0.2, 0.4] + (0.5

× [0.3, 0.5], [0.2, 0.7], [0.1, 0.5])) + 0.55 × ((0.516 × [0.1, 0.4], [0.3, 0.6],
[0.3, 0.7]) + (0.5 × [0.1, 0.5], [0.2, 0.5], [0.2, 0.4]) + [0.3, 0.5],
[0.2, 0.7], [0.1, 0.5]))
= 1/3(0.20 × ([0.2998, 1.399], [0.4932, 1.1862], [0.4416, 1.318]) + 0.25

× ([0.295, 0.93], [0.435, 1.12], [0.385, 0.965]) + 0.55 × ([0.4016, 0.9564],
[0.4548, 1.2596], [0.3548, 1.2596]))
= 1/3([0.0598, 0.2798], [0.09864, 0.23724], [0.08832, 0.22636]

+ [0.07375, 0.2325], [0.10875, 0.28], [0.09625, 0.24125] + [0.22088, 0.52602],
[0.25014, 0.69278], [0.19514, 0.58366])
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= 1/3([0.35443, 1.03832], [0.45753, 1.21002], [0.35271, 1.05127])
A2 = [0.1181, 0.3461], [0.1525, 0.4033], [0.1175, 0.3504].

For k = 3

A3 = 1/3(�n
j=1w j (�

n
i=1λi j b3i ))

= 1/3(w1 × (λ11b31 + λ21b32 + λ31b33) + w2 × (λ12b31 + λ22b32 + λ32b33)

+ w3 × (λ13b31 + λ23b32 + λ33b33))

= 1/3(0.20 × ([0.3, 0.4], [0.1, 0.3], [0.2, 0.5] + (0.45 × [0.2, 0.5], [0.1, 0.6],
[0.3, 0.4]) + (0.516 × 0.1, 0.4], [0.5, 0.7], [0.2, 0.4])) + 0.25 × ((0.45

× [0.3, 0.4], [0.1, 0.3], [0.2, 0.5]) + [0.2, 0.5], [0.1, 0.6], [0.3, 0.4] + (0.5

× [0.1, 0.4], [0.5, 0.7], [0.2, 0.4]))) + 0.55 × ((0.516 × [0.3, 0.4], [0.1, 0.3],
[0.2, 0.5]) + (0.5 × [0.2, 0.5], [0.1, 0.6], [0.3, 0.4]) + [0.1, 0.4], [0.5, 0.7],
[0.2, 0.4]))
= 1/3(0.20 × ([0.4416, 0.8314], [0.4030, 0.9312], [0.4385, 0.8864]) + 0.25

× ([0.3850, 0.8800], [0.3950, 1.0850], [0.4900, 0.8250]) + 0.55

× ([0.3548, 0.8564], [0.6016, 1.1548], [0.4532, 0.8580]))
= 1/3([0.08832, 0.16628], [0.0806, 0.18624], [0.0877, 0.17728]+
[0.09625, 0.2200], [0.09875, 0.27125], [0.1225, 0.20625] + [0.19514, 0.47102],
[0.33088, 0.63514], [0.24926, 0.4719])
= 1/3([0.37459, 0.8573], [0.51023, 1.09263], [0.45946, 0.85543])

A3 = [0.1248, 0.2857], [0.17007, 0.3642], [0.1531, 0.28521].

The score value of each alternative by using the score function is given by

sco(A1) = −0.2705

sco(A2) = −0.1865

sco(A3) = −0.1873

Clearly, we have

sco(A2) ≥ sco(A3) ≥ sco(A1).

Hence, the student of the year award goes to the candidate from campus E2.

5 Conclusion

In different fields of sciences fuzzy graph is proven an effective tool to model any
uncertain real world problem occur in decision making theory, computer science, pat-
tern recognition etc.Manygeneralizations of fuzzy graphs have been introduced to deal
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with the uncertain real life problems. In our study, we have provided the generalization
of PFGs termed IVP-(S, T )-fuzzy graphs. Initially, we have defined and applied differ-
ent operations which include complement and ring sum to IVP-(S, T )-fuzzy graphs.
Homomorphism and co-weak homomorphism of IVP-(S, T )-fuzzy graphs have also
defined. We introduced different types of IVP-(S, T )-fuzzy graphs like regular, total
regular and constant IVP-(S, T )-fuzzy graphs. We have explored through application
that to model the uncertain real world problems IVP-(S, T )-fuzzy graphs is the best
among the other existing generalized FGs. As an evidences, we have provided the
solution of the problem related toMADM. In addition, we have also provided an algo-
rithm to handle MADM problems using IVP-(S, T )-fuzzy graphs. In this regard, we
have provided the analytic and numerical solutions of the problem occur in MADM
by using IVP-(S, T )-fuzzy graphs. During this, we have observed that our analy-
sis is more perfect and efficient than any other solution of such type of problem in
MADM.Moreover, the domain of IVP-(S, T )-fuzzy graphs is very vast, one can twist
it towards FGs, IVFGs, t-FGs, IFGs, IVI-(S, T )-fuzzy graphs and PFGs by giving dif-
ferentmemberships values. Thus, the qualitative characteristics of FGs, IVFGs, t-FGs,
IFGs, IVI-(S, T )-fuzzy graphs and PFGs can be viewed in a single IVP-(S, T )-fuzzy
graphs. One could extend this study towards balanced picture fuzzy graphs, incidence
picture fuzzy graphs, bipolar picture fuzzy graphs etc.
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