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Abstract
In this paper, we propose a full-Newton step infeasible interior-point algorithm (IPA)
for solving linear optimization problems based on a new kernel function (KF). The
latter belongs to the newly introduced hyperbolic type (Guerdouh et al. in An effi-
cient primal-dual interior point algorithm for linear optimization problems based on
a novel parameterized kernel function with a hyperbolic barrier term, 2021; Touil and
Chikouche in Acta Math Appl Sin Engl Ser 38:44–67, 2022; Touil and Chikouche
in Filomat 34:3957–3969, 2020). Unlike feasible IPAs, our algorithm doesn’t require
a feasible starting point. In each iteration, the new feasibility search directions are
computed using the newly introduced hyperbolic KF whereas the centering search
directions are obtained using the classical KF. A simple analysis for the primal-dual
infeasible interior-point method (IIPM) based on the new KF shows that the iteration
bound of the algorithm matches the currently best iteration bound for IIPMs. We con-
solidate these theoretical results by performing some numerical experiments in which
we compare our algorithm with the famous SeDuMi solver. To our knowledge, this is
the first full-Newton step IIPM based on a KF with a hyperbolic barrier term.

Keywords Linear optimization · Infeasible interior-point methods · Kernel function ·
Full-Newton step · Complexity analysis

MSC Classification 90C05 · 90C51

B Safa Guerdouh
guerdouhsafa@gmail.com

Wided Chikouche
w_chikouche@yahoo.com

Behrouz Kheirfam
b.kheirfam@azaruniv.ac.ir

1 LMPA Laboratory, Department of Mathematics, Mohamed Seddik Ben Yahia University, BP 98,
Ouled Aissa, 18000 Jijel, Algeria

2 Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-023-01858-8&domain=pdf
http://orcid.org/0000-0001-6942-6331


2936 S. Guerdouh et al.

1 Introduction

Linear optimization (LO) problem has increasingly been addressed in the literature,
both from the theoretical and computational points of view. This model has been
widely applied to modelize different problems in various areas such as economics,
engineering and operations research.

The first modelisation of an economic problem in the form of a LO problem was
made by the Russian mathematician Kantorovich (1939, [3]) and the general formu-
lation was given later by the American mathematician G.B. Dantzig in his work [1].

In this paper, we study linear program in primal-dual standard form

(P)min cT x s.t. Ax = b, x ≥ 0,

(D)max bT y s.t. AT y + s = c, s ≥ 0,

with A ∈ R
m×n, x, s, c ∈ R

n and b, y ∈ R
m .

Several methods are used to find an optimal solution for this pair of problems.
Interior-point methods (IPMs) are among the most popular methods. IPMs were first
developed by Karmarkar [4] for LO. These methods are based on using Newton’s
method in a careful and controlled manner.

Initially, IPAs that required a feasible starting point were studied [7, 13]. However,
the feasible initial point is not given in general. Lustig [10] proposed a solution to
this when he introduced the first infeasible-start algorithm. His approach was further
improved in the predictor-corrector algorithm of Mehrotra [12]. After that, Roos [16]
introduced a new infeasible IPA, which uses only full-Newton steps. Some extensions
on LO were carried out by Liu and Sun [8], Liu et al. [9] and Mansouri and Roos [11].

Salahi et al. [18] presented a new IIPM for LO based on a specific self-regular KF.
Recently, Kheirfam and Haghighi [5, 6] andMoslemi and Kheirfam [14] discussed the
complexity of trigonometric proximity based IIPMs for different types of problems.

An alternative method to determine new search directions was introduced by Rigó
and Darvay [15] where they presented a new method based on an algebraic equivalent
transformation on the centering equation of the systemwhich characterizes the central
path.

In this paper, our main contribution is an infeasible-start IPM for LO that builds
on the works of Roos [16] and Kheirfam and Haghighi [5, 6]. The algorithm avoids a
big-M or a two-phase approach. Furthermore, under general conditions we guarantee
that our algorithm will converge to an optimal solution.

We present some notations used throughout the paper. ‖ · ‖, ‖ · ‖1 and ‖ · ‖∞
denotes the Euclidean norm, the 1-norm and the infinity norm respectively. Rn+ and
R
n++ denote the nonnegative and the positive orthants respectively. For given vectors

x, s ∈ R
n, X = diag(x) denotes the n × n diagonal matrix whose diagonal entries

are the components of x, and the vector xs indicate the component-wise product of x
and s.

The remainder of this paper is organized as follows: In the next section we recall
the basics of IIPMs. The complexity has been analyzed in Sect. 3. Our computational
experiments are presented in Sect. 4. Finally, we give the conclusion in the last section.
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2 Preliminaries

In this section, we briefly describe the basics of IIPMs for LO. We outline some
concepts and basic tools required in IIPMs such as starting point, perturbed problem,
central path and proximity measure quantity. We start by recalling the standard LO
problem

(P)

⎧
⎨

⎩

min cT x
Ax = b,
x ≥ 0,

and its dual problem

(D)

⎧
⎨

⎩

max bT y
AT y + s = c,
s ≥ 0,

where A ∈ R
m×n with rank(A) = m ≤ n, c ∈ R

n and b ∈ R
m are given. Unlike

feasible IPMs, in IIPMs, a triple (x, y, s) is called an ε− solution of (P) and (D) if
the norms of the residual vectors rb = b − Ax and rc = c − AT y − s do not exceed
ε, and also xT s ≤ ε.

Following the basics of IIPMs, we choose x0 > 0 and s0 > 0 such that x0s0 = μ0e
for some positive number μ0, while rb0 and rc0 denote the initial residual vectors. In
this work, we assume that

x0 = s0 = ξe, y0 = 0, μ0 = ξ2, (1)

with μ0 the initial duality gap and ξ satisfies the following inequality

‖x∗ + s∗‖∞ ≤ ξ, for some optimal solution (x∗, y∗, s∗) of (P) and (D).

For any ν with 0 < ν ≤ 1, we consider the perturbed problem pair (Pν) and (Dν)

(Pν)

⎧
⎨

⎩

min(c − νrc0)T x
Ax = b − νrb0,
x ≥ 0,

(Dν)

⎧
⎨

⎩

max(b − νrb0)T y
AT y + s = c − νrc0,
s ≥ 0.

Note that if ν = 1 then (Pν) and (Dν) satisfy the interior-point condition (IPC), i.e.,
(Pν) has a feasible solution x > 0 and (Dν) has a solution (y, s) with s > 0. This
implies that the triple (x, y, s) = (x0, y0, s0) yields a strictly feasible solution of the
pair of problems (Pν) and (Dν).
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Theorem 2.1 (Lemma 3.1 in [16]) The original problems (P) and (D) are feasible if
and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν)

satisfy the IPC.

In what follows, we assume that (P) and (D) are feasible. Then Theorem 2.1 implies
that for every 0 < ν ≤ 1 the system (2) has a unique solution

⎧
⎨

⎩

b − Ax = νrb0, x ≥ 0,
c − AT y − s = νrc0, s ≥ 0,
xs = μe, μ > 0.

(2)

This means that the central path exists and the set of unique solutions {(x(μ, ν), y(μ,

ν), s(μ, ν)) : μ > 0, 0 < ν ≤ 1} forms the central path with (x(μ, ν), y(μ, ν), s(μ,

ν)) the μ−centers of (Pν) and (Dν) and μ = νμ0. Furthermore, we denote
(x(μ, ν), y(μ, ν), s(μ, ν)) = (x(ν), y(ν), s(ν)) for simplicity purposes.

Now, we would like to compute an approximate solution of (2). Let (x, y, s) be a
positive feasible triple of (2) and μ > 0. A direct application of Newton’s method
produces the following system for the search direction (�x,�y,�s)

⎧
⎨

⎩

A�x = 0,
AT�y + �s = 0,
s�x + x�s = μe − xs.

(3)

Following this centrality step, the new point (x+, y+, s+) is then computed according
to:

x+ = x + �x, y+ = y + �y, s+ = s + �s.

For convenience, we introduce the following scaled vector v and scaled search
directions dx and ds

v =
√
xs

μ
, dx = v�x

x
, ds = v�s

s
. (4)

Using these notations, system (3) can be rewritten as follows:

⎧
⎪⎨

⎪⎩

Adx = 0,

A
T �y

μ
+ ds = 0,

dx + ds = v−1 − v,

(5)

where A = AV−1X , V = diag(v) and X = diag(x). The third equation in (5) is
called the scaled centering equation.

Defining the proximity mesure δ as follows:

δ(x, s;μ) := δ(v) := 1

2
‖v−1 − v‖. (6)
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We use δ to measure the distance between an iterate (x, y, s) and the μ−center of the
perturbed problem pair (Pν) and (Dν).

We showcase the outline of one iteration of the algorithm. Starting by the ini-
tialization defined in (1), each main iteration consists of a so-called feasibility step, a
μ−update and a few centrality steps. The feasibility step provides iterates (x f , y f , s f )

that are strictly feasible for (Pν+) and (Dν+),with ν+ = (1−θ)ν and θ ∈]0, 1[.These
iterates belong to the quadratic convergence region with respect to the μ+−center of
(Pν+) and (Dν+),withμ+ = ξ2ν+.After that, we apply a limited number of centering
steps (at most 5 centering steps). These centering steps produces iterates (x+, y+, s+)

that are strictly feasible for (Pν+) and (Dν+), and such that δ(x+, s+;μ+) ≤ τ.

To obtain iterates that are feasible for (Pν+) and (Dν+), we need to solve the
following system of equations

⎧
⎨

⎩

A� f x = θνr0b ,

AT� f y + � f s = θνr0c ,

s� f x + x� f s = μe − xs,
(7)

to compute the displacements (� f x,� f y,� f s). The feasible new iterates are then
defined by

x f = x + � f x, y f = y + � f y, s f = s + � f s.

Let the scaled search directions d f
x and d f

s be defined as follows:

d f
x = v� f x

x
, d f

s = v� f s

s
.

System (7) is then rewritten in the following form

⎧
⎪⎨

⎪⎩

Ad f
x = θνr0b ,

A
T � f y

μ
+ d f

s = θνvs−1r0c ,

d f
x + d f

s = v−1 − v,

(8)

where A = AV−1X , V = diag(v), X = diag(x).
Observe that the right-hand side in the last equation of (8) is equal to minus gradient
of the classical logarithmic scaled barrier (proximity) function

	(v) =
n∑

i=1

ψc(vi ),

where

ψc(t) = t2 − 1

2
− log t,
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is the so-called KF of the barrier function 	(v).

Coming back to system (8), we can convert it to

⎧
⎪⎨

⎪⎩

Ad f
x = θνr0b ,

A
T � f y

μ
+ d f

s = θνvs−1r0c ,

d f
x + d f

s = −∇	(v).

(9)

For a different KF, one gets a different search direction. In this context, we consider a
new univariate KF ψ defined as follows:

ψ (t) = t2 − 1

4
−
∫ t

1

sinh(1)

2 sinh(y)
dy, ∀t > 0. (10)

Based on our KF, let us define a new proximity mesure as follows:

σ(x, s;μ) = σ(v) =
∥
∥
∥d

f
x + d f

s

∥
∥
∥ = ‖∇	(v)‖ =

∥
∥
∥
∥

sinh(e)

2 sinh(v)
− v

2

∥
∥
∥
∥ . (11)

Note that

σ(v) = 0 ⇔ ∇	(v) = 0 ⇔ v = e,

σ is thus a suitable proximity.
The generic primal-dual IIPM is summarized in Algorithm 1.

Algorithm 1 : Primal-Dual Infeasible IPA for LO
Input
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ ∈]0, 1[;
an initialization parameter ξ > 0.
begin
x := ξe, y := 0, s := ξe, ν := 1;
while max(xT s, ‖b − Ax‖, ‖c − AT y − s‖) ≥ ε

begin
feasibility step :
(x, y, s) := (x, y, s) + (� f x, � f y, � f s);
μ−update:
μ : = (1 − θ)μ;
centering steps:
while δ(x, s; μ) > τ

(x, y, s) := (x, y, s) + (�x, �y,�s);
end while (inner iteration)
end while (outer iteration)
end
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3 Analysis of the algorithm

In this section, we show that the IIPM based on the new KF is well defined. We first
state some technical lemmas that we use in the complexity analysis of the algorithm.
Then, we prove the strict feasibility of the iterates obtained after the feasibility step.
After that, we derive an upper bound for the number of iterations required by the
algorithm to obtain an optimal solution.

3.1 Technical lemmas

For conveniency, we give the first two derivatives of ψ

ψ ′(t) = t

2
− sinh(1)

2 sinh(t)
, (12)

ψ ′′(t) = 1

2
+ sinh(1) cosh(t)

2 sinh2(t)
> 0.

We can easily verify that ψ defined in (10) is indeed a KF.
Let δ be the proximity defined previously in (6). For simplicity purposes, we put

δ(x, s, μ) = δ. Then, we can take advantage of the following well-known results.

Lemma 3.1 (Lemma �.60 in [17]) Let ρ(δ) := δ + √
1 + δ2. Then

1

ρ(δ)
≤ vi ≤ ρ(δ), i = 1, . . . , n.

Lemma 3.2 (Lemma �.51 in [17]) If δ ≤ 1, then the primal-dual Newton step is
feasible, i.e. x+ and s+ are nonnegative and (x+)T s+ = nμ.Moreover, if δ < 1, then

δ(x+, s+;μ) ≤ δ2
√
2(1 − δ4)

.

A direct consequence of this lemma is the following corollary.

Corollary 3.3 (Corollary 2.3 in [5]) If δ ≤ 1
4√2

then δ(x+, s+;μ) ≤ δ2 and

δ(x+, s+;μ+) ≤
(

1
4
√
2

)2k

.

Remark 3.4 Using Corollary 3.3, we conclude that δ(x+, s+;μ+) ≤ τ will hold after

2 + [log2(log2
1

τ
)]

centering steps.
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The following lemma provides an important feature of the hyperbolic cotangent func-
tion that enables us to prove that the new KF is efficient.

Lemma 3.5 One has

t coth(t) − 1 > 0, ∀t > 0. (13)

Proof Let’s define the function l as follows:

l(t) = t coth(t) − 1, ∀t > 0.

Deriving l, we obtain

l ′(t) = coth(t) − t

sinh2(t)

= cosh(t) sinh(t) − t

sinh2(t)
.

Recall that

sinh(2t) = 2 cosh(t) sinh(t), ∀t ∈ R.

Using this property of the hyperbolic functions, we can rewrite l ′ as follows:

l ′(t) = sinh(2t) − 2t

2 sinh2(t)
.

Moreover, the Taylor expansion of the hyperbolic sine function implies that

sinh(t) ≥ t, ∀t ≥ 0.

It follows that the function l is strictly increasing on the interval ]0,+∞[. Since

lim
t→0+ l(t) = 0 and lim

t→+∞ l(t) = +∞,

we conclude that t coth(t) − 1 > 0, ∀t > 0. ��
The following lemma plays an important role in the complexity analysis of our

algorithm.

Lemma 3.6 One has

∣
∣
∣
∣
t

2
− sinh(1)

2 sinh(t)

∣
∣
∣
∣ ≤

∣
∣
∣
∣t − 1

t

∣
∣
∣
∣ , ∀t > 0. (14)
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Proof It’s clear that (14) is satisfied for t = 1. Let g be the function defined for t > 0
as follows:

g(t) =
∣
∣
∣
∣
t

2
− sinh(1)

2 sinh(t)

∣
∣
∣
∣ −

∣
∣
∣
∣t − 1

t

∣
∣
∣
∣

=

⎧
⎪⎨

⎪⎩

1

t
− t

2
− sinh(1)

2 sinh(t)
, ∀t ≥ 1,

t

2
+ sinh(1)

2 sinh(t)
− 1

t
, ∀t ≤ 1.

For this function, we have

g′(t) =

⎧
⎪⎪⎨

⎪⎪⎩

sinh(1) coth(t)

2 sinh(t)
−
(
1

t2
+ 1

2

)

, ∀t > 1,
(
1

t2
+ 1

2

)

− sinh(1) coth(t)

2 sinh(t)
, ∀t < 1.

An important observation is that lim
t→0+ g(t) = lim

t→+∞ g(t) = −∞ and g(1) = 0. So,

to prove the inequality (14), it suffices to verify that

g′(t) > 0, ∀0 < t < 1, and g′(t) < 0, ∀t > 1.

We start by the case t > 1.Since the function t �→ sinh(t) ismonotonically increasing,
this implies that

g′(t) <
t2(coth(t) − 1) − 2

2t2
=: h(t)

2t2
.

By deriving h, and using inequality (13), we can easily prove that h(t) < 0, ∀t > 1.
Now, we move to the second case, i.e., t < 1. We rewrite g′ as follows:

g′(t) = (t2 + 2) sinh2(t) − sinh(1)t2 cosh(t)

2t2 sinh2(t)

= t2 sinh2(t) + (
2 sinh2(t) − sinh(1)t2 cosh(t)

)

2t2 sinh2(t)

>
t2 sinh2(t) + (

2 sinh2(t) − sinh(1) cosh(1)t2
)

2t2 sinh2(t)

>
t2 sinh2(t) + 2

(
sinh2(t) − t2

)

2t2 sinh2(t)
> 0,

where the inequalities are obtained using the increase of the hyperbolic cosine function
and the fact that sinh(1) cosh(1) < 2. This completes the proof. ��

A direct consequence of this lemma is the following result which gives an upper
bound for σ in terms of δ.
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Lemma 3.7 One has

σ(v) ≤ 2δ(v).

Proof The proof is a direct consequence of Lemma 3.6 and definitions (11) and (6). ��

3.2 Analysis of the feasibility step

In this subsection, we show that after the feasibility step the new iterates are positive
and within the region where the Newton process targeting at μ+−centers of (Pν+)

and (Dν+) is quadratically convergent, i.e.

δ(x f , s f ;μ+) ≤ 1
4
√
2
,

with x f , y f and s f denote the new iterates generated by the feasibility step such that
the feasibility conditions of (Pν+) and (Dν+) are satisfied. Using (12) and the third
equation of (9), we have

x f s f = xs

v2
(v + d f

x )(v + d f
s )

= μ(v2 + v(d f
x + d f

s ) + d f
x d

f
s )

= μ

(

v2 + v

(
sinh(e)

2 sinh(v)
− v

2

)

+ d f
x d

f
s

)

= μ

(
v2

2
+ v sinh(e)

2 sinh(v)
+ d f

x d
f
s

)

. (15)

The next lemma reveals a sufficient condition for the strict feasibility of the feasi-
bility step.

Lemma 3.8 The new iterates (x f , y f , s f ) are strictly feasible if

v2

2
+ v sinh(e)

2 sinh(v)
+ d f

x d
f
s > 0. (16)

Proof We first introduce a step length α ∈ [0, 1]. Then, we define

xα = x + α� f x, yα = y + α� f y, sα = s + α� f s.

Note that for α = 0 (α = 1), x0 = x (x1 = x f ) respectively and x0s0 > 0. Hence,
using notations (4) and inequality (16), we get

xαsα = μ(v + αd f
x )(v + αd f

s )

= μ
(
v2 + αv(d f

x + d f
s ) + α2d f

x d
f
s

)
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= μ

(

v2 + α

(
v sinh(e)

2 sinh(v)
− v2

2

)

+ α2d f
x d

f
s

)

> μ

(

v2 + α

(
v sinh(e)

2 sinh(v)
− v2

2

)

+ α2
(

−v2

2
− v sinh(e)

2 sinh(v)

))

> μ

(

v2 + α
v sinh(e)

2 sinh(v)
− α

v2

2
− α2 v2

2
− α2 v sinh(e)

2 sinh(v)

)

> μ

(

v2 + α
v sinh(e)

2 sinh(v)
− α

v2

2
− α

v2

2
− α2 v sinh(e)

2 sinh(v)

)

= μ

(

(1 − α)v2 + α(1 − α)
v sinh(e)

2 sinh(v)

)

.

Obviously

(

(1 − α)v2 + α(1 − α)
v sinh(e)

2 sinh(v)

)

≥ 0 since
v sinh(e)

2 sinh(v)
≥ 0, ∀v > 0.

Thus, for every α ∈ [0, 1], xαsα > 0 which implies that none of the components of
xα and sα vanishes. Taking α = 1, we obtain x f > 0 and s f > 0. This completes the
proof. ��

In the sequel, we denote

ω := ‖(ω1, ..., ωn)‖, where ωi = 1

2

√

|d f
xi |2 + |d f

si |2,

and

δ(x f , s f ;μ+) := δ(v f ) = 1

2
‖(v f )−1 − v f ‖, where v f =

√

x f s f

μ+ .

Remark 3.9 Using the previous notations, it follows that

|d f
xi d

f
si | ≤ 1

2

(
|d f

xi |2 + |d f
si |2

)
= 2ωi

2 ≤ 2ω2, i = 1, . . . , n.

The following lemma gives an upper bound for the proximity function after the feasi-
bility step.

Lemma 3.10 If v2

2 + v sinh(e)
2 sinh(v)

+ d f
x d

f
s > 0, then

δ(v f ) ≤ θ
√
n + 4δρ(δ) + 2ω2

2

√

(1 − θ)
(

1
ρ(δ)2

− 2δρ(δ) − 2ω2
) .

Proof Definition (6) implies that

δ(v f ) = 1

2
‖(v f )−1 − v f ‖ ≤ 1

2v f
min

‖e − (v f )2‖. (17)
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Using (15) and Remark 3.9, we get

‖e − (v f )2‖ ≤ 1

1 − θ

∥
∥
∥
∥(1 − θ)e − v2

2
− v sinh(e)

2 sinh(v)
− d f

x d
f
s

∥
∥
∥
∥

= 1

1 − θ

∥
∥
∥
∥(e − v2) − θe + v

(
v

2
− sinh(e)

2 sinh(v)

)

− d f
x d

f
s

∥
∥
∥
∥

= 1

1 − θ

∥
∥
∥
∥v(v−1 − v) − θe + v

(
v

2
− sinh(e)

2 sinh(v)

)

− d f
x d

f
s

∥
∥
∥
∥

≤ 1

1 − θ

(

‖v(v−1 − v)‖ + θ
√
n +

∥
∥
∥
∥v

(
v

2
− sinh(e)

2 sinh(v)

)∥
∥
∥
∥ + 2ω2

)

.

(18)

Moreover, using definition (6), Lemma 3.1 and Lemma 3.6 we obtain the following
inequalities

∥
∥
∥
∥v

(
1

v
− v

)∥
∥
∥
∥

2

=
n∑

i=1

∣
∣
∣
∣vi

(
1

vi
− vi

)∣
∣
∣
∣

2

≤ ρ(δ)2
n∑

i=1

∣
∣
∣
∣
1

vi
− vi

∣
∣
∣
∣

2

= 4ρ(δ)2δ2, (19)

and

∥
∥
∥
∥v

(
v

2
− sinh(e)

2 sinh(v)

)∥
∥
∥
∥

2

=
n∑

i=1

∣
∣
∣
∣vi

(
vi

2
− sinh(1)

2 sinh(vi )

)∣
∣
∣
∣

2

≤ ρ(δ)2
n∑

i=1

∣
∣
∣
∣
1

vi
− vi

∣
∣
∣
∣

2

= 4ρ(δ)2δ2. (20)

The substitution of inequalities (19) and (20) into (18) yields the following inequality

∥
∥
∥e − (v f )2

∥
∥
∥ ≤ 1

1 − θ

(
4ρ(δ)δ + θ

√
n + 2ω2

)
. (21)

Using (15) and the definition of v f , we have

(v
f
min)

2 = min
i

1

1 − θ

(
vi

2

2
+ vi sinh(1)

2 sinh(vi )
+ d f

xi d
f
si

)

= min
i

1

1 − θ

(
vi

2

2
+ vi

2

2
− vi

2

2
+ vi sinh(1)

2 sinh(vi )
+ d f

xi d
f
si

)
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= min
i

1

1 − θ

(

vi
2 −

(
vi

2

2
− vi sinh(1)

2 sinh(vi )

)

+ d f
xi d

f
si

)

≥ 1

1 − θ

(

v2min −
∥
∥
∥
∥
v2

2
− v sinh(e)

2 sinh(v)

∥
∥
∥
∥ − 2ω2

)

≥ 1

1 − θ

(
1

ρ(δ)2
− 2ρ(δ)δ − 2ω2

)

, (22)

where the last inequality is due to Lemma 3.1 and (20). The substitution of (21) and
(22) in (17) yields the desired inequality. ��

Corollary 3.11 Let n ≥ 2, δ ≤ τ. Choosing τ = 1

16
, ω ≤ 1

2
√
2
, and θ = α

4
√
n
with

α ≤ 1, we have

1. the iterates (x f , y f , s f ) obtained after feasibility step are strictly feasible, i.e.,
x f s f > 0.

2. after the feasibility step, the new iterates (x f , y f , s f ) are within the region where
the Newton process targeting at the μ+−centers of (Pν+) and (Dν+), is quadrat-

ically convergent, i.e., δ(v f ) ≤ 1
4
√
2
.

Proof For the first item, using (22), we obtain

min
i

(
vi

2

2
+ vi sinh(1)

2 sinh(vi )
+ d f

xi d
f
si

)

≥
(

1

ρ(δ)2
− 2ρ(δ)δ − 2ω2

)

≥
(

1

ρ(τ)2
− 2ρ(τ)τ − 2ω2

)

� 0.4995 > 0,

where the second inequality is due to the fact that ρ(δ) is monotonically increasing
with respect to δ. The result derives then from Lemma 3.8. As for the second item, it’s

clear that
v2

2
+ v sinh(e)

2 sinh(v)
+ d f

x d
f
s > 0, from the proof of the first item. Therefore,

using Lemma 3.10 we obtain

δ(v f ) ≤

1

4
+ 1

4

(
1

16
+
√

1 + 1

162

)

+ 1

4

2

√
√
√
√
√
√
√
√
√
√

(

1 − 1

4
√
2

)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
(

1

16
+
√

1 + 1

162

)2 −

(
1

16
+
√

1 + 1

162

)

8
− 1

4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤ 0.5974,
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which implies that δ(v f ) ≤ 1
4
√
2
. This completes the proof. ��

In the rest of this section, we will assume that

τ = 1

16
, ω ≤ 1

2
√
2
, and θ = α

4
√
n
with α ≤ 1.

3.3 Upper bounds for! and ‖q‖

In this subsection, we will follow the same procedure as in Section 4.3 in [16]. Let L
be the null space of the matrix Ā. Note that the affine space

{ξ ∈ R
n : Āξ = θνrb

0}

equals dx + L. Furthermore, the row space Ā equals the orthogonal complement L⊥
of L defined as follows:

L⊥ =
{
ĀT z : z ∈ R

m
}

.

An obvious observation is that ds ∈ θνvs−1rc0 +L⊥. In addition, L⊥ ∩L = {0}. As
a consequence, the affine spaces dx + L and ds + L⊥ meet in a unique point q, i.e.,
q is the solution of the system

{
Aq = θνrb0,

A
T
z + q = θνvs−1rc0.

(23)

Lemma 3.12 Let q be the unique solution of (23). Then,

ω ≤ 1

2

√

‖q‖2 + (‖q‖ + σ(v))2.

Proof The lemma is obtained using the same arguments as in Lemma 4.6 in [16] with
r = −∇	(v). ��
Lemma 3.13 (Lemma 4.7 in [16]) One has

√
μ‖q‖ ≤ θνξ

√

eT
( x

s
+ s

x

)
.

Corollary 3.14 (Corollary 3.10 in [5]) Let τ = 1

16
and δ(v) ≤ τ. Then

√
x

s
≤ √

2
x(μ, ν)√

μ
,

√
s

x
≤ √

2
s(μ, ν)√

μ
.
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Recall that δ(v f ) ≤ 1
4√2

holds if ω ≤ 1
2
√
2
. Using Lemma 3.12 and Lemma 3.7,

this will certainly hold if

‖q‖2 + (‖q‖ + 2δ)2 ≤ 1

2
.

Or from Lemma 3.13 and Corollary 3.14, it follows that

μ‖q‖ ≤ θνξ
√
2
√

‖x(μ, ν)‖2 + ‖s(μ, ν)‖2.

As in [16], using μ = μ0ν = νξ2 and θ = α
4
√
n
, we obtain the following upper bound

for the norm of q

‖q‖ ≤
√
2α

4ξ
√
n

√
‖x(μ, ν)‖2 + ‖s(μ, ν)‖2

= α

2ξ
√
2n

√
‖x(μ, ν)‖2 + ‖s(μ, ν)‖2.

Let us denote

κ(ξ, ν) =
√‖x(μ, ν)‖2 + ‖s(μ, ν)‖2

ξ
√
2n

; 0 < ν ≤ 1, μ = μ0ν,

and

κ̄(ξ) = max
0<ν≤1

κ(ξ, ν).

We rewrite the upper bound for the norm of q as follows:

‖q‖ ≤ 1

2
ακ̄(ξ).

After some calculations, we conclude that

δ(v f ) ≤ 1
4
√
2
if ‖q‖ ≤ 0.4336.

Or since ‖q‖ ≤ 1
2ακ̄(ξ), the latter inequality will be satisfied if

α := 0.8672

κ̄(ξ)
. (24)

The following result gives a range for the parameter κ̄(ξ).We follow the technics from
Section 4.6 of [16]. We skip some details of the proof since it doesn’t depend on the
proposed KF.
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Lemma 3.15 One has

1 ≤ κ̄(ξ) ≤ √
2n.

Proof From initialization (1), we get κ(ξ) = 1. This yields the left-hand side of the
inequality. For the other side, let x∗ be an optimal solution of (P) and (y∗, s∗) an
optimal solution of (D). For simplicity, we denote x = x(μ, ν), y = y(μ, ν) and
s = s(μ, ν). Hence, the triple (x, y, s) is the unique solution of the following system

⎧
⎨

⎩

A(x∗ − x − νx∗ + νξe) = 0, x ≥ 0,
AT (y∗ − y − νy∗) = s − s∗ + νs∗ − νξe, s ≥ 0,
xs = νξ2e, μ > 0.

Using the fact that the row space of a matrix and its null space are orthogonal, we get

((1 − ν)x∗ − x + νξe)T (s − (1 − ν)s∗ − νξe) = 0. (25)

Let us define

a1 = (1 − ν)x∗ + νξe ≥ νξe,

a2 = (1 − ν)s∗ + νξe ≥ νξe.

From (25), we get

aT1 a2 = aT1 s + aT2 x . (26)

Therefore, since x∗T s∗ = 0, and x∗ + s∗ ≤ ξe we can obtain

aT1 a2 + xT s = ((1 − ν)x∗ + νξe)T ((1 − ν)s∗ + νξe) + νξ2n

≤ 2νξ2n. (27)

In addition, we can easily verify that

aT1 s + aT2 x = ((1 − ν)x∗ + νξe)T s + ((1 − ν)s∗ + νξe)T x

≥ νξeT (x + s) = νξ(‖x‖1 + ‖s‖1). (28)

Using (26), (27) and (28) it follows that

(‖x‖1 + ‖s‖1) ≤ 2ξn.

Using the equivalence between the Euclidean norm and the 1-norm, we get the final
inequality. ��
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3.4 Iteration bound

We arrive at the final result of this section which summarizes the complexity bound.
As we found in the previous sections, starting from an iterate (x, y, s) satisfying
δ(x, s;μ) ≤ τ with τ and θ defined previously, the new iterate (x f , y f , s f ) is strictly
feasible and δ(x f , s f ;μ+) ≤ 1

4√2
.Moreover, according to Remark 3.4, the number of

centrality steps needed to obtain iterates (x+, y+, s+) satisfying δ(x+, s+;μ+) ≤ τ

is at most 5. Therefore, the total number of main iterations is bounded by

1

θ
log

max{(x0)T s0, ‖r0b‖, ‖r0c ‖}
ε

.

Let us recall that θ = α

4
√
n
. Thus, using (24) and the fact that (x0)T s0 = nξ2, we

obtain the following upper bound for the total number of iterations

25
√
nκ̄(ξ) log

max{nξ2, ‖r0b‖, ‖r0c ‖}
ε

.

From Lemma 3.15, we can state the final result of this section which summarizes the
complexity bound.

Theorem 3.16 Let (P) and (D) be feasible and ξ > 0 such that

‖x∗ + s∗‖∞ ≤ ξ,

for some optimal solutions x∗ of (P) and (y∗, s∗) of (D). Then, the algorithm finds
an ε−solution of (P) and (D) after at most

25
√
2n log

max{nξ2, ‖rb0‖, ‖rc0‖}
ε

iterations.

4 Numerical tests

In this section, we showcase the performance of the proposed algorithm outlined in
1 by performing some preliminary numerical tests. Our experiments were directly
implemented in MATLAB R2012b and performed on Supermicro dual−2.80 GHz
Intel Core i5 server with 4.00 Go RAM.

We compare our algorithm (Alg. 1) with the SeDuMi solver using the average CPU
time. The latter is the time needed to obtain an optimal solution. The comparison
was done on a set of seven Netlib problems. While implementing our algorithm, we

set ε = 10−4, τ = 1

16
and (x0, y0, s0) = (ξe, 0, ξe), with ξ chosen such that

‖x∗ + s∗‖∞ ≤ ξ. As for θ, we use fixed values, θ ∈ {0.4, 0.5, 0.6, 0.7} because they
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Table 1 Average CPU time measured in seconds for seven Netlib problems

Problem afiro adlittle blend sc50a sc50b sc105 share2b

Alg. 1 0.0253 0.16 0.0846 0.0878 0.0585 0.1957 0.1747

SeDuMi 0.0302 0.1585 0.0869 0.0619 0.1252 0.1750 0.1411

perform better than the theoretical value θ = 1

5
√
2n

. The results are summarized in

Table 1. For each example, we use bold font to highlight the best, i.e., the shortest
CPU time.

From Table 1, it becomes clear that both our algorithm and SeDuMi solver take
similar time to obtain an optimal solution.

5 Conclusions and remarks

This paper proposes a full-Newton step infeasible IPA with new search directions.
The centrality step is derived using the classical search direction, while we used a KF
with hyperbolic barrier term to induce the feasibility step. The complexity analysis for
the primal-dual infeasible IPA based on this KF indicates that the proposed algorithm
enjoys the favorable iteration bound for LO. Furthermore, numerical tests on a selected
set of Netlib problems show that our algorithm seems promising in practice.
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