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Abstract
A strong edge-coloring of a graph G is an edge-coloring of G such that any two edges
that are either adjacent to each other or adjacent to a common edge receive distinct
colors. The strong chromatic index of G, denoted by χ ′

s(G), is the minimum number
of colors needed to guarantee that G admits a strong edge-coloring. For any integer
n ≥ 3, let Hn denote the n-prism (i.e., the Cartesian product Cn�K2) and H�

n the
graph obtained from Hn by replacing each vertex with a triangle. Recently, Lin and
Lin (2022) asked whether χ ′

s(H
�
n ) = 6 for any n ≥ 3. In this short note, we answer

this question in the affirmative.
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1 Introduction

In this note, we only consider finite simple graphs. A strong k-edge-coloring of a graph
G is a mapping φ : E(G) → {1, 2, . . . , k} such that if any two edges e and f are
either adjacent to each other or adjacent to a common edge in G, then φ(e) �= φ( f ).
The strong chromatic index of G, denoted by χ ′

s(G), is the minimum integer k for
which G has a strong k-edge-coloring. This concept was first introduced by Fouquet
and Jolivet [8, 9] and was used to solve a problem involving radio networks and their
frequencies (more details on this application can be found in [18, 19]).
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A well-known conjecture of Erdős and Nešetřil [5, 6] states that for any graph G
withmaximum degree�, χ ′

s(G) ≤ 5
4�

2 if� is even and χ ′
s(G) ≤ 5

4�
2− 1

2�+ 1
4 if�

is odd. This conjecture is still wide open. For graphs with� ≤ 3 (such graphs are often
referred to as subcubic graphs), the conjecture was confirmed by Andersen [1], and
independently byHorák,Qing andTrotter [11]. For graphswith� = 4, an upper bound
of 21 was proved by Huang, Santana and Yu [12] (note that the conjectured bound is
20). For sufficiently large �, Molloy and Reed [17] showed that χ ′

s(G) ≤ 1.998�2

by applying probabilistic techniques. This was later improved to 1.93�2 by Bruhn
and Joos [3], and then to 1.835�2 by Bonamy, Perrett and Postle [2]. The current best
known upper bound is 1.772�2, which was recently derived by Hurley, de Joannis de
Verclos and Kang [13].

The strong chromatic index of planar graphs has been intensively studied. Faudree
et al. [7] proved that χ ′

s(G) ≤ 4� + 4 for any planar graph G with maximum degree
�, and showed that there exists a planar graphG with χ ′

s(G) = 4�−4 for any� ≥ 2.
Hocquard, Ochem and Valicov [10] proved that χ ′

s(G) ≤ 3� − 3 for any outerplanar
graph G with maximum degree � ≥ 3, and constructed an example showing that
the upper bound is the best possible. Confirming a conjecture of Faudree et al. [7],
Kostochka et al. [14] proved that χ ′

s(G) ≤ 9 for any subcubic planar graph G. For
planar graphs with maximum degree 4, an upper bound of 19 was obtained by Wang
et al. [20].

A graph is said to be claw-free if it does not contain an induced subgraph isomorphic
to K1,3. Dȩbski, Junosza-Szaniawski and Śleszyńska-Nowak [4] showed thatχ ′

s(G) ≤
9
8�

2 + � for any claw-free graph G with maximum degree �. This verified the
aforementioned conjecture of Erdős and Nešetřil for claw-free graphs with maximum
degree at least 12. For any integer n ≥ 3, the n-prism Hn is the Cartesian product
Cn�K2. In 2022, Lv, Li and Zhang [16] proved that χ ′

s(G) ≤ 8 for any connected
claw-free subcubic graph G other than the 3-prism, and asked whether the upper
bound 8 can be improved to 7. Very recently, Lin and Lin [15] solved this problem
and constructed infinitely many connected claw-free subcubic graphs with the strong
chromatic index attaining the upper bound 7.

Theorem 1.1 (Lin and Lin [15]) If G is a connected claw-free subcubic graph not
isomorphic to the 3-prism, then χ ′

s(G) ≤ 7.

It is easy to observe that ifG is a connected claw-free cubic graph, then χ ′
s(G) ≥ 6.

Hence, Theorem 1.1 implies that χ ′
s(G) ∈ {6, 7} for any connected claw-free cubic

graph G other than the 3-prism.
Let H�

n denote the graph obtained from the n-prism Hn by replacing each vertex
with a triangle. It is clear that H�

n is a connected claw-free cubic graph. At the end
of their paper, Lin and Lin [15] suggested three questions for future research, one of
which is as follows.

Question 1.2 (Lin and Lin [15]) Is it true that χ ′
s(H

�
n ) = 6 for any integer n ≥ 3?

Themain objective of this short note is to give an affirmative answer to this question.
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Fig. 1 The graph H�
n

2 The proof

In this section, we prove the following theorem which answers Question 1.2
affirmatively.

Theorem 2.1 χ ′
s(H

�
n ) = 6 for any integer n ≥ 3.

Proof For the sake of simplicity, suppose that V (H�
n ) = {ui , vi , wi , xi , yi , zi : 1 ≤

i ≤ n} and E(H�
n ) = {uivi , vi ui+1, uiwi , viwi , xi yi , yi xi+1, xi zi , yi zi , wi zi : 1 ≤

i ≤ n}, where the subscripts are taken modulo n. An illustration is depicted in Fig. 1.
As we mentioned in the Introduction, it is easy to observe that χ ′

s(H
�
n ) ≥ 6. (One

can notice that for each i = 1, 2, . . . , n, the six edges incident to ui , vi or wi must
be colored with distinct colors.) Hence to prove Theorem 2.1, it suffices to show that
H�
n admits a strong 6-edge-coloring which implies that χ ′

s(H
�
n ) ≤ 6. We consider

two cases according to the parity of n.
Case 1 n is even.
Then n = 2k for some integer k ≥ 2. We define an edge-coloring φ of H�

2k as
follows:

(1.1) for each i = 1, 2, . . . , 2k, let φ(uiwi ) = 1, φ(viwi ) = 2, φ(xi zi ) = 3 and
φ(yi zi ) = 4;

(1.2) for each i = 1, 3, . . . , 2k − 1, let φ(wi zi ) = 5, φ(uivi ) = φ(xi yi ) = 6,
φ(vi ui+1) = 3 and φ(yi xi+1) = 1; and

(1.3) for each i = 2, 4, . . . , 2k, let φ(wi zi ) = 6, φ(uivi ) = φ(xi yi ) = 5,
φ(vi ui+1) = 4 and φ(yi xi+1) = 2.

See Fig. 2 for an illustration. It is easy to verify that φ is a strong 6-edge-coloring
of H�

2k .
Case 2 n is odd.
If n = 3, then a strong 6-edge-coloring of H�

3 is given in Fig. 3. So we may assume
that n ≥ 5, and hence n = 2k + 1 for some integer k ≥ 2. We define an edge-coloring
ψ of H�

2k+1 as follows:
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Fig. 2 A strong 6-edge-coloring of H�
2k

Fig. 3 A strong 6-edge-coloring
of H�

3

(2.1) for each i = 1, 2, . . . , 2k + 1, let ψ(uiwi ) = 1, ψ(viwi ) = 2, ψ(xi zi ) = 3
and ψ(yi zi ) = 4;

(2.2) for each i = 1, 3, . . . , 2k − 1, let ψ(wi zi ) = 5, ψ(uivi ) = ψ(xi yi ) = 6,
ψ(vi ui+1) = 3 and ψ(yi xi+1) = 1;

(2.3) for each i = 2, 4, . . . , 2k − 2, let ψ(wi zi ) = 6, ψ(uivi ) = ψ(xi yi ) = 5,
ψ(vi ui+1) = 4 and ψ(yi xi+1) = 2; and

(2.4) for the remaining uncolored edges, let ψ(x2k+1y2k+1) = 1, ψ(x2k y2k) =
ψ(y2k+1x1) = 2, ψ(u2k+1v2k+1) = 3, ψ(u2kv2k) = ψ(v2k+1u1) = 4,
ψ(w2k z2k) = ψ(w2k+1z2k+1) = 5, and ψ(v2ku2k+1) = ψ(y2k x2k+1) = 6.

Please refer to Fig. 4 for a detailed illustration. One can easily check that ψ is a
strong 6-edge-coloring of H�

2k+1. This completes the proof of the theorem. �	

123



A note on strong edge-coloring of claw-free cubic… 2507

Fig. 4 A strong 6-edge-coloring of H�
2k+1
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