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Abstract
Amodified Levenberg–Marquardt methods for solving system of nonlinear equations
is described and analysed in this paper. Specifically, we propose a convex combination

of ‖Fk‖δ and
∥
∥J Tk Fk

∥
∥

δ
with δ ∈ [1, 2] for the LM parameter and analyse the con-

vergence of this modified Levenberg–Marquardt method under the γ -Hölderian local
error bound of the underlying function and the v-Hölderian continuity of its Jacobian.
The results show that, under some suitable relationships of exponents v, γ and δ, the
modified Levenberg–Marquardt method converges to the solution set of the system
of nonlinear equations at least superlinearly. Numerical experiments show the new
algorithm is efficient.

Keywords System of nonlinear equations · Levenberg–Marquardt method ·
γ -Hölderian local error bound · v-Hölderian continuity
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1 Introduction

In this paper, we consider the system of nonlinear equations

F(x) = 0, (1)
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where F(x) : Rn → R
n is a continuously differentiable function. We assume that

the system of nonlinear Eq. (1) has a nonempty solution set X∗, and refer ‖ · ‖ to the
Euclidean 2-norm.

As we all know, the system of nonlinear equations is one of the cornerstones in
many fields of science, including engineering, finance, machine learning, etc. There
have been many well-known iterative methods to find one or more solutions for the
system of nonlinear Eq. (1), which may be summarized by two strategies: the line
search and the trust region paradigms. The line search strategy computes a descent
direction and a suitable stepsize to obtain a newestimation of theminimumpoint,while
the trust region methods choose a step and a stepsize in a region around the current
iterate within whichwe trust. Both these strategies contain the globally convergent line
search and trust region methods, the Newton-based methods, the conjugate gradient
methods, the quasi-Newton BFGS, DFP, and SR1 etc. They are operational in the
system of nonlinear equations and unconstrained optimizations [1–3]. Moreover, the
iterative technique is not only widely used for solving systems of nonlinear equations
and unconstrained optimization, but also for solving matrix equations. Some gradient
and least squares based iterative methods have been used to find the solutions to matrix
equations that are often encountered in systems and control [4, 5].

Although there have been many efficient iterative methods to find a solution to the
system of nonlinear equations, none of them is guaranteed to obtain the solutions for
all systems of nonlinear equations. Many iterative methods are specialized at solv-
ing particular classes of systems of nonlinear equations. Therefore, the application of
numerical methods is one of the important problems that many researchers are inter-
ested in. According to the characteristics of nonlinear problems, a suitable iterative
method for solving a class of system of nonlinear equations that plays a key role in
applied science, and there have beenmanyworks on these recently. For instants, in sys-
tem identification, many identification methods and parameter estimation approaches
have been developed for linear systems, bilinear systems [6] and nonlinear systems.
Among them, there are many methods based on gradient and least squares that have
been widely used for solving stochastic systems [7, 8], parameter identification [9],
dual-rate systems [10, 11], and state space systems [12], as well as many identification
methods for solving Hammerstein nonlinear systems [13].

In this paper, we focus on the numerical methods for solving the system of non-
linear equations. Due to the characteristics of the different nonlinear problems, there
are many iterative algorithms have not yet been utilized efficiently. Therefore, many
improved modifications of the classical iterative methods have been made [14–16].
Here, we improve the classical Levenberg–Marquardt method for solving the system
of nonlinear equations and discuss the convergence under some conditions.

The rest of this paper is organized as follows. In the next section, we first propose the
modified Levenberg–Marquardt algorithm for the system of nonlinear Eq. (1). Then,
in Sect. 3, the convergence rate of the algorithm will be discussed with γ -Hölderian
local error bound condition and the v-Hölderian continuity of the Jacobian. In Sect. 4,
the global convergence result is given when the line search is used. Some numerical
results are given in Sect. 5. Finally, we conclude this paper in Sect. 6.
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2 Themodified Levenberg–Marquardt method

One of the most well-known methods for solving system of nonlinear Eq. (1) is the
Levenberg–Marquardt method (hereinafter referred to as the LM method) [17, 18],
which computes the following trial step at every iteration

dk = −
(

J Tk Jk + λk I
)−1

J Tk Fk, (2)

where Fk = F(xk), Jk = J (xk) = F ′(xk) is the Jacobian, and λk is the LM parameter
updated by an appropriate rule. The LM method has quadratic convergence when
the function F(x) is Lipschitz continuous and its Jacobian J (x) is nonsingular. To
improve the computational efficiency and theoretical results of the LM method, there
have been intense and interesting discussions on the choices of the LM parameter and
convergence conditions in many works of literature recently [19].

Let N (x∗, b) = {x | ‖x − x∗‖ ≤ b} ⊂ R
n , with b < 1 is a positive constant,

be a neighbourhood of x∗ and ∀x ∈ N (x∗, b). By choosing the LM parameter as
λk = ‖Fk‖2, Yamashita and Fukushima [20] show that the LM method has quadratic
convergence under the following local error bound condition which is weaker than
nonsingularity,

c dist (x, X∗) ≤ ‖F(x)‖, ∀x ∈ N (x∗, b), (3)

where c is a positive constant, and dist (x, X∗) = inf x̄∈X∗ ‖x − x̄‖ means the distance
from x to X∗. It is obvious that, if J (x∗) is nonsingular at a solution x∗ of (1), then x∗ is
an isolated solution and ‖F(x)‖ provides a local error bound on some neighbourhood
of x∗.

Although the local error bound condition (3) is weaker than nonsingularity of
Jacobian Jk , it is not always applicable for some ill-conditioned nonlinear equations
from application fields like biochemical systems. The following condition, called γ -
Hölderian local error bound, is proposed,

c dist(x, X∗) ≤ ‖F(x)‖γ , ∀x ∈ N (x∗, b), (4)

where γ ∈ (0, 1], c > 0 is a positive constant. For example, for the Powell singular
function [21], the local error bound condition (3) is invalid, but the γ -Hölderian local
error bound condition (4) is valid with γ = 1/2 around the origin [22].

The γ -Hölderian local error bound condition (4) is obviously a generalization of
the local error bound condition (3), which extends the exponent γ from 1 to an interval
(0, 1]. Recently, under the γ -Hölderian local error bound condition, the convergence of
somemodified LMmethods has been discussed with several choices of LM parameter
[23–26].

From the definition of the LM trial step (2), it can be seen that the choice of the
LM parameter λk has a great influence on the computational efficiency of the LM
method. Therefore, in order to improve the computational efficiency, many choices of
the LM parameter, besides λk = ‖Fk‖2 proposed above, have been given recently. For
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example, Fan and Yuan [27] chose λk = ‖Fk‖, Dennis and Schnable [28] employed
λk = O(‖J Tk Fk‖)while Fischer [29] took λk = ‖J Tk Fk‖, Ma and Jiang [30] proposed
the convex combination of these two choices, i.e. λk = θ‖Fk‖+ (1− θ)‖J Tk Fk‖ with
θ ∈ [0, 1]. And some other choices are given [31–33]. To make the LM parameter
belongs to an interval which is proportional to ‖Fk‖, some algebraic rules for the LM
parameter also have been given [34, 35].

The choice of the LM parameter may cause some unsatisfactory properties when
the sequence {xk} generated by the LMmethod is close to or far away from the solution
set, Fan et al. [36] and Chen [37] extended the choice λk = ‖Fk‖2 to λ = ‖Fk‖δ with
δ ∈ [1, 2]. Inspired by those observations, we consider our choice as

λk = θ‖Fk‖δ + (1 − θ)‖J Tk Fk‖δ, (5)

where δ ∈ [1, 2] and θ ∈ [0, 1]. It’s clear that, if we take δ = 1, the choice (5) will be
that which took by Ma and Jiang in [30], and if δ = θ = 1, the choice (5) will reduce
to that proposed by Fan and Yuan in [27], etc. It also can be considered as the convex
combination of ‖Fk‖δ and ‖J Tk Fk‖δ . Therefore, choice (5) can be considered as the
extension of many other choices.

Now, we consider the following modified LM algorithm with the LM parameter as
(5) for the system of nonlinear Eq. (1).

Algorithm 1 The modified LM algorithm
Require: x0 ∈ X ; δ ∈ [1, 2]; θ ∈ [0, 1].
1: k ⇐ 0; λ0 ⇐ θ‖F0‖δ + (1 − θ)‖J T0 F0‖δ ;

2: while ‖J Tk Fk‖ > 0 do
3: Solve the equation (2) to obtain dk ;
4: xk+1 ⇐ xk + dk ;
5: Update λk by computing (5);
6: k ⇐ k + 1;
7: end while

Togeneralize the theoretical application of themodifiedLMalgorithm1,we analyse
the convergence of our new LM method under the γ -Hölderian local error bound (4)
instead of the commonly used local error bound condition (3).

3 Convergence rate

The following assumptions are needed to establish convergence of Algorithm 1
throughout the paper.

Assumption 1 The following conditions hold for some x∗ ∈ X∗.
(a) F(x) admits a γ -Hölderian local error bound property in the neighbourhood of

x∗ ∈ X∗, where γ ∈ (0, 1], i.e., there exits positive constants c > 0 that makes

c dist(x, X∗) ≤ ‖F(x)‖γ , ∀x ∈ N (x∗, b). (6)
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(b) J (x) is ν-Hölderian continuous, where v ∈ (0, 1], i.e., there exists a constant
κ1 > 0 such that

‖J (x) − J (y)‖ ≤ κ1‖x − y‖v, ∀x, y ∈ N (x∗, b). (7)

Remark 1 If γ = 1, then the γ -Hölderian local error bound condition (6) will be
the local error bound condition (3). If v = 1, then the v-Hölderian continuity of the
Jacobian (7) will be Lipschitz continuity of the Jacobian.

It follows from Assumption 1 and the mean value theorem that

‖F(y) − F(x) − J (x)(y − x)‖ =
∥
∥
∥
∥

∫ 1

0
J (x + t(y − x)) (y − x)dt − J (x)(y − x)

∥
∥
∥
∥

≤ ‖y − x‖
∫ 1

0
‖J (x + t(y − x)) − J (x)‖ dt

≤ κ1

1 + v
‖y − x‖1+v for all x, y ∈ N (x∗, b). (8)

It can also been seen that there is a constant κ2 > 0 such that

‖J (x)‖ ≤ κ2, ∀x ∈ N (x∗, b).
‖F(y) − F(x)‖ ≤ κ2‖y − x‖, ∀x, y ∈ N (x∗, b). (9)

Suppose that Algorithm 1 starts with an initial x0 that is sufficiently close to x∗ such
that the sequence {xk}∞k=0 stays in the feasible set X∗ for F(x). It is worth emphasizing
that x∗ may not be an isolated zero of F(x), and in the end xk may converge to some
point in X∗ if it converges. Denote by x̃ ∈ X∗ which satisfies

‖x̃ − x‖ = dist (x, X∗) . (10)

Now, we will study the local convergence of our modified LM method, i.e., Algo-
rithm 1.

Denote by

d(x) = −
(

J (x)T J (x) + λ(x)I
)−1

J (x)T F(x) (11)

and

λ(x) = θ‖F(x)‖δ + (1 − θ)‖J (x)T F(x)‖δ. (12)

Lemma 2 Let Assumption 1 hold. If v ≥ 2(1/γ − 1), then there exist some positive
constants c1, c2 such that

c1dist(x, X
∗)δ/γ ≤ λ(x) ≤ c2dist(x, X

∗)δ, ∀x ∈ N (x∗, b). (13)
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Proof First we will show the second inequality in (13). From (9), we have

λ(x) = θ‖F(x)‖δ + (1 − θ)‖J (x)T F(x)‖δ ≤ (

θ + (1 − θ)‖J (x)‖δ
) ‖F(x)‖δ

= (

θ + (1 − θ)‖J (x)‖δ
) ‖F(x̄) − F(x)‖δ ≤ (

θ + (1 − θ)‖J (x)‖δ
)

κδ
2‖x̄ − x‖δ

≤ κδ
2

(

θ + (1 − θ)κδ
2

) ‖x̄ − x‖δ.

This proves the second inequality in (13) with c2 = κδ
2

(

θ + (1 − θ)κδ
2

)

.
Now, we show the first inequality in (13). From

‖F(x)‖2 = F(x)T F(x)

= F(x)T (F(x̄) + J (x)(x − x̄)) + F(x)T (F(x) − F(x̄) − J (x)(x − x̄)) ,

we have

F(x)T J (x)(x − x̄) = ‖F(x)‖2 − F(x)T (F(x) − F(x̄) − J (x)(x − x̄)) .

From the properties of the norm, we get

‖F(x)T J (x)(x − x̄)‖ ≥ ‖F(x)‖2 − ‖F(x)T ‖ ‖F(x) − F(x̄) − J (x)(x − x̄)‖.
(14)

Since v ≥ 2(1/γ − 1), it follows from (6), (8), (9) and (14) that

‖J (x)T F(x)‖ ‖x̄ − x‖ ≥ c2/γ ‖x̄ − x‖2/γ − κ1κ2

1 + v
‖x̄ − x‖2+v.

Thus, we have

‖J (x)T F(x)‖ ≥c2/γ ‖x̄ − x‖2/γ−1 − κ1κ2

1 + v
‖x̄ − x‖1+v ≥ c3‖x̄ − x‖2/γ−1

with c3 > 0 is some positive constant. Hence

λ(x) = θ‖F(x)‖δ + (1 − θ)‖J (x)T F(x)‖δ

≥ θcδ/γ ‖x̄ − x‖δ/γ + c3(1 − θ)‖x̄ − x‖δ(2/γ−1)

≥ c1‖x̄ − x‖δ/γ .

This proves the first inequality in (13) with c1 being a positive constant. 
�
Lemma 3 Let Assumption 1 hold, then the following inequality holds with a positive
constant c4 > 0.

‖d(x)‖ ≤ c4dist(x, X
∗)min{1,1+v−δ/2γ }, ∀x ∈ N (x∗, b/2). (15)
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Proof For all x ∈ N (x∗, b/2), we get

‖x̄ − x∗‖ ≤ ‖x̄ − x‖ + ‖x − x∗‖ ≤ b. (16)

Thus, x̄ ∈ N (x∗, b).
Define the quadratical convex function ϕ(d) as

ϕ(d) = ‖F(x) + J (x)d‖2 + λ(x)‖d‖2. (17)

Hence, d(x) is the minimizer of ϕ(d). By Assumption 1, Lemma 2, (16) and (17), we
get

‖d(x)‖2 ≤ ϕ(d(x))

λ(x)
≤ ϕ(x̄ − x)

λ(x)
= ‖F(x) + J (x)(x̄ − x)‖2 + λ(x)‖x̄ − x‖2

λ(x)

= ‖F(x̄) − F(x) − J (x)(x̄ − x)‖2
λ(x)

+ ‖x̄ − x‖2

≤ κ2
1

c1(1 + v)2
‖x̄ − x‖2(1+v)−δ/γ + ‖x̄ − x‖2

≤
(

κ2
1

c1(1 + v)2
+ 1

)

‖x̄ − x‖2min{1,1+v−δ/2γ }.

Let c4 =
√

κ2
1/c1(1 + v)2 + 1, we obtain (15). 
�

Lemma 4 Assume x, x+d(x) ∈ N (x∗, b/2). Then the following inequality holds with
a positive constant c5.

dist(x + d(x), X∗) ≤ c5dist(x, X∗)γ min{1+v,1+δ/2,2(1+v−δ/2γ )}. (18)

Proof From the definition of ϕ(d) (17) and Lemma 2, we can show

‖F(x) + J (x)d(x)‖2 ≤ ϕ(d(x)) ≤ ϕ(x̃ − x) ≤ ‖F(x) + J (x)(x̃ − x)‖2 + λk‖x̃ − x‖2

≤ κ2
1

(1 + v)2
‖x̃ − x‖2(1+v) + c2‖x̃ − x‖2+δ

≤
(

κ2
1

(1 + v)2
+ c2

)

‖x̃ − x‖2min{1+v,1+δ/2}.

Then we have

‖F(x) + J (x)d(x)‖ ≤ c6‖x̃ − x‖min{1+v,1+δ/2}, (19)

where positive constant c6 =
√

κ2
1/(1 + v)2 + c2.
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It follows from Assumption 1, Lemma 3 and (19) that

c dist(x + d(x), X∗) ≤ ‖F(x + d(x))‖γ ≤
(

‖F(x) + J (x)d(x)‖ + κ1‖d(x)‖2
)γ

≤
(

c6‖x̃ − x‖min{1+v,1+δ/2} + κ1c
2
4‖x̃ − x‖2min{1,1+v−δ/2γ })γ

≤
(

c6 + κ1c
2
4

)γ ‖x̃ − x‖γ min{1+v,1+δ/2,2,2(1+v−δ/2γ )}.

Hence the inequality (18) holds with c5 = c−1
(

c6 + κ1c24
)γ
. 
�

It is clear that, from (11) and (12), we have dk = d(xk), λk = λ(xk) and xk+1 =
xk + dk . Then it follows from Lemmas 2, 3 and 4 that, at every iteration,

c1dist(xk, X
∗)δ/γ ≤ λk ≤ c2dist(xk, X

∗)δ,
‖dk‖ ≤ c4dist(xk, X

∗)min{1,1+v−δ/2γ },
dist(xk+1, X

∗) ≤ c5dist(xk, X
∗)γ min{1+v,1+δ/2,2(1+v−δ/2γ )}

hold with xk, xk+1 ∈ N (x∗, b/2).

Remark 2 Let

α =min{γ (1 + v), γ (1 + δ/2), 2γ (1 + v) − δ},
β =min{1, 1 + v − δ/2γ }.

To analyse the convergence rate of the sequence {xk} generated by Algorithm 1, the
value of above α and β in Lemmas 3 and 4 should be discussed. Obviously, a larger
value of α will lead to derive a better convergence rate. Also, to deduce a convergence
result, one needs to have α > 1. This holds if and only if

γ >
1

1 + v
and 2

(
1

γ
− 1

)

< δ < 2γ (1 + v) − 1, (20)

which imposes an additional requirement on the values of γ , v and δ.

Since α > 1, we have that βαk > k for sufficiently large k. As
∑∞

l=0

( 1
2

)l = 2, we
deduce that

c7 =
∞
∑

l=0

(
1

2

)βαl

< ∞.

Let

r = min

⎧

⎨

⎩

1

2c1/(α−1)
5

,
b

2
(

1 + 2c4c
(1−β)/(α−1)
5 c7

)

⎫

⎬

⎭
, (21)
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where c4, c5, c7, α, β are defined above.
Now, we show that if the initial point x0 in Algorithm 1 is close enough to X∗, the

assumption of Lemma 4 will be satisfied.

Lemma 5 Assume (20) holds. If the initial point x0 ∈ N (x∗, r), where r is given by
(21), then we have xk ∈ N (x∗, b/2) for every k.

Proof The proof is conducted by induction of k. We start with k = 0. By the
assumption, we have x0 ∈ N (x∗, r). Since r ≤ b/2, then xl ∈ N (x∗, b/2) for all
l = 0, 1, · · · , k. In order to show that xk+1 ∈ N (x∗, b/2), we first from Lemma 3
note that

‖xk+1 − x∗‖ = ‖xk + dk − x∗‖ ≤ ‖xk − x∗‖ + ‖dk‖ ≤ ‖xk−1 − x∗‖ + ‖dk−1‖ + ‖dk‖

≤ · · · ≤ ‖x0 − x∗‖ +
k

∑

l=0

‖dl‖ ≤ r + c4

k
∑

l=0

dist(xl , X∗)β . (22)

By Lemma 4, since r ≤ 1/2c1/(α−1)
5 defined in (21), we get

dist(xl , X∗) ≤ c5dist(xl−1, X∗)α ≤ c5c
α
5 dist(xl−2, X∗)α

2

≤ · · ·
≤ c5c

α
5 · · · cαl−1

5 dist(x0, X∗)α
l = c1+α+···+αl−1

5 dist(x0, X∗)α
l

≤ c
αl−1
α−1
5 ‖x0 − x∗‖αl ≤ c

αl−1
α−1
5 rαl ≤ r

(

c
1

α−1
5 r

)αl−1

≤ r

(
1

2

)αl−1

, (23)

where l = 0, 1, · · · , k.
By (21), (22) and (23), we have

‖xk+1 − x∗‖ ≤ r + c4

k
∑

l=0

dist(xl , X∗)β ≤ r + c4

k
∑

l=0

(

r

(
1

2

)αl−1
)β

= r + c4(2r)
β

k
∑

l=0

(
1

2

)βαl

≤ r

(

1 + 2βc4r
β−1

∞
∑

l=0

(
1

2

)βαl)

≤ r
(

1 + 2c4c
(1−β)/(α−1)
5 c7

)

≤ b

2
.

The above inequality indicates that xk+1 ∈ N (x∗, b/2). 
�
From Lemmas 4 and 5 that we obtain the following main theorem.

Theorem 6 UnderAssumption 1, if (20) holds, then the sequence {dist(xk, X∗)} super-
linearly converges to zero with order min{γ (1 + v), γ (1 + δ/2), 2γ (1 + v) − δ}.

123



2028 L. Chena and Y. Ma

Moreover, the sequence {xk} generated by Algorithm 1with initial point x0 ∈ N (x∗, r)
converges to a solution x̃ ∈ X∗

⋂
N (x∗, b/2) of nonlinear Eq. (1).

Proof The first part of this theorem, that is the convergence rate of sequence
{dist(xk, X∗)}, is clearly derived by Lemmas 4 and 5. So, only the proof of second
part should been given.

From the hypothesis, for every k, we get xk ∈ N (x∗, b/2). Hence, we just have to
show that {xk} converges. From Lemma 3 and (23), we have

‖dk‖ ≤ c4dist(xk, X∗)β ≤ c4r
β

(
1

2

)β(αl−1)

. (24)

Denoting by

sk =
k

∑

l=0

‖dl‖ ≤ c4(2r)
β

k
∑

l=0

(
1

2

)βαl

≤ c4c
β

1−α

5

k
∑

l=0

(
1

2

)βαl

≤ c4c
β

1−α

5 c7 < ∞,

we obtain that {sk} is a Cauchy sequence. Thus, we have

‖xk+p − xk‖ ≤ ‖dk+p−1‖ + ‖xk+p−1 − xk‖

≤ · · · ≤
k+p−1
∑

l=k

‖dl‖

=| sk+p−1 − sk−1 |, (25)

for any k, p ∈ N. Which indicates that the sequence {xk} is also a Cauchy sequence.
Then, {xk} converges to some x̃ . Since xk ∈ N (x∗, b/2) for all k and {dist(xk, X∗)}
convergence to zero, we have x̃ ∈ X∗

⋂
N (x∗, b/2). 
�

Theorem 7 Under the assumptions of Theorem 6, if v ≥ δ/2γ , then sequence {xk},
generated by Algorithm 1 with x0 ∈ N (x∗, r), converges to the solution x̃ of the
nonlinear Eq. (1) with order γ (1 + δ/2).

Proof It follows from v ≥ δ/2γ that

γ (1 + v) − γ

(

1 + δ

2

)

= γ

(

v − δ

2

)

≥ γ

(
δ

2γ
− δ

2

)

= γ δ

2

(
1

γ
− 1

)

≥ 0
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and

(2γ (1 + v) − δ) − γ

(

1 + δ

2

)

= γ + 2γ v − δ − γ δ

2
≥ γ − γ δ

2

= γ

2
(2 − δ) ≥ 0.

So, from the the assumptions of Theorem 6, we have

α = min{γ (1 + v), γ (1 + δ/2), 2γ (1 + v) − δ} = γ (1 + δ/2) > 1. (26)

Moreover, it follows from (26) that dist(xk+1, X∗) ≤ 1
2dist(xk, X∗) holds for all

sufficiently large k. From v ≥ δ/2γ , we have β = 1 in Lemma 3. By letting p → ∞
in (25), we deduce

‖x̃ − xk‖ ≤
∞
∑

l=k

‖dl‖ ≤ c4

∞
∑

l=k

dist(xl , X∗) ≤ c4

∞
∑

l=k

(
1

2

)l−k

dist(xk, X∗)

≤ 2c4dist(xk, X∗) ≤ 2c4c5dist(xk−1, X∗)α ≤ 2c4c5‖x̃ − xk−1‖α, (27)

which implies that {xk} converges with rate γ (1 + δ/2). 
�
Remark 3 (1) As it was shown in Theorem 7, if γ = v = 1, we have α = 1 + δ/2.

From (27), we obtain

‖x̃ − xk‖ ≤ 2c4c5‖x̃ − xk−1‖1+δ/2

which shows that the sequence {xk} at least converges superlinearly and converges
quadratically while δ = 2. This result is the same as the result in [20] with δ = 2
and θ = 1.

(2) Under Assumption 1, let γ = v = 1. Algorithm 1 will reduce to the algorithm
proposed by Fan and Yuan in [27] when θ = 1, δ = 1, the algorithm proposed by
Ma and Jiang in [30, Algorithm 2.1] when δ = 1, and the algorithm proposed by
Fan and Yuan in [36] when θ = 1, δ ∈ [1, 2]. The results of Theorem 7 is also the
same as theirs.

Remark 4 To obtain fast convergence order, singular value decomposition (SVD) tech-
nology was employed by some papers [27, 30, 36], but we omit it here.

4 Global convergence

In this section, we discuss the global convergence properties of the modified LM
method. To guarantee the global convergence, the Armijo line search technique is
employed in the modified LM method.
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Take

�(x) = 1

2
‖F(x)‖2

as the merit function for nonlinear equations (1).
We consider the following algorithm.

Algorithm 2 The modified LM algorithm with line search
Require: x0 ∈ X ; δ ∈ [1, 2]; θ ∈ [0, 1]; α̃, β̃, γ̃ ∈ (0, 1).
1: k ⇐ 0; λ0 ⇐ θ‖F0‖δ + (1 − θ)‖J T0 F0‖δ ;

2: while ‖J Tk Fk‖ > 0 do
3: Solve the equation (2) to obtain dk ;
4: if ‖F(xk + dk )‖ ≤ γ̃ ‖Fk‖ then
5: xk+1 ⇐ xk + dk ;
6: else
7: m ⇐ 0;
8: while �(xk + β̃mdk ) − �(xk ) > α̃β̃m∇�(xk )

T dk do
9: m ⇐ m + 1;
10: end while
11: xk+1 ⇐ xk + β̃mdk ;
12: end if
13: Update λk by computing (5);
14: k ⇐ k + 1;
15: end while

Theorem 8 Suppose Assumption 1 holds. Then the sequence {xk} be generated by
Algorithm 2 converges to a stationary point of �(x). Moreover, if the stationary
point x∗ is a solution of nonlinear Eq. (1), then {xk} converges to the solution with
convergence rate min{γ (1 + v), γ (1 + δ/2), 2γ (1 + v) − δ}.
Proof The Armijo line search technique is employed in Algorithm 2. That is, the next
iteration will be computed might be

xk+1 = xk + β̃mdk,

where β̃m is a step size and m ≥ 0 is the smallest nonnegative integer that satisfies
the following inequality.

�
(

xk + β̃mdk
)

− �(xk) ≤ α̃β̃m∇�(xk)
T dk .

Combine with [38, Eq. (2.10)], we get

‖F(xk+1)‖2 ≤ ‖Fk‖2 − α̃α̂

(

FT
k Jkdk

)2

‖dk‖2 , (28)

where α̂ is some positive constant.
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Therefore, from the condition ‖F(xk + dk)‖ ≤ γ̃ ‖Fk‖ and (28), we obtain that
{‖F(xk)‖} is monotonically decreasing. Hence, the sequence {xk} converges to a sta-
tionary point of �(x).

Next we show the remainder part.We deduce from the first part that ‖F(xk+dk)‖ ≤
γ̃ ‖Fk‖ holds for sufficient large k, that is, β̃m = 1 holds for all sufficient large k. Since
{xk} converges to a stationary point x∗ which is a solution of nonlinear Eq. (1), there
exists a large K such that

‖F(xK )‖αγ−1 ≤ cαγ̃

κ2c5
, (29)

and

‖xK − x∗‖ ≤ r

where c, κ2 and c5 are defined in Sect. 3, r is defined by (21).
Let sequence {yk} be generated by Algorithm 1 with unit step size and y0 = xK .

Then, by Theorem 6, the sequence dist(yl , X∗) converges to zero with convergence
ratemin{γ (1+v), γ (1+δ/2), 2γ (1+v)−δ}. So, we just have to prove that xK+l = yl
holds for each l, i.e. {yl} satisfies

‖F(yl+1)‖ ≤ γ̃ ‖F(yl)‖.

Let ȳl+1 ∈ X∗ such that ‖yl+1 − ȳl+1‖ = dist(yl+1, X∗). It follows from Assumption
1 (a), Lemma 4, (9) and (29) that

‖F(yl+1)‖ = ‖F(yl+1) − F(ȳl+1)‖
≤ κ2dist(yl+1, X∗) ≤ κ2c5dist(yl , X∗)α

≤ κ2c5‖F(yl)‖αγ−1

cα
‖F(yl)‖

≤ γ̃ ‖F(yl)‖ (30)

holds for γ̃ < 1 and each l. (30) implies that β̃m = 1 holds for all sufficient large k
in Algorithm 2. Thus, we have {xk} converges to the solution with convergence rate
min{γ (1 + v), γ (1 + δ/2), 2γ (1 + v) − δ}. 
�

5 Numerical example

Some numerical experiments are carried out to verify Algorithm 1 proposed in Sect.
3 in this section. We first test the following Powell singular function [21] proposed in
Sect. 1.

F(x) =
(

x1 + 10x2,
√
5(x3 − x4), (x2 − 2x3)

2,
√
10(x1 − x4)

2
)T

, (31)
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where x ∈ R
4. As proposed in Sect. 1, the local error bound (3) does not satisfy (31)

but the γ -Hölderian local error bound (4) does.
The other test problems are systems of nonlinear equations created by themodifying

singular problems proposed in [21, 39],

F̂(x) = F(x) − J (x∗)A
(

AT A
)−1

AT (x − x∗), (32)

where x∗ is its root, function F(x) is the standard nonsingular function, and matrix
A ∈ R

n×k has full column rank with 1 ≤ k ≤ n. It is easy to check that F̂(x∗) = 0

and Ĵ (x∗) = J (x∗)
(

I − A
(

AT A
)−1

AT
)

has rank n − k.

We chose the rank of Ĵ (x∗) to be n − 1 by using

A ∈ R
n×1, AT = (1, 1, · · · , 1) (33)

and n − 2 by using

A ∈ R
n×2, AT =

(

1 1 1 1 · · · 1
1 −1 1 −1 · · · ±1

)

(34)

respectively.
We test several choices of the LM parameter in Algorithm 1. Based on the range

of θ and δ defined in (5), we use θ = 0, 0.5 and 1 and δ = 1, 1.5 and 2 for the LM
method with unit step size in Sect. 3. The algorithm is terminated when the norm of
‖J Tk Fk‖ ≤ 10−6, or when the number of the iterations exceeds 100(n + 1). However,
for Powell singular function, we take the number 106 instead of 100(n+1). The results
for the Powell singular function are tabulated in Table 1, while the results for systems
of nonlinear equations with rank n − 1 and n − 2 case are tabulated in Tables 2 and 3,
respectively. We test three starting points x0, 10x0 and 100x0 where x0 is suggested
by Moré, Garbow and Hillstrom in [21]. The notation “–” is used if the method fails
to find the solution within the maximum iterations.

The results in Table 1 show that Algorithm 1 is efficient for Powell singular function
even it does not satisfy the local error bound (3). But it is not perfect because of the big
number of the iteration when initial point is not close enough to x∗. From the results
in the all tables, we can see that Algorithm 1 is always outstanding when δ = 1 no
matter what the value of θ is. In fact, when {xk} is close to the solution set X∗, the LM
parameter λk with δ = 2 may be very small, even less than the machine accuracy, and
it will lose its role. Conversely, when {xk} is far away from the solution set X∗, the
LM parameter λk with δ = 2 may be very large, and the trial step dk will be small,
then it prevents {xk} from converging rapidly. Also Algorithm 1 with λk = ‖Fk‖δ is
always outperforms or at least performs as well as Algorithm 1 with λk = ‖J Tk Fk‖δ .
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6 Conclusion

We have presented a modified Levenberg–Marquardt method for solving system of
nonlinear equations with adaptive choice of LM parameter which is a convex combi-
nation of ‖Fk‖δ and ‖J Tk Fk‖δ . Under the γ -Hölderian local error bound condition of
the underlying function and the v-Hölderian continuity of its Jacobian, its convergence
including local and global has been analysed. These convergence properties hold in
many applied problems, as they are satisfied by any real differentiable function. In our
numerical experiments, we clearly obtained a superior performance of our choice of
LM parameter.
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