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Abstract
The main motive and, at the same time, the goal of this work is to investigate a
revisited Nicholson’s blowflies equation that involves a time varying delay and an
iterative term. We make use of Schauder’s fixed point theorem to tackle the existence
of positive periodic solutions and under an additional condition, we apply the Banach
contraction principle for establishing the existence, uniqueness and stability results.
Finally, we give two examples to illustrate the effectiveness of our main results that
are completely new and complement some earlier investigations to some extent.

Keywords Banach contraction principle · Schauder’s fixed point theorem ·
Nicholson’s blowflies equation · Periodic solution

Mathematics Subject Classification 34A12 · 39B12 · 34K13 · 47H10

1 Introduction

This work fits into the overall framework of the study of delayed phenomena in pop-
ulation dynamics. More precisely, the study carried out in this article concerns one of
the most important biological models Nicholson’s blowflies model which describes
the evolution, over time, of populations of a sheep blowfly called Lucilia cuprina.
Despite its harmless appearance, Lucilia cuprina is a parasitic fly of major global eco-
nomic importance since it is responsible for 90% of severe sheep illnesses or what
they are commonly referred to as flystrikes. This dipteran fly causes significant eco-
nomic losses amounting to hundreds of millions of dollars per year for the animal,
food and textile industries in many parts of Europe, North America , Australia as well
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as several countries such as New Zealand and South Africa. To be honest, the fly itself
is harmless, as the adult fly usually feeds on pollen and nectar, but the danger lies in
its maggots that cause fatal cutaneous infections in the lamb. More precisely, after the
hatching of maggots from fly eggs that are laid on the skin of the host, they start to
parasitize and invade the living flesh for feeding off excretions and damaged tissues
and hence creating painful wounds that can lead to the death of the lamb if it has left
without treatment.

For sheep farmers, Lucilia cuprina is difficult to fight and the strategies for fighting
against it, have until now been based on preventive approaches wether chemical,
mechanical or biological ones. For instance, they have used and still use the mulesing
which is a very painful and inexpensive surgical procedure for reducing the risk of
the flystrike. It consists of removing parts of the skin from around the lamb’s breech
and cutting its tail by means of special sharp shears for leaving a smooth and glabrous
epidermis and hence avoiding the aggression of maggots. They have also tried to use
organochlorine insecticides such as cyclodienes (dieldrin) to reduce fly breeding. But
unfortunately this blowfly has rapidly developed resistance to chemical treatments. On
the other hand, some scientists have adopted the sterile insect technique by changing
the characteristics of male insects, while others have chosen to use a more-efficient
and less-costly approach where larvae have been modified to be dependent on the
tetracycline. In the absence of this antibiotic, the female larvae will die before reaching
the pupal stage and the male ones will transmit this lethal dependence on the antibiotic
to their female offspring. Unfortunately, this technique has also been abandoned,
mainly due to high costs and hence the mulsing remains the only current preventive
measure.

In the early fifties of the last century, the famous entomologist Alexander. John.
Nicholson has conducted a series of experiments aimed at tackling this serious problem
by studying the dynamics of this annoying fly. As a result of his laboratory researches,
he observed a regular periodic oscillation of about 35 to 40 dayswhich corresponds to a
delay ranging from9 to 15 days.Gurney et al. [10] havemodelledmathematically these
experiments where they have proposed the following first-order differential equation
with a constant delay:

dx (t)

dt
= βx (t − τ) exp

(−x (t − τ)

k

)
− αx (t) ,

with x (t) represents the size of the population of sexuallymature flies at time t ,β is the
maximum egg production per fly per day, k is the maximum number of the Australian
sheep blowflies that the environment can support, α is the mortality rate and τ is the
time needed to complete the four life cycle stages, starting with the oviposition and
ending with the emergence of new flies from pupae.

It’s worth noting here that this delay differential equation and its generalizations are
commonly used for describing the development of some insect populations, but this
does not preclude their use for describing other phenomena in population dynamics
since it has found many useful applications in system control theory, biomathematics,
neural networksmodels, models for fisheries management and optimization problems.
In fact, for a long time, delay differential equations have received a great deal of atten-
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tion due to their significant nature that allows for a more realistic modelling of many
real phenomena. Concerning Nicholson’s differential equation with two delays, many
researchers pay great attention to it. For example, Huang et al. [11] used differential
inequality techniques and dynamical system approaches to investigate the following
Nicholson’s blowflies equation with two different constant delays:

x
′
(t) = −αx (t) + βx (t − τ1) e

−γ x(t−τ2).

I would like to point out that the time-varying environment influences environmental
models by playing a significant role in their modelling which translates the fact that
coefficients and delays in models of population dynamics and ecology are usually
time-varying. For this, many scholars investigated Nicholson’s blowflies models with
time-varying coefficients and delays. For instance, Long andGong [15], used differen-
tial inequality techniques and the fluctuation lemmas to study the below Nicholson’s
blowflies equationwith variable parameters andmultiple pairs of time-varying delays.

x
′
(t) = p (t)

⎡
⎣−αx (t) +

m∑
j=1

β j x
(
t − h j (t)

)
e−γ j x(t−g j (t))

⎤
⎦ .

One of the most common and frequently encountered class of delay differential
equations in life sciences is iterative differential equations which appear as models
for several vital phenomena, ranging from ecological, biological and epidemiological
phenomena to electrodynamic ones (see for instance [2, 4, 9, 12, 16]). Most recently,
many scholars have tried to deal with iterative differential equations (see [1–8, 12–
14, 16, 23]). However, to the best of our knowledge, it seems that little has been
done for iterative Nicholson’s blowflies equations except our work [4], where we
have investigated the following Nicholson’s blowflies equation with iterations in the
harvesting effort:

x
′
(t) = −α (t) x (t) + β (t) x (t − τ) e−γ (t)x(t−τ)

− qx (t − τ) E
(
t, x (t) , x [2] (t) , . . . , x [n] (t)

)
,

where q x (t − τ) E
(
t, x (t) , x [2] (t)

)
stands for the harvesting term which represents

live-capture, hunting or trapping blowflies, x (t − τ) denotes the delayed estimate of
the true population, E

(
t, x (t) , x [2] (t)

)
is the harvesting effort which can be defined

as the intensity of human activities to harvest blowflies and q > 0 is the so-called the
catchability or capturability coefficient, which expresses the fraction of the population
that is caught by one unit of harvesting effort.

In fact, the above equation involves two different types of delays where the recruit-
ment term incorporates the same constant delay while the harvesting term involves
this lag as well as the iterations in the harvesting effort that have resulted from other
delays depending on the time and state. As we said before, this kind of equation is
of great interest in the mathematical modelling of many phenomena in life sciences
and electrodynamics, yet it is challenging to deal with it, if not impossible. In fact,
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the dilemma resides in the lack of a basic theory and also in its iterative terms which
often hinder the use of classical mathematical methods or make these latter difficult
to apply.

Based on the above discussions and motivated by the desire to continue the inves-
tigation in this direction, in the present paper, we study the following revisited
Nicholson’s blowflies equation:

x ′ (t) = −α (t) x (t) + β (t) x (t − τ (t)) e−γ (t)x [2](t), (1.1)

where α, β, γ ∈ C ([0, w] , (0,+∞)) are w−periodic functions, τ ∈ C (R,R) is a
w−periodic function and x [2] (t) = x (x (t)) . Here we assume that the recruitment
term involves two different delays, the first one is τ(t) which represents the develop-
mental ormaturation timewhereas the second one is of the form τ1(t, x (t)) = t−x (t).
This latter lag which depends on both the time and the size of the population and gives
rise to what is known as the second iterate of the state x [2] (t), stands for the delay
that occurs due to the competition for food during the three larval stages. Indeed, the
huge number of larvae leads to the crowding of the individuals which has impact on
their survival and reproduction during the life cycle. In other words, since the larvae
superimpose on each other, so the larvae on the bottom complete their development
before the ones sitting on the top, and this leads to occur the aforementioned delay
that depends on the time and the number of larvae.

The key features of the current work can be summarized as follows:

(i) The recruitment term in our problem involves two distinctive delays which have
shown to bemore realistic inmodelling the development of Lucilia cuprina popula-
tions. The maturation delay τ(t) is a time-varying lag while the other one depends
on the time and the density of adult Australian sheep blowflies which gives in turn
the second iterate of the state.

(ii) Up to now, there are no manuscripts that deal with Nicholson’s blowflies equa-
tion with an iterative recruitment term. So, our obtained results will enrich some
previous ones to some extent.

(iii) The aim of this work is to provide some new criteria for the existence, uniqueness
and stability of positive periodic solutions. We follow an approach that is based on
reducing the existence of the solution to that of a fixed point of an integral operator
constructed after the conversion of the considered equation into an integral one
whose kernel is a Green’s function. In light of this, our technique encompasses the
use of Schauder’s and Banach fixed point theorems together with some properties
of the obtained kernel. This technique allows us to achieve our desired targets
whether mathematical or biological ones where the construction of a Banach space
and a subset of it, is its main cornerstone.

The rest of this article is structured as follows. Section 2, collects some preliminary
results, definitions and an established estimate. In Sect. 3, we first establish some
equivalence between our problem and an equivalent nonlinear integral equation and
we also state some properties of the obtained Green’s kernel that will be needed for
establishing our main results. Then, we make use of Schauder’s fixed point theorem
to give fairly some sufficient conditions that guarantee the existence of at least one
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positive periodic solution of the considered model; on the other hand we investigate
the existence, uniqueness and stability of positive periodic solutions by virtue of the
Banach contraction principle. In Sect. 4, we give two examples to illustrate that our
results are feasible and effective. Finally, we conclude the paper with a summary and
some discussions in Sect. 5.

2 Mathematical background

To begin with, we will first define an appropriate Banach space and a suitable subset of
it for fulfilling some basic mathematical and biological facts as well as we will prove
an interesting estimate and we will recall a lemma that will be crucially important to
reach our targets.

For c1, c2, w > 0, let D be defined by

D = {x ∈ X, 0 ≤ x (t) ≤ c1, |x(t2) − x(t1)| ≤ c2 |t2 − t1| ,∀t1, t2 ∈ R} ,

be a compact and convex subset of the following Banach space:

X = {x ∈ C(R,R), x(t + w) = x(t), ∀t ∈ R} ,

furnished with the supremum norm

‖x‖ = sup
t∈R

|x (t)| = sup
t∈[0,w]

|x (t)| .

In addition, if x1, x2 ∈ D, then

∣∣∣x [2]1 (t) − x [2]2 (t)
∣∣∣ ≤ |x1 (x1 (t)) − x1 (x2 (t))| + |x1 (x2 (t)) − x2 (x2 (t))|
≤ c2 |x1 (t) − x2 (t)| + ‖x1 − x2‖
≤ c2 ‖x1 − x2‖ + ‖x1 − x2‖ .

So
∥∥∥x [2]1 − x [2]2

∥∥∥ = sup
t∈[0,w]

∣∣∣x [2]1 (t) − x [2]2 (t)
∣∣∣ ≤ (1 + c2) ‖x1 − x2‖ . (2.1)

Also, if x1, x2 ∈ D, then

∣∣∣x1 (s − τ (s)) e−γ (s)x [2]1 (s) − x2 (s − τ (s)) e−γ (s)x [2]2 (s)
∣∣∣

=
∣∣∣x1 (s − τ (s)) e−γ (s)x [2]1 (s) − x1 (s − τ (s)) e−γ (s)x [2]2 (s)

+x1 (s − τ (s)) e−γ (s)x [2]2 (s) − x2 (s − τ (s)) e−γ (s)x [2]2 (s)
∣∣∣

≤ x1 (s − τ (s))
∣∣∣e−γ (s)x [2]1 (s) − e−γ (s)x [2]2 (s)

∣∣∣
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+ e−γ (s)x [2]2 (s) |x1 (s − τ (s)) − x2 (s − τ (s))| .

By applying themean value theorem to the function f (z) = exp (−z) over the interval[
γ (s) x [2]1 (s) , γ (s) x [2]2 (s)

]
, we obtain

e−γ (s)x [2]1 (s) − e−γ (s)x [2]2 (s) = −e−ζ (s)γ (s)
(
x [2]1 (s) − x [2]2 (s)

)
,

where ζ (s) is between γ (s) x [2]1 (s) and γ (s) x [2]2 (s) .

So
∣∣∣e−γ (s)x [2]1 (s) − e−γ (s)x [2]2 (s)

∣∣∣ ≤ γ1

∣∣∣x [2]1 (s) − x [2]2 (s)
∣∣∣ . (2.2)

where

γ1 = sup
t∈[0,w]

|γ (t)| .

It follows from (2.1) and (2.2) that

∣∣∣x1 (s − τ (s)) e−γ (s)x [2]1 (s) − x2 (s − τ (s)) e−γ (s)x [2]2 (s)
∣∣∣

≤ (1 + γ1c1 (1 + c2)) ‖x1 − x2‖ . (2.3)

Lemma 1 [23] It holds

D = {x ∈ X, 0 ≤ x (t) ≤ c1, |x(t2) − x(t1)| ≤ c2 |t2 − t1| ,∀t1, t2 ∈ [0, w]} .

From now on, we adopt the following notations:

α1 = sup
t∈[0,w]

|α (t)| , β1 = sup
t∈[0,w]

|β (t)| , k1 = wσ1β1c1,

k2 = β1c1σ1 (2 + wα1) , k3 = wσ1β1 (1 + γ1c1 (1 + c2)) .

3 Main findings

The main focus of this section is to investigate the existence, uniqueness and stability
of positive periodic solutions for Eq. (1.1). Firstly, by using the periodic properties,
we will convert Eq. (1.1) into an integral one with a Green’s kernel where we also
give some properties of this obtained Green’s function, secondly, we apply Schauder’s
fixed point theorem to establish the existence result and finally, we prove the existence,
and stability of the unique solution by using the Banach contraction principle.

Webegin our investigation by the conversion of the given problem into an equivalent
integral equation.
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Lemma 2 The following assertions are equivalent:

(1) x ∈ D ∩ C1 (R,R) is a solution of Eq. (1.1).
(2) x ∈ D is a solution of the following integral equation:

x (t) =
∫ t+w

t
G (t, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)ds, (3.1)

where

G (t, s) = exp
(∫ s

t α (u) du
)

exp
(∫ w

0 α (u) du
) − 1

. (3.2)

Furthermore, we have

G (w + t, w + s) = G (t, s) , (3.3)

and since

d

ds
G (t, s) = a (t)G (t, s) > 0,

then

0 < σ0 = 1

exp
(∫ w

0 a (u) du
) − 1

≤ G (t, s) ≤ exp
(∫ w

0 a (u) du
)

exp
(∫ w

0 a (u) du
) − 1

= σ1.

(3.4)

In addition, it follows from the mean value theorem that

∫ t1+w

t1
|G (t2, s) − G (t1, s)| ds ≤ wα1σ1 |t2 − t1| , (3.5)

for all t2, t1 ∈ [0, w] with t1 < t2.
Thanks to Lemma 2, we define an integral operator S : D → X as follows:

(Sx) (t) =
∫ t+w

t
G (t, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)ds. (3.6)

So, fixed points of operator S are solutions of Eq. (1.1) and vice versa.

3.1 Existence of positive periodic solutions

Now, using Schauder’s fixed point theorem and some properties of the Green’s kernel,
we will state and prove our first existence theorem.
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Theorem 1 Assume that k1 ≤ c1, k2 ≤ c2 and τ ∈ D, then Eq. (1.1) has at least one
positive periodic solution in D.

Proof The proof of this theorem is based on using Schauder’s fixed point theorem.
For this, we must show that operator S : D → X is continuous and that S maps the
compact set D into itself.
First and foremost, it follows from (3.3) and the periodic properties that (Sx) (t) ∈ X,
for all x ∈ D. Next, we proceed in two steps.

Step 1: Let us prove that S is continuous. Indeed, if x1, x2 ∈ D, then

|(Sx1) (t) − (Sx2) (t)| ≤
∫ t+w

t
G (t, s) β (s)

∣∣∣x1 (s − τ (s)) e−γ (s)x [2]1 (s)

−x2 (s − τ (s)) e−γ (s)x [2]2 (s)
∣∣∣ ds.

Taking into account (2.3) , (3.4), one can see that

|(Sx1) (t) − (Sx2) (t)| ≤ wσ1β1 (1 + γ c1 (1 + c2)) ‖x1 − x2‖ .

Consequently,

‖Sx1 − Sx2‖ = sup
t∈[0,w]

|(Sx1) (t) − (Sx2) (t)|

≤ wσ1β1 (1 + γ c1 (1 + c2)) ‖x1 − x2‖ . (3.7)

This last estimate shows that S is Lipschitz continuous which entails that it is contin-
uous.

Step 2: Now, we show that S maps D into itself. Let x ∈ D and t, t1, t2 ∈ [0, w].
It is obvious that (Sx) (t) ≥ 0 and

(Sx) (t) =
∫ t+w

t
G (t, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)ds

≤ wσ1β1c1.

Since k1 ≤ c1, then

0 ≤ (Sx) (t) ≤ c1, for all x ∈ D and t ∈ [0, w] . (3.8)

On the other hand, we get

|(Sx) (t2) − (Sx) (t1)| ≤
∫ t2

t1
G (t2, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)ds

+
∫ t2+w

t1+w

G (t2, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)ds

+
∫ t1+w

t1
|G (t2, s) − G (t1, s)| β (s) x (s − τ (s)) e−γ (s)x [2](s)ds.
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Thanks to (3.4) and (3.5), we arrive at

|(Sx) (t2) − (Sx) (t1)| ≤ β1c1σ1 (2 + wα1) |t2 − t1| . (3.9)

In view of the fact that k2 ≤ c2 together with (3.9) and Lemma 1, we obtain

|(Sx) (t2) − (Sx) (t1)| ≤ c2 |t2 − t1| , for all x ∈ D and t1, t2 ∈ [0, w] . (3.10)

From (3.9) and (3.10) we infer that S maps D into itself.
Accordingly, in view of the previous two steps, all requirements of Schauder’s

fixed point theorem are fulfilled and, consequently, S admits at least one fixed point
x residing in D which ensures that x is a solution of Eq. (1.1). ��

3.2 Uniqueness and stability

The uniqueness and continuous dependence on parameters of solutions are presented
in the following two theoremswhich show that adding another condition to the assump-
tions ofTheorem1makesEq. (1.1) possible to admit a unique positive periodic solution
that depends continuously on the mortality rate α, the maximum daily egg production
β and the population’s carrying capacity 1

γ
.

Theorem 2 Besides the hypotheses of Theorem 1, if k3 < 1, then Eq. (1.1) admits a
unique positive periodic solution x ∈ D.

Proof One can follow the argument of the proof of Theorem 1, to demonstrate that
operator T maps D into itself and

‖Sx1 − S y2‖ ≤ k3 ‖x1 − x2‖ .

This implies that S is a contraction mapping. So, the Banach contraction principle
ensures that S has a unique fixed point which is the unique positive periodic solution
of Eq. (1.1). ��
Theorem 3 Under the assumptions of Theorem 2, the unique solution of Eq. (1.1)
depends continuously on functions α, β and γ.

Proof Let x be a solution of Eq. (1.1), so x satisfies the integral Eq. (3.1) i.e.,

x (t) =
∫ t+w

t
G (t, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)ds,

and let x̃ be a solution of the perturbed equation with small perturbations in α, β

and γ that fulfill all requirements of Theorem 2. So, x̃ satisfies the following integral
equation:

x̃ (t) =
∫ t+w

t
G̃ (t, s) β̃ (s) x̃ (s − τ (s)) e−γ̃ (s )̃x [2](s)ds, (3.11)
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where

G̃ (t, s) = exp
(∫ s

t α̃ (u) du
)

exp
(∫ w

0 α̃ (u) du
) − 1

,

and α̃, β̃, γ̃ are the perturbed parameters.
Estimating the difference between x (t) and x̃ (t), we find that

|̃x (t) − x (t)| ≤
∫ t+w

t

∣∣∣G̃ (t, s) β̃ (s) x̃ (s − τ (s)) e−γ̃ (s )̃x [2](s)

−G (t, s) β (s) x (s − τ (s)) e−γ (s)x [2](s)
∣∣∣ ds

≤
∫ t+w

t
G̃ (t, s)

∣∣∣β̃ (s) x̃ (s − τ (s)) e−γ̃ (s )̃x [2](s)

−β (s) x (s − τ (s)) e−γ (s)x [2](s)
∣∣∣ ds

+
∫ t+w

t
β (s) x (s − τ (s)) e−γ (s)x [2](s)

∣∣G̃ (t, s) − G (t, s)
∣∣ ds.

By using the same techniques as that in the proofs of (2.2) and (2.3), we can establish

∣∣∣β̃ (s) x̃ (s − τ (s)) e−γ̃ (s )̃x [2](s) − β (s) x (s − τ (s)) e−γ (s)x [2](s)
∣∣∣

≤ k3 ‖x̃ − x‖ + β1c
2
1 ‖γ̃ − γ ‖ + c1

∥∥β̃ − β
∥∥ , (3.12)

and

∫ t+w

t

∣∣G̃ (t, s) − G (t, s)
∣∣ ds ≤ ζ ‖α̃ − α‖ , (3.13)

where

ζ = w2 exp (wmax {‖α‖ , ‖α̃‖})
exp

(∫ w

0 α̃ (u) du
) − 1

(
1 + exp (w ‖α‖)

exp
(∫ w

0 α (u) du
) − 1

)
.

Thanks to (3.12) and (3.13), we get

|̃x (t) − x (t)| ≤ k3 ‖x̃ − x‖ + wσ1β1c
2
1 ‖γ̃ − γ ‖ + wσ1c1

∥∥β̃ − β
∥∥

+ wβ1c1ζ ‖α̃ − α‖ .

Accordingly,

‖x̃ − x‖ ≤ wσ1β1c21
1 − k3

‖γ̃ − γ ‖ + wσ1c1
1 − k3

∥∥β̃ − β
∥∥ + wβ1c1ζ

1 − k3
‖α̃ − α‖ .

This finishes the proof. ��
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Remark 1 So far, Nicholson’s blowflies model with a time varying delay and an itera-
tion in the recruitment term is considered for the first time. Moreover, the main results
of this paper generalize to certain extent those of some interesting works (see for
example [11, 15, 16]and references therein) that have underscored the importance of
incorporating two different delays in the recruitment term since in such a case, the
dynamics of Nicholson’s blowflies model becomes even more enriching than the case
where the two delays are identical. Unlike the aforementioned works that have dealt
with models involving the same lag or different constant or time varying delays in
the recruitment function, we have supposed that this latter incorporates an iterative
delayed recruitment function. So such a situation does not seem to have been discussed
previously which means that our theoretical findings are completely new and can also
be regarded as a generalization of some earlier investigations.

Remark 2 Our work contributes in enriching the few existing literature on iterative
problems that are often connected to the study of many phenomena in life sciences. In
[4], the authors have investigated the existence of at least one positive periodic solution
which is not necessarily unique. They did not proved the uniqueness and stability of
solutions whereas in this work we have established the existence of a unique positive
periodic solution where the stability is preserved under small perturbations of its
maximum production rate, its death rate and its size at which the blowfly population
reproduces at its maximum rate. We draw attention here to the fact that involving
different delays in the model can create a new dynamics and hence lead to chaotic
oscillations. That is to say, the stability of a system with the same lag can become
unstable with different delays. So, our results in this work complete the ones in the
aforementioned paper and references cited therein.

4 Examples

In this section, we present two examples to validate our main theoretical findings
obtained in the previous section.

Example 1 In this example, we set w = 37, c1 = π, c2 = 2π and

α (t) = 0.014 + 0.012 sin2
2π

37
t,

β (t) = 0.0012 + 0.0002 sin2
2π

37
t,

γ (t) = 0.001 + 0.001 sin2
2π

37
t .

In this case, we obtain

α1 = 0.026, β1 = 0.0014, γ1 = 0.002, k1 ≈ 0.099068 < 1,

k2 ≈ 0.024915 < 2π and k3 ≈ 0.103 6 < 1.
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We conclude by Theorem 2 that Eq. (1.1) has one and only one positive periodic
solution in the closed, convex and bounded subset

D = {x ∈ X, 0 ≤ x (t) ≤ π, |x(t2) − x(t1)| ≤ 2π |t2 − t1| ,∀t1, t2 ∈ R} ,

where the period is w = 37 days. Moreover, we have

‖x̃ − x‖ ≤ 1.0908 ‖γ̃ − γ ‖ + 248
∥∥β̃ − β

∥∥ + 0.00036308 ‖α̃ − α‖ ,

where α̃, β̃ and γ̃ are the perturbed parameters. So, the unique solution depends
continuously on parameters α, β and γ .

Example 2 In this example, we have the same constants and the same functions as the
previous example, we change only the function β as follows:

β (t) = 0.012 + 0.002 sin2
2π

37
t .

In this case, we obtain

β1 = 0.014, k1 ≈ 0.99068 < 1, k2 ≈ 0.24915 < 2π and k3 ≈ 1.036 > 1.

Here, the additional condition of Theorem 2 is not fulfilled and since all assumptions
of Theorem 1 are satisfied, then Eq. (1.1) has at least one positive periodic solution in

D = {x ∈ X, 0 ≤ x (t) ≤ π, |x(t2) − x(t1)| ≤ 2π |t2 − t1| ,∀t1, t2 ∈ R} ,

which is not necessarily unique.

5 Conclusion

This work shed light on the importance of considering state and time dependent delays
in modelling realistic phenomena in insect population dynamics. Herein, we have
first noticed that most of investigations in the literature concerning the Nicholson’s
blowflies equation did not deal with the case of an iterative recruitment term with a
time varying delay. We have therefore aimed at enriching this literature and hence
contributing in filling some of the existing gaps by combining the fixed point theory
with the Green’s functions method for establishing some new criteria that ensure the
existence, uniqueness and continuous dependence on parameters of positive periodic
solutions for our Nicholson’s blowflies equation with a time varying delay and an
iterative term in the recruitment term. To be more precise, we have revisited the
Nicholson’s blowflies model by assuming that the maturation delay depends only on
the time while the other lag that results from the competition for food during the
three larval stages, depends on both the time and the number of adult blowflies, which
in turn gives the second iterate in the recruitment term. So, for paving the way for

123



Existence, uniqueness and stability of positive periodic… 1915

applying our technique, we have needed, firstly, to construct an appropriate Banach
space and a subset of it under which the iterative term will be well controlled and
the sought results will be more realistic and credible. Next, we have converted our
considered equation with the periodic properties into an equivalent integral equation
where the kernel is a Green’s function. Then, by virtue of Schauder’s fixed point
theorem together with some properties of the obtained kernel we have proved that
at least one positive periodic solution can exist but not necessarily unique and also
by means of the Banach contraction principle and under an additional criterion, we
have shown the existence and stability of the unique positive periodic solution. Our
obtained theoretical results are of great practical significance for doing more in-depth
research on various generalizations of the classical Nicholson’s blowflies equation or
for dealing with many natural models such as neural networks models and models
for fisheries management especially those that can be regarded as a generalization of
Nicholson’s models (see for example [17–22]). Finally, two examples are provided to
show the effectiveness of our main findings.
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