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Abstract
We present a three-stage probabilistic model for the progression of chronic myeloid
leukemia (CML), asmanifested by the leukemic stemcells, progenitor cells andmature
leukemic cells. This progression is captured through the process of cell division and
cell mutation, with probabilities of occurrence being assigned to both of them. The
key contributions of this study include, the determination of the expected number
of the leukemic stem cells, progenitor cells, mature leukemic cells, as well as total
number of these cells (in terms of probabilities, and contingent on the initial cell count),
expected time to reach a threshold level of total and injurious leukemic cells, as well
as the critical time when the disease changes its phases, the probability of extinction
of CML, and the dynamics of CML evolution consequent to primary therapy. Finally,
various illustrative numerical simulations, in order to validate the analytical results,
are presented.
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1 Introduction

The occurrence of leukemia is triggered by a disruption of the highly regulated and
complex process of hematopoiesis, resulting from the generation of a handful of
mutated blood cells [1]. Leukemia can be acute or chronic and myeloid or lympho-
cytic, contingent on the maturity state and type of cells, respectively. Chronic myeloid
leukemia (CML), a commonly occurring type of leukemia, is typically attributed to
the translocation between chromosomes 9 and 22, resulting in a longer chromosome
9, and a shorter chromosome 22, than the typical chromosomes [2]. CML, which is
characterized by elevated levels of white blood cells, accounts for a fifth of the total
leukemia incidences, of which 90 percent cases are associated with the Philadelphia
(Ph) chromosome, resulting from the translocation of chromosomes 9 and22.TheBCR
gene is usually found in chromosome 22 and ABL gene is located in chromosome 9.
The combination of these two genes forms an abnormal gene called BCR-ABL, which
causes CML cells to reproduce and grow out of control. The typical progression of
CML occurs in three stages [3, 4], namely, the chronic phase (a period of relatively
low cell count, accompanied by a high level of cellular differentiation), the accelerated
phase (during which higher cell levels is observed, along with decline in the extent of
differentiation), and the blast phase (where an effectively uncontrolled cell growth, but
low extent of differentiation, is observed). In absence of intervention, the disease can
progress to the accelerated phase over a span of 7–10 years [4], which then progresses
to the blast phase.

Michor et al. [5], in a basic model, proposed to capture the dynamics and progres-
sion of CML, and considered an ordinary differential equation (ODE) driven setup
for normal and leukemic (non-resistant and resistant) cells, for a four-compartment
model of stem cells, progenitor cells, differentiated cells and terminally differentiated
cells. The model evaluated the success of imatinib during the molecularly targeted
therapy in case of CML, and concluded that, while imatinib achieves success in case
of inhibition of differentiated leukemic cells, it does not cause a decline in the levels of
leukemic stem cells. Further, the authors also make an estimation of the likelihood of
development of resistance to imatinib, as well as the time-point at which the resistance
is detected. It is believed that the proliferation of cancerous stem cells, and progenitor
cells brings forth, and abets the cellular growth in CML [6]. In this paper [6], a stochas-
ticmodel is considered, with primitive and proliferating, as well as quiescent CML cell
populations, to explain the clinically observed data exhibiting, bi-phasic, one-phasic
and reverse bi-phasic decline pattern, as also the emanation of quiescent stem cells
and treatment resistance. An agent based model (ABM) to capture the “age-structure”
of CML stem cells, is proposed in [7] through the usage of normal hematopoiesis,
leukemia genesis (for normal and leukemia cells) and leukemia treatment (using ima-
tinib). A mathematical model considered in [8], included the leukemic and normal
cells, both stem-like and differentiated, leading to a four-dimensional coupled delay
differential equation (DDE) system. An ODE driven model to analyze the dynamics
of imatinib therapy is developed in [9], with the focus being on patients exhibiting
a non-monotonic BCR-ABL ratio, during the course of the therapy, by considering
mature cells (quiescent, cycling, progenitor and mature), along with the concentration
of immune cells. A simplified version of the model in [9] was considered in [10],
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based on the argument that a three-compartment model (two for leukemic cells and
one for immune cells) can capture the dynamics of the CML-immune response.

Population of hematopoietic stem cells and differentiated cells, both normal and
cancerous, were considered in a compartment model in [11], in the paradigm of an
optimal control problem, with the objective of minimizing the treatment cost and load
of the cancerous cells. In another control theoretic problem [12], a two population
model, involving short-term hematopoietic stem cells and differentiated cells, pos-
sessing the ability to self-renew, and lacking the same, respectively, is considered,
in presence of imatinib. In a recent work on optimization of combination therapy of
leukemia, of imatinib and interferon-α, populations of CML cells and effector T cells
cytotoxic to CML, are incorporated into the model [13].

A stochastic approach to address the problem of acquired drug resistance to ima-
tinib, and the consequent disease progression was considered in [14], wherein a
multi-type branching process was used to encapsulate the evolution of several clones
of CML cells, resistant to imatinib. The model for hematopoiesis in CML, empha-
sized the stochastic aspects applicable in case of abnormalities in hematopoiesis, that
is typical in cases of blood cancers. To this end, stochastic compartments and stochas-
tic competition were taken into account in the hybrid discrete-continuous modeling
framework. A causal Bayesian network model for explaining the progression of CML
from the chronic phase to blast crisis is presented in [4]. In a recent article, the authors
presented deterministic and stochasticmodels for a triple treatment scenario ofWnt/β-
catenin signaling, combined with Tyrosine Kinase Inhibitors (TKI) (which targets the
BCR-ABL protein) and interferon alfa (IFN-α) [15].

We also briefly review here, some of the literature on usage of branching process
in epidemiological and cancer modeling. An epidemiological model for determina-
tion of the number of generations until extinction (for a branching process), in the
paradigm of infectious disease modeling was discussed in [16]. Accordingly, several
processes were used to obtain the generation distributions, and reconciled in terms of
application, to several infectious disease settings. In [17], the modeling was carried
out for a population of cancerous cells, exhibiting exponential growth, progressing to
treatment resistance, as a result of one mutation, followed by development of disease
phenotype, after subsequent mutations. From a stochastic perspective, the distribution
of the arrival time of the k-th mutation, as well as the growth progression of the count
of type k cells, was established. A random fitness increments approach, to model the
progression of tumors was studied in [18]. A multi-type branching process was ana-
lyzed for accumulated mutations in cells, chosen from some distribution. An ovarian
cancer model, with the objective of ascertaining an opportune window for screening
was discussed in [19]. The model is driven by a branching process, to describe the
growth and progression of three cellular populations, namely, primary, peritoneal, and
metastatic, with the model parameters being reconciled with the clinical data.

From a therapeutic perspective, TKIs, such as imatinib can have curative impact on
CML, albeit the longer periods of treatment being required to achieve a desired result
[20]. A mathematical model focused on the combination treatment of imatinib (for
molecular targeted therapy) and interferon alfa-2a (IFN-α) (immunotherapy) presented
in [21] incorporated time-varying delays in treatment terms, and demonstrated how
the dual therapy led to improved outcomes in case of CML patients.
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In this paper, we study on the dynamics of CML evolution, considering various
stages of disease progression and different types of cells involved in leukemic cancer.
We also determine the expected time to reach a possible state of CML and the chance
of disease extinction. The rest of the paper is organized as follows. In Sect. 2, the
probabilistic modeling of CML progression is described, using the theory of multi-
type branching processes. Some analytical results on cells count, estimated time, and
associated probabilities for occurrence of various kinds of leukemic cells and subse-
quent conditions are established in Sect. 3. Section 4 is devoted to several numerical
simulations. Finally, the conclusion is summarized in Sect. 5.

2 Model

In CML patients, the leukemic cells develop through various cell differentiation and
cell mutations. Initially, the leukemic stem cells are produced in the bone marrow,
and then these cells get transformed to progenitor cells, which finally differentiate to
mature leukemic cells, which are responsible for leukemic cancer. As observed earlier,
theCML typically progresses in three phases, namely, chronic phase, accelerated phase
and blast phase. The chronic phase is the initial stage of CML, where the myeloblasts
capture up to 10% of blood cells or bone marrow, and these increase to 10–19% in the
accelerated phase. The blast phase (acute phase or blast crisis) is the severe stagewhere
the blood cells or bone marrow contain more than 20% myeloblasts. Using the theory
of multi-type branching processes, we analyze the three stages of CML progression
based on three different types of leukemic cells, namely, stem cells, progenitor cells
and mature leukemic cells. By calculating the percentage of total leukemic cells in
blood, this study also helps in estimating the time when CML progresses from one
phase to another (chronic, accelerated or blast).

We categorize the cells produced in the three stages of CML to be denoted as Type-i
cells, for i = 0, 1, 2. Let us assume that a cell of these three types, generate new cells,
by following the Poisson distribution, with parameter λ, which are then called the
offsprings of the parent cell. The offspring mean denoted by λ is the same for all types
of cells. Further, assume that each Type-i cell (i = 0, 1) generates both Type-i cells
(through cell division) and Type-(i + 1) cells (through cell mutation), but a Type-2
cell generates only Type-2 cells (through cell division). Let p be the probability of the
birth of the new cell through mutation, and hence (1 − p) is the probability of cell
division for Type-i cells, i = 0, 1. Further, the assumption is that each of the three
types of cells either generates new cells (through cell division or cell mutation) with
probability a after time �t , or dies within the interval �t with probability (1 − a).
Thus a is the survival probability for each cell. When a cell generates progenies, it
bursts and hence after generating some new cells, it dies. We take �t to be a unit time
in which this happens. Let Zi (t) be the number of Type-i cells at time t . Suppose
that the development of CML can be traced back to the initial source of s number of
Type-0 cells. We denote X (k)

i (t) and Y (k)
i (t) to be the number of cells produced by the

cell division and cell mutation, respectively, from the k-th individual of Type-i cells,
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Fig. 1 Schematic representation of the model

at time t . Accordingly, we obtain,

Z0(0) = s,

Z0(t + 1) =
Z0(t)∑

k=1

X (k)
0 (t),

Z1(t + 1) =
Z0(t)∑

k=1

Y (k)
0 (t) +

Z1(t)∑

k=1

X (k)
1 (t),

Z2(t + 1) =
Z1(t)∑

k=1

Y (k)
1 (t) +

Z2(t)∑

k=1

X (k)
2 (t).

We assume that each individual of Type-0 cells gives birth to a random number of
Type-1 cells denoted by X . Hence X is a random variable which follows the Poisson
distribution, with parameter λ, and this is called offspring distribution, with λ being
the offspring mean. Suppose X (k)

i and Y (k)
i are independent identically distributed

(i.i.d.) random variable with the same probability distribution as X . If k-th individual
of Type-i cells has U (k)

i offspring at time t , where U (k)
i ’s are i.i.d. random variable,

then after (t + 1) time, Type-i cells have total of
∑

k
U (k)
i offspring, which is also

a Poisson random variable with parameter (λ× the number of Type-i cells). The
schematic representation of the model is presented in Fig. 1.

3 Model analysis

In this section, we carry out the model analysis in detail. We begin with the estimation
of the total number of offspring (total progeny) after development of leukemic cancer
cells and calculate the time duration of the process. In the discussion, we consider
λa > 1, as the number of CML cells initially increases over time. Moreover, we use
t = 1, 2, 3, . . . to denote t = �t, 2�t, 3�t, . . . .
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Theorem 1 The expected number of total leukemic cells at time t is given by,

E [Z(t)|Z(0) = s] = sλt at , t ≥ 0.

Proof We begin with Z0(0) = s cells. Now, recall that the probability of survival
and the offspring mean for each cell, in a unit interval of time, are given by a and λ,
respectively. Hence, each of the s cells produces λa offsprings, on an average, after a
unit interval of time. Therefore, at time t = 1, the expected number of CML cells (both
Type-0 and Type-1 cells) becomes sλa. Using a similar argument, at time t = 2, the
expected number of CML cells (Type-0, Type-1 and Type-2 cells) is given by sλ2a2.
Proceeding in the same manner, we can conclude that the expected number of total
leukemic cells (all three types of cells) at time t will be sλt at . ��
Theorem 2 The expected number of Type-0 cells at time t is given by,

E[Z0(t)|Z(0) = s] = sλt at (1 − p)t , t ≥ 0.

Proof We begin with Z0(0) = s cells. Further, a is the probability of survival and
λ is the offspring mean for a cell, in a unit interval of time, with (1 − p) being the
probability of cell division. Hence, each of Type-0 cells producesλa(1− p) off-springs
on an average, after a unit interval of time. Hence, at time t = 1, the expected number
of Type-0 cells comes out to be sλa(1 − p). Similarly, at time t = 2, the expected
number of Type-0 cells is given by sλ2a2(1 − p)2. Proceeding in the same way, we
can conclude that the expected number of Type-0 cells at time t will be sλt at (1− p)t .

��
Theorem 3 The expected number of Type-1 cells at time t is given by,

E[Z1(t)|Z(0) = s] = tsλt at p(1 − p)t−1, t ≥ 1.

Proof We use the principle of mathematical induction in order to prove the theorem.
Initially, at time t = 0, there are no Type-1 cell. At time t = 1, the expected number of
Type-1 cells is given by sλap, which comes only fromType-0 cells, through the process
of cell mutation. Then Type-1 cells will be produced through both the processes,
namely, the cell mutation from Type-0 cells, and the cell division from Type-1 cells.
Therefore, the number of Type-1 cells at time t = 2 depends on the number of Type-0
cells, as well as the number of Type-1 cells at t = 1. At time t = 2, the number of
Type-1 cells produced from Type-0 cells is sλ2a2 p(1 − p), which is the same as the
number of Type-1 cells produced from Type-1 cells. Therefore, the expected number
of Type-1 cells at time t = 2 is equal to 2sλ2a2 p(1 − p). At time t = 3, the number
of Type-1 cells produced from Type-0 cells is sλ3a3 p(1 − p)2 and those which are
produced from Type-1 cells is 2sλ3a3 p(1 − p)2. Therefore, the expected number of
Type-1 cells at time t = 3 is equal to 3sλ3a3 p(1 − p)2.

Let us now assume that the theorem holds for t = m. Hence,

E[Z1(m)|Z(0) = s] = msλmam p(1 − p)m−1.
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Now, the value of E[Z1(m + 1)|Z(0) = s] is dependent on E[Z0(m)|Z(0) = s] and
E[Z1(m)|Z(0) = s]. Therefore, we have,

E[Z0(m)|Z(0) = s] = sλmam(1 − p)m .

The number of Type-1 cells produced from sλmam(1 − p)m Type-0 cells, through
the cell mutation is sλm+1am+1 p(1 − p)m . Further, the number of Type-1 cells
produced from msλmam p(1 − p)m−1 Type-1 cells through the cell division is
msλm+1am+1 p(1 − p)m . Therefore, we finally obtain,

E[Z1(m + 1)|Z(0) = s] = (m + 1)sλm+1am+1 p(1 − p)m .

Hence, by the principle of mathematical induction, the Theorem holds. ��

Theorem 4 The expected number of Type-2 cells at time t is given by,

E[Z2(t)|Z(0) = s]
= sλt at p2

[
1 + 2(1 − p) + 3(1 − p)2 + · · · + (t − 1)(1 − p)t−2

]
, t ≥ 2,

or,

E[Z2(t)|Z(0) = s] = sλt at
[
1 − (1 − p)t − tp(1 − p)t−1

]
, t ≥ 2.

Proof We use the principle of mathematical induction to prove the theorem. At t = 0
and t = 1, there is no Type-2 cell. At t = 2, the expected number of Type-2 cells
is given by sλ2a2 p2, which comes only from sλap Type-1 cells through the pro-
cess of cell mutation. Then, the Type-2 cells will be produced through both the
processes, namely, the cell mutation from Type-1 cells, and the cell division from
Type-2 cells. Therefore, the number of Type-2 cells at time t = 3 depends on the
number of Type-1 cells as well as Type-2 cells at time t = 2. At time t = 3,
the number of Type-2 cells that are produced from 2sλ2a2 p(1 − p) Type-1 cells
is 2sλ3a3 p2(1 − p) and those which are produced from sλ2a2 p2 Type-2 cells is
sλ3a3 p2. Therefore, the expected number of Type-2 cells at time t = 3 is equal
to 2sλ3a3 p2(1 − p) + sλ3a3 p2, i.e., sλ3a3 p2[1 + 2(1 − p)]. At time t = 4, the
number of Type-2 cells that are produced from 3sλ3a3 p(1 − p)2 Type-1 cells is
3sλ4a4 p2(1− p)2 and those which are produced from sλ3a3 p2[1 + 2(1 − p)] Type-
2 cells is sλ4a4 p2[1 + 2(1 − p)]. Therefore, the expected number of Type-2 cells at
time t = 4 is equal to 3sλ4a4 p2(1− p)2 + sλ4a4 p2[1+2(1− p)], i.e., sλ4a4 p2[1+
2(1 − p) + 3(1 − p)2].

Let us consider that the theorem holds for t = m. Hence,

E[Z2(m)|Z(0) = s]
= sλmam p2

[
1 + 2(1 − p) + 3(1 − p)2 + · · · + (t − 1)(1 − p)m−2

]
.
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Table 1 Summary of Theorems 1–4

i Expected number of Type-i cells

i = 0 E[Z0(t)|Z(0) = s] = sλt at (1 − p)t , t ≥ 0

i = 1 E[Z1(t)|Z(0) = s] = tsλt at p(1 − p)t−1, t ≥ 1

i = 2 E[Z2(t)|Z(0) = s] = sλt at
[
1 − (1 − p)t − tp(1 − p)t−1

]
, t ≥ 2

Now, the value of E[Z2(m + 1)|Z(0) = s] is dependent on E[Z1(m)|Z(0) = s] and
E[Z2(m)|Z(0) = s]. We have E[Z1(m)|Z(0) = s] = msλmam p(1 − p)m−1. The
number of Type-2 cells produced frommsλmam p(1 − p)m−1 Type-1 cells through the
cell mutation ismsλm+1am+1 p2(1 − p)m−1. Further, the number of Type-2 cells pro-

duced from sλmam p2
[
1 + 2(1 − p) + 3(1 − p)2 + · · · + (t − 1)(1 − p)m−2

]
Type-

2 cells through the cell division is sλm+1am+1 p2
[
1+ 2(1− p) + 3(1− p)2 + · · · +

(t − 1)(1 − p)m−2
]
. Therefore,

E[Z1(m + 1)|Z(0) = s] = msλm+1am+1 p2(1 − p)m−1

+sλm+1am+1 p2
[
1 + 2(1 − p) + 3(1 − p)2 + . . .

+(t − 1)(1 − p)m−2
]

= sλm+1am+1 p2
[
1 + 2(1 − p) + 3(1 − p)2 + . . .

+(m − 1)(1 − p)m−2 + m(1 − p)m−1
]
.

Hence, by the principle of mathematical induction, the Theorem holds. Further-
more, we obtained in Theorem 1 that E[Z(t)|Z(0) = s] = E[Z0(t)|Z(0) =
s] + E[Z1(t)|Z(0) = s] + E[Z2(t)|Z(0) = s] = sλt at . Hence,

E[Z2(t)|Z(0) = s] = sλt at − E[Z0(t)|Z(0) = s] − E[Z1(t)|Z(0) = s]
= sλt at

[
1 − (1 − p)t − tp(1 − p)t−1

]
, t ≥ 2.

��
The results presented in Theorems 1–4 are presented in a summarized form in Table
1.

Theorem 5 The time to reach the leukemia of M cells on average is given by,

T = ln (M/s)

ln(λa)
, λa > 1.
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Proof If T be the time required to reach M number of leukemic cells on average, then
we can write, from Theorem 1,

sλT aT = M,

which gives,

T = ln (M/s)

ln(λa)
, λa > 1.

��
Theorem 6 If T12 be the time required to reach injurious leukemic cells (cells which
have more harmful effect in the host, i.e., the cells of Type-1 and Type-2) of average
size M12, the following relation holds,

sλT12aT12
[
1 − (1 − p)T12

]
= M12.

Proof Let T12 be the time required to reach M12 number of injurious leukemic cells.
Then, from Theorems 3 and 4, we arrive at the following,

M12 = T12sλ
T12aT12 p(1 − p)T12−1 + sλT12aT12

[
1−(1− p)T12 −T12 p(1 − p)T12−1

]

= sλT12aT12
[
1 − (1 − p)T12

]
.

��
Finally, we determine the probability of CML extinction, under the model consid-

erations. The event {Z(t) = 0, for some t > 0 | Z(0) = s} is called the disease
extinction. Then we have the following Theorem.

Theorem 7 If P(t) be the probability of extinction of CML at time t, then,

P(t) ≥ (1 − a)sλ
t−1at−1

, t ≥ 1.

Proof According to Theorem 1, the expected number of total leukemic cells at time
t is sλt at . The disease CML becomes extinct at time t if all leukemic cells produced
till time t − 1 die before t − 1 or during t − 1 to t . Hence, the probability of extinction
of CML at time t is given by,

P(t) ≥ (1 − a)sλ
t−1at−1

, t ≥ 1.

��
We now discuss about the consequences of the primary therapy on CML patients.

The primary therapy for CML prevents the expansion of Type-0 cells, but it does
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not have a direct effect on Type-1 and Type-2 cells, since these cells are resistant to
primary therapy. The effect on Type-0 cells, due to primary therapy results in changes
in the development of Type-1 and Type-2 cells. Accordingly, we let the effect of the
primary therapy be manifested through change in the probability of cell survival and
cell mutation for Type-0 cells to ā and p̄, respectively, whereas those for Type-1 and
Type-2 cells remains the same as prior to therapy. Then the results can be written in
the following Theorems.

Theorem 8 If the primary CML therapy is initiated, the expected number of total
leukemic cells at time t is given by,

E[Z̄(t)|Z(0) = s] = sλt ā
[
p̄at−1 + p̄at−2{ā(1 − p̄)} + p̄at−3{ā(1 − p̄)}2 + · · ·

+ p̄a{ā(1 − p̄)}t−2 + {ā(1 − p̄)}t−1
]
.

Proof In order to prove this Theorem, we consider the following three facts:

• Type-0 cells produce the cells of same type at a rate λ, with probability 1− p̄ (cell
division), where the survival probability of Type-0 cells is ā.

• Type-0 cells produce Type-1 cells at a rate λ, with probability p̄ (cell mutation),
where the survival probability of Type-0 cells is ā.

• Both Type-1 and Type-2 cells produce new leukemic cells of any type at a rate
λ, with probability 1 (cell division and mutation together), where the survival
probability of Type-1 or Type-2 cells is a.

Therefore, the number of total leukemic cells at t = n is dependent on the following
three evaluations:

• Number of Type-0 cells produced from Type-0 cells, present at t = n−1, through
cell division.

• Number of Type-1 cells produced from Type-0 cells, present at t = n−1, through
cell mutation.

• Total number of Type-1 and Type-2 cells produced from both of Type-1 and Type-2
cells, present at t = n − 1, through cell division and mutation together.

(A) Calculation of total leukemic cells at t = 1,

• The number of Type-0 cells produced from Type-0 cells, present at t = 0, through
cell division is sλā(1 − p̄).

• The number of Type-1 cells produced from Type-0 cells, present at t = 0, through
cell mutation is sλā p̄.

• There is no such type of leukemic cells which is produced from Type-1 or Type-2
cells, present at t = 0.

Therefore, at t = 1, the number of total leukemic cells becomes sλā(1− p̄)+sλā p̄ =
sλā.

(B) Calculation of total leukemic cells at t = 2,

• The number of Type-0 cells produced from Type-0 cells, present at t = 1, through
cell division is sλ2ā2(1 − p̄)2.
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• The number of Type-1 cells produced from Type-0 cells, present at t = 1, through
cell mutation is sλ2ā2 p̄(1 − p̄).

• Total number of Type-1 and Type-2 cells produced from both of Type-1 and Type-2
cells, present at t = 1, through cell division and mutation together is sλ2aā p̄.

Therefore, at t = 2, the number of total leukemic cells is,

sλ2ā2(1 − p̄)2 + sλ2ā2 p̄(1 − p̄) + sλ2aā p̄ = sλ2ā [ p̄a + {ā(1 − p̄)}] .

(C) Calculation of total leukemic cells at t = 3,

• The number of Type-0 cells produced from Type-0 cells, present at t = 2, through
cell division is sλ3ā3(1 − p̄)3.

• The number of Type-1 cells produced from Type-0 cells, present at t = 2, through
cell mutation is sλ3ā3 p̄(1 − p̄)2.

• Total number of Type-1 and Type-2 cells produced from both of Type-1 and Type-2
cells, present at t = 2, through cell division and mutation together is sλ3aā2 p̄(1−
p̄) + sλ3a2ā p̄.

Therefore, at t = 3, the number of total leukemic cells is,

sλ3ā3(1 − p̄)3 + sλ3ā3 p̄(1 − p̄)2 + sλ3aā2 p̄(1 − p̄) + sλ3a2ā p̄

= sλ3ā
[
p̄a2 + p̄a{ā(1 − p̄)} + {ā2(1 − p̄)2}

]
.

Proceeding in the same manner, one can obtain that the expected number of total
leukemic cells at time t is equal to,

sλt ā
[
p̄at−1 + p̄at−2{ā(1 − p̄)} + p̄at−3{ā(1 − p̄)}2 + · · · + p̄a{ā(1 − p̄)}t−2

+{ā(1 − p̄)}t−1
]
.

��
Theorem 9 If the primary CML therapy is initiated, the expected number of Type-0
cells at time t is given by,

E[Z̄0(t)|Z(0) = s] = sλt āt (1 − p̄)t .

Proof The proof is similar to Theorem 2. ��
Theorem 10 If the primary CML therapy is initiated, the expected number of Type-1
cells at time t is given by

E[Z̄1(t)|Z(0) = s]
= sλt ā p̄

[
{a(1 − p)}t−1 + {a(1 − p)}t−2{ā(1 − p̄)}

+ {a(1 − p)}t−3{ā(1 − p̄)}2 + · · · + {a(1 − p)}{ā(1 − p̄)}t−2

+{ā(1 − p̄)}t−1
]
.
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Proof In order to prove this theorem, we consider the following two facts:

• Type-0 cells produce Type-1 cells at a rate λ with probability p̄ (cell mutation),
where the survival probability of Type-0 cells is ā.

• Type-1 cells produce the same cells at a rate λwith probability 1− p (cell division),
where the survival probability of Type-0 cells is a.

Therefore, the number of Type-1 cells at t = n is dependent on the following two
evaluations:

• Number of Type-1 cells produced from Type-0 cells, present at t = n−1, through
cell mutation.

• Number of Type-1 cells produced from Type-1 cells, present at t = n−1, through
cell division.

(A) Calculation of Type-1 cells at t = 1,

• The number of Type-1 cells produced from Type-0 cells, present at t = 0, through
cell mutation is sλā p̄.

• There is no such Type-1 cells which is produced fromType-1 cells present at t = 0.

Therefore, at t = 1, the number of Type-1 cells becomes sλā p̄.

(B) Calculation of Type-1 cells at t = 2,

• The number of Type-1 cells, produced from Type-0 cells present at t = 1, through
cell mutation is sλ2ā2 p̄(1 − p̄).

• The number of Type-1 cells produced from Type-1 cells, present at t = 1, through
cell division is sλ2aā p̄(1 − p).

Therefore, at t = 2, the number of Type-1 cells becomes sλ2ā2 p̄(1− p̄)+sλ2aā p̄(1−
p) = sλ2ā p̄

[
a(1 − p) + ā(1 − p̄)

]
.

(C) Calculation of Type-1 cells at t = 3,

• The number of Type-1 cells produced from Type-0 cells, present at t = 2, through
cell mutation is sλ3ā3 p̄(1 − p̄)2.

• The number of Type-1 cells produced from Type-1 cells, present at t = 2, through
cell division is sλ3aā2 p̄(1 − p)(1 − p̄) + sλ3a2ā p̄(1 − p)2.

Therefore, at t = 3, the number of Type-1 cells is

sλ3ā3 p̄(1 − p̄)2 + sλ3aā2 p̄(1 − p)(1 − p̄) + sλ3a2ā p̄(1 − p)2

= sλ3ā p̄
[
{a(1 − p)}2 + {a(1 − p)}{ā(1 − p̄)} + {ā(1 − p̄)}2

]
.

Proceeding in the same manner, one can obtain that the expected number of Type-1
cells at time t equals,

sλt ā p̄
[
{a(1 − p)}t−1 + {a(1 − p)}t−2{ā(1 − p̄)} + {a(1 − p)}t−3{ā(1 − p̄)}2

+ · · · + {a(1 − p)}{ā(1 − p̄)}t−2 + {ā(1 − p̄)}t−1
]
.

��
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Theorem 11 If the primary CML therapy is initiated, the expected number of Type-2
cells at time t can be calculated using the following relation,

E[Z̄2(t)|Z(0) = s] = E[Z̄(t)|Z(0) = s] − E[Z̄0(t)|Z(0) = s] − E[Z̄1(t)|Z(0) = s].

Proof The proof follows from Theorems 8, 9 and 10. ��
Remark 1 If the primary therapy is initiated at t = 0, then the number of Type-0,
Type-1 and Type-2 cells can directly be calculated using Theorems 9, 10 and 11,
respectively.

Remark 2 If the primary therapy is initiated at some generic time tg , then substituting
s = sλtg atg (1− p)tg in the formulae of Theorems 9, 10 and 11 is used for calculating
the number of Type-0, Type-1 and Type-2 cells, respectively.

4 Numerical results

In this penultimate section, we present various illustrative numerical results, pertaining
to the derivations made in Sect. 3. The levels of the three types of CML cells, as well
as the total number of cells, as they progress over time are numerically illustrated.
We also demonstrate how the number of CML cells can be impacted by the values of
the parameters, such as the initial levels of the leukemic stem cells, the probability of
survival of the CML cells, cell division or mutation rates, and the offspring mean. The
simulation is carried out in order to observe the probability of extinction of the disease,
with respect to the variation in the values of the parameters. Finally, we determine the
optimal time, at which the progression of the disease changes from one state to another.
For the purpose of some illustrative results, we choose the values of the parameters to
be, s = 1, p = 0.3, a = 0.5, λ = 3, with the time window under consideration being
T = 50.

We begin with the results for the progression of the cells over time. Accordingly,
Fig. 2 shows the changes in the levels of the three types of CML cells over time. We
observe from the figure, that from the initial time of t = 0, until the time of t = 40, the
leukemic stem cells and the progenitor cells, gradually increase with time, but there is
no noticeable increment in the levels of the mature leukemic cells. However, beyond
this point, there is a rapid and accelerated growth of the mature leukemic cells, thereby
resulting in the host being predominantly invaded by these cells.

In Fig. 3, we plot the percentage of injurious cells (cells which will have
more harmful effect in the host, i.e., the cells of Type-1 and Type-2), defined as

Z1 + Z2

Z0 + Z1 + Z2
× 100, as a function of time. It captures the progression of percentage

of the progenitor cells and the mature leukemic cells, as a percentage of the total num-
ber of the leukemic cells, over time. As can be seen from Fig. 3, the injurious cells,
for all practical purpose have taken over the host after about time t = 12, since the
detection.

Now, we present the three dimensional results for the progression of the three types
of cells, against the ranges of a ∈ [0, 0.5] and λ ∈ [0, 3] in Fig. 4. It can be observed
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Fig. 2 Progression of the leukemic stem cells (Z0), the progenitor cells (Z1) and the mature leukemic cells
(Z2)

Fig. 3 Percentage of injurious cells as a function of t

that until one reaches fairly close to the maximum values in the ranges of a and λ, the
progression of the disease is reasonably under control, beyond which the cell levels
dramatically reach fatal levels in the host.

We next look at the probability of extinction for various parameter values in Fig.
5. For the first figure, we choose the ranges of values of λ to be [0, 3]. The extinction
is almost certain upto nearly the value of λ = 2. However, beyond this point, there
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Fig. 4 Progression of the leukemic stem cells (Z0), the progenitor cells (Z1) and the mature leukemic cells
(Z2) as a function of a and λ

Fig. 5 Probability of extinction for various values of λ and t

is a very small window of λ (among the values of λa > 1) for which there is a
positive probability of extinction, and then the probability is virtually nonexistent
(demonstrating extremely poor prognosis).

Finally, we look at the illustration for the results in Theorems 5 and 6. For the
implementation of the result in Theorem 5, we consider the values of 0 ≤ M ≤ 108,
and plot the corresponding expected times T to reach a level of M leukemic cells can
be seen in Fig. 6. This result helps in determining the expected time at which the CML
disease changes from being the less injurious chronic phase, to the more serious and
fatal condition based on the percentage of leukemic cells in the patient’s blood. For
the result in Theorem 6, we consider the ranges 0 ≤ T12 ≤ 45 and 102 ≤ M12 ≤ 108

(chosen for illustrative purpose), and present the implicit plot for the same in Fig. 7.
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Fig. 6 Expected times T to reach a level of M leukemic cells

Fig. 7 Implicit plot of expected time T12 to reach M12 injurious leukemic cells

5 Conclusion

In this study, the evolution of CML is discussed through various stages of disease
progression with three types of leukemic cells. We have analytically calculated the
expected number of total leukemic cells, aswell as three types of leukemic cells, before
and after initiation of the therapy. The expected times to reach a certain number of total
leukemic cells and injurious leukemic cells are estimated. The probability of extinction
of theCML is also analytically determined. The progression of different leukemic cells
are graphically plotted which exhibited a sudden and large increment in Type-2 cells,
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as compared to other two types of cells. The numerical findings also suggested that
after a while, the leukemic cells are dominated by the injurious cells. The changes
in the number of leukemic cells, contingent on the values of survival probability and
offspring mean are shown graphically. The chance of disease extinction is numerically
shown for different values of offspring mean, which depicted that the chance of CML
extinction is almost impossible without therapy, when the offspring mean exceeds 2.
Thus, the findings obtained can help in determining the percentage of leukemic cells in
a patient’s blood or bone marrow at a specific time and to diagnose the phase (chronic
phase, accelerated phase, or blast phase) which the patient is going through. Also, it
can help in estimating the time needed to go to the next phase/stage of CML, and to
predict the condition of the patient in advance, so that the medical practitioner can
advice on the appropriate therapeutic intervention.

Acknowledgements SPCwas supported by Grant. No.MTR/2019/000225 from the Science and Engineer-
ing Research Board, India. SR’s work was supported partially by Grant No. MTR/2020/000186 from the
Science and Engineering Research Board, India.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Clapp, G.D.: Applying mathematical models to study the role of the immune system in chronic myel-
ogenous leukemia. Doctoral Dissertation (2016)

2. Pujo-Menjouet, L.,Mackey,M.C.:Contribution to the studyof periodic chronicmyelogenous leukemia.
C. R. Biol. 327(3), 235–244 (2004)

3. Komarova, N.L., Katouli, A.A., Wodarz, D.: Combination of two but not three current targeted drugs
can improve therapy of chronic myeloid leukemia. PLoS ONE 4(2), e4423 (2009)

4. Koch, D., Eisinger, R.S., Gebharter, A.: A causal Bayesian network model of disease progression
mechanisms in chronic myeloid leukemia. J. Theor. Biol. 433, 94–105 (2017)

5. Michor, F., Hughes, T.P., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C.L., Nowak, M.A.: Dynamics
of chronic myeloid leukaemia. Nature 435(7046), 1267–1270 (2005)

6. Komarova, N.L., Wodarz, D.: Effect of cellular quiescence on the success of targeted CML therapy.
PLoS ONE 2(10), e990 (2007)

7. Roeder, I., Herberg, M., Horn, M.: An “age” structured model of hematopoietic stem cell organization
with application to chronic myeloid leukemia. Bull. Math. Biol. 71(3), 602–626 (2009)

8. Radulescu, I.R., Candea, D., Halanay, A.: A study on stability and medical implications for a complex
delay model for CML with cell competition and treatment. J. Theor. Biol. 363, 30–40 (2014)

9. Clapp, G.D., Lepoutre, T., El Cheikh, R., Bernard, S., Ruby, J., Labussière-Wallet, H., Nicolini, F.E.,
Levy, D.: Implication of the autologous immune system in BCR-ABL transcript variations in chronic
myelogenous leukemia patients treated with Imatinib. Cancer Res. 75(19), 4053–4062 (2015)

10. Besse, A., Clapp, G.D., Bernard, S., Nicolini, F.E., Levy, D., Lepoutre, T.: Stability analysis of a model
of interaction between the immune system and cancer cells in chronic myelogenous leukemia. Bull.
Math. Biol. 80(5), 1084–1110 (2018)

11. Ainseba, B.E., Benosman, C.: Optimal control for resistance and suboptimal response in CML. Math.
Biosci. 227(2), 81–93 (2010)

12. Radulescu, I.R., Candea, D., Halanay, A.: Optimal control analysis of a leukemia model under imatinib
treatment. Math. Comput. Simul. 121, 1–11 (2016)

13. Bunimovich-Mendrazitsky, S., Shklyar, B.: Optimization of combined leukemia therapy by finite-
dimensional optimal control modeling. J. Optim. Theory Appl. 175(1), 218–235 (2017)

123



1558 S. Pan et al.

14. Leder, K., Foo, J., Skaggs, B., Gorre, M., Sawyers, C.L., Michor, F.: Fitness conferred by BCR-ABL
kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia.
PLoS ONE 6(11), e27682 (2011)

15. Pan, S., Raha, S., Chakrabarty, S.P.: A quantitative study on the role of TKI combined with Wnt/β-
catenin signaling and IFN-α in the treatment of CML through deterministic and stochastic approaches.
Chaos Solitons Fract. 133, 109627 (2020)

16. Farrington, C.P., Grant, A.D.: The distribution of time to extinction in subcritical branching processes:
applications to outbreaks of infectious disease. J. Appl. Prob. 36, 771–779 (1999)

17. Durrett, R., Moseley, S.: Evolution of resistance and progression to disease during clonal expansion
of cancer. Theor. Popul. Biol. 77(1), 42–48 (2010)

18. Durrett, R., Foo, J., Leder, K., Mayberry, J., Michor, F.: Evolutionary dynamics of tumor progression
with random fitness values. Theor. Popul. Biol. 78(1), 54–66 (2010)

19. Danesh, K., Durrett, R., Havrilesky, L.J., Myers, E.: A branching process model of ovarian cancer. J.
Theor. Biol. 314, 10–15 (2012)

20. Lenaerts, T., Pacheco, J.M., Traulsen, A., Dingli, D.: Tyrosine kinase inhibitor therapy can cure chronic
myeloid leukemia without hitting leukemic stem cells. Haematologica 95(6), 900 (2010)

21. Berezansky, L., Bunimovich-Mendrazitsky, S., Domoshnitsky, A.: A mathematical model with time-
varying delays in the combined treatment of chronic myeloid leukemia. Adv. Differ. Equ. 2012(1),
1–13 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Progression, detection and remission: evolution of chronic myeloid leukemia using a three-stage probabilistic model
	Abstract
	1 Introduction
	2 Model
	3 Model analysis
	4 Numerical results
	5 Conclusion
	Acknowledgements
	References




