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Abstract

This paper considers a class of difference-of-convex (DC) optimization problems,
whose objective function is the sum of a convex smooth function and a possibly
nonsmooth DC function. We first propose a new extrapolated proximal difference-
of-convex algorithm, which incorporates a more general setting of the extrapolation
parameters {8 }. Then we prove the subsequential convergence of the proposed method
to a stationary point of the DC problem. Based on the Kurdyka—t.ojasiewicz inequality,
the global convergence and convergence rate of the whole sequence generated by
our method have been established. Finally, some numerical experiments on the DC
regularized least squares problems have been performed to demonstrate the efficiency
of our proposed method.
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1 Introduction

In recent years, DC optimization problems arise in many application areas, such as
machine learning [12, 15] and image processing [7, 9, 21]. Due to their popularity,
many numerical algorithms have been proposed for solving these problems [1, 13, 14,
29]. In this paper, we consider a special DC problem, which is in the following form:

min {¥(x) := f(x) +gx) | x € R"}, (1.1)
where g is a difference-of-convex function:

g(x) = gn(x) — gs(x), (1.2)

f : R" — R is a smooth convex function with Lipschitz continuous gradient, g, :
R" — R is a proper closed convex function and g; : R” — R is a continuous convex
function. In addition, we assume the objective function W is level-bounded, which
means that inf W (x) > —oo and the set of global minimizers of (1.1) is nonempty.

Since problem (1.1) is a class of DC problems, the well-known and classical DC
algorithm (DCA) [26] can be applied to solving the optimization problem. The main
iteration step is:

K= arg min {f(x) + gn(x) — <§k, x>} , (1.3)
xeR"

where £F € dg, (xk) is a subgradient of g, at x* € R”. As the scale of this problem
becomes larger and larger, the original DCA probably not very efficient. By using the
proximal mapping and a specific DC decomposition [27], large-scale DC optimization
problems are solved via the proximal DC algorithm (PDCA) [11]. It can be suitably
applied to the problem (1.1) for which the new iterate is obtained by solving the
following proximal subproblem

M1 = arg min {gn(x) +<Vf (xk) — Sk,x> + % Hx —kaZ} , (1.4)

xeR”

where £ € dg (xk ) and L > 0 is the Lipschitz continuity modulus of V f. However,
this algorithm may take a large number of iterations.

Therefore, various attempts have been made to accelerate PDCA. By using the
extrapolation accelerating techniques, Wen et al. [31] proposed a proximal DC algo-
rithm with extrapolation (pDCAe) to solve the problem (1.1). The key iteration step
is as follows:

WE =k B (xk — 2k,
xF*1 = arg min {g,,(x) +(Vf () = b x)+ 5 |x —y* ||2} , (1.5)

xeRn

where &% € dg, (x*), L > 0 is the Lipschitz continuity modulus of Vf and
Bk (xk - xk_l) is an extrapolation term. The choice of extrapolation parameters { B}
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in [31] can cover many popular choices of extrapolation parameters including those
used in fast iterative shrinkage-thresholding algorithm (FISTA) with fixed restart strat-
egy [24] for solving (1.1) in the case g(x) = g, (x), which is given as follows:

feo — 1 1+ /1+41%
Po=———withty = —————, (1.6)
tx 2

where r_1 =ty = 1. Recently, based on the difference-of-Moreau-envelopes smooth-
ing technique, Sun et al. [30] developed an inexact gradient descent method for solving
the DC programming, which is

xF*1 = arg min [gn(x) —I—(Vf (xk) ,x>+ % Hx _ZkHZ]’

xeR" :
Xyg, (2F) = argmin {gs(x) + % |x = 2] } ,
xeR”

Zk+1 — Zk + :3 (xk+1 — Xug, (Zk)) ,

(1.7)

where v € (0, %), L > 0 is the Lipschitz continuity modulus of V f and g8 € (0, 2).

For other accelerated DC algorithms for solving constrained DC programming have
been further proposed to improve the quality of solutions and the rate of convergence.
Pang et al. [25] proposed an enhanced DC algorithm (EDCA) to solve the considered
DC problem, meanwhile speed up the subsequential convergence. Further, based on
EDCA, Lu et al. [22, 23] developed the enhanced proximal DC algorithm (EPDCA)
to improve the efficiency of solving constrained DC programming with g, to be the
supremum of many convex smooth functions in (1.2), while nonmonotone EPDCA is
proposed by utilizing the nonmonotone line search technique. Moreover, Sun et al. [30]
proposed algorithms by combining the difference-of-Moreau-envelopes smoothing
technique with the augmented Lagrangian function and obtained well convergence
results.

In this paper, motivated by the success of pDCAe on accelerating the original
PDCA for solving structured DC optimization problems, we aim to investigate a
more general extrapolation scheme in order to improve the numerical performance
of PDCA. Concretely, inspired by the generalized Nesterov momentum scheme for
the accelerated forward—backward algorithm (AFBA) proposed in [16] and pDCAe
in [31], we consider a new extrapolated proximal DC algorithm (EPDCA) with a
more general setting of the extrapolation parameters {f;}, where a power parameter
o € (0, 1] is introduced in the extrapolation scheme.

We first prove that any accumulation point of the sequence generated by our method
is a stationary point under very general conditions. Moreover, according to Kurdyka—
Lojasiewicz property, we establish the global convergence and convergence rate of
the sequence generated by our method, which does not require the assumption that g
is continuously differentiable. In the end, we conduct some numerical experiments to
show the efficiency of our method.

The main contribution of this work can be summarized as following:
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1406 L. Gao, B. Wen

e We propose a novel extrapolation scheme with more general setting of the extrap-
olation parameters {f;} in EPDCA to solve DC optimization problem (1.1) for
potential acceleration. Then we establish the convergence results of our method.

e By constructing an auxiliary function, we prove the global convergence results of
EPDCA without the assumption that g is a locally Lipschitz continuous function,
which extended the convergence results of pDCAe developed in [31].

e According to our numerical results, the performance of our method is efficient
on ¢1_ regularized least squares problem [32] and logarithmic regularized least
squares problem [6].

The rest of this paper is organized as follows. In Sect. 2, some basic definitions
used in the whole paper are given. Section 3 gives the framework of EPDCA and
discuss the selection of the extrapolation parameters {8 }. In Sect. 4, we analyze the
convergence behaviors of our method. Some numerical experiments are conducted to
show the efficiency of the proposed method in comparison with other existing methods
in Sect. 5. Section 6 concludes the whole paper.

2 Preliminaries

In this paper, the Euclidean scalar product of R” and its corresponding norm are
respectively denoted by (-, -) and || - ||. For a m x n matrix A, let its transpose be
denoted by AT IfAisa symmetric matrix, we use Amax (A) and Amin(A) to denote
the largest and smallest eigenvalues respectively. For a given nonempty closed set
C C R, letdist(-,C) : R" — R denotes the distance function to C, i.e.

dist(x,C) ;= inf ||x — y||, Vx € R". 2.1
yeC

For an extended real-valued function f : R” — (—o0, o], the set
dom f := {x eR": f(x) < oo} (2.2)

denotes its effective domain. f is called proper if it does not take the value —oo and
dom f is nonempty.
The set
epif = {(x,t)e]R” xR: f(x) §t} (2.3)

denotes the epigraph of f, and f is closed (or convex) if epif is closed (or con-
vex). A proper closed function f is said to be level-bounded if the lower level set
{x e R": f(x) <r}isbounded for any r € R.

Given a proper closed function f : R"” — (—o0, c0], the Fréchet subdifferential
of f at x € dom f is given by

Ok {y CR" - liminf L& =) = . 2= %)

o Iz —xI

> o} YN
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while for x ¢ dom f, 37 f(x) = @. The limiting subdifferential of f atx € dom f is
defined as

af(x) = {y eR": A 5 x, f (xk) = fx), Y edl f (xk) such that y* — y] ,
2.5)
while for x ¢ dom f, 3 f(x) = @. If f is convex, the Fréchet subdifferential and the
limiting subdifferential will coincide with the convex subdifferential, that is,

A fy=0fx) = {yeR":f(z)zf(x)+(y,z—x)forallzeRn}. (2.6)

A proper closed function f : R"” — (—o00, 00] is called o-strongly convex with
o > 0if for any x, z € dom f and A € [0, 1], it holds that

JOx+ (A =Mz =Af)+0A=1)f(z) = %k(l —Mlx —zl*. 2.7)

Moreover, let f be a o-strongly convex function, it is known that for any x €
domdf,y € df(x)and z € dom f, we have

F@ =)+ (s —x)+ %nz — x| 2.8)

For a proper closed convex function f : R" — (—o00,00], let f*(u) =
sup,cgn{(u, x) — f(x)} denotes the conjugate function of f(x). Then f* is proper
closed convex and for any x and y, the Young’s inequality holds, that is

fF)+ fFy) = (x,y), (2.9)

the equality holds if and only if y € 9 f(x). Moreover, for any x and y, one has
y € 0f(x) if and only if x € 3 f*(y).

Finally, we present some preliminaries on the Kurdyka—}t.ojasiewicz property [2—4].
These concepts play a central role in our theoretical and algorithmic developments. For
n € (0, oo], we denote by E,, the set of all concave continuous functions ¢ : [0, ) —
[0, co) that are continuously differentiable over (0, n) with positive derivatives and
satisfy ¢ (0) = 0.

Definition 2.1 (Kurdyka—tojasiewicz property) A proper closed function f : R* —
(—o00, 00] is said to satisfy the Kurdyka—L.ojasiewicz property at X € dom d f if there

exist € (0, oo], a neighborhood W of x, and a function ¢ € &, such that for all x
in the intersection

Wn{xeR": fX) < f(x) < f&) +n}
it holds that
@' (f(x) — f(X))dist(0,d f(x)) > 1.
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1408 L. Gao, B. Wen

If f satisfies the Kurdyka—t.ojasiewicz property at any point of dom d f, then f is
called a Kurdyka—Lt.ojasiewicz function.

The following uniformized Kurdyka—t.ojasiewicz property [5] plays an important
role in our sequential convergence analysis.

Lemma 2.1 (Uniformized Kurdyka—t.ojasiewicz property) Let Q2 € R" be a compact
set and let f : R" — (—00, o0] be a proper closed function. If f is constant on Q
and satisfies the Kurdyka—tojasiewicz property at each point of 2, then there exist
€,n > 0and ¢ € E) such that

¢'(f(x) — f())dist(0,0 f(x)) = 1

for any X € Q2 and any x satisfying dist(x, Q) < € and f(x) < f(x) < f(X) +n.

3 Extrapolated proximal difference-of-convex algorithm

In this section, we will show the framework of the extrapolated proximal difference-
of-convex algorithm (EPDCA) and give the chosen of the extrapolation parameters
{Br}, which are more general than those proposed in (1.6).

Extrapolated proximal difference-of-convex algorithm (EPDCA):

Input: x” € dom gy, (B} S [0, 1). Setx~! = x°.
fork=0,1,2,---
Take any £5*! € 9g,(x*) and compute

Y=k gt — X, 3.1)
x*1 = argmin {gnm F(VFGE — e x) + %nx — y"nz} :

xeR"

end for

The extrapolation parameters {f;} are selected as follows:

th-1—1 . w
Br = ; withty_1 =atk — 1) +b, k>1 (3.2)
«
where w € (0,1],a € RT and b € R. Sett_| = ty = b. It is worth noting that in

order to avoid the denominator being zero, without further mentioning, we always set
b € R\{—ak® : k e N*t}.
Remark 3.1 (i) If we choose @ = 1,a = 5 witha > 3,b = 1 in (3.2), the
extrapolation parameters {f;} become as follows:
k—1

A= et

(3.3)
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This setting was proposed by Chambolle and Dossal [8], which is a special case
of our proposed extrapolation parameters in (3.2).

(ii) Let the extrapolation parameters {f;} in (3.2) with a = %, b=1landw =1, we
can obtain the extrapolation parameters {8} in (1.6) and (3.2) converge to the
same value with the same convergence rate from [17, Proposition2], which means
that the setting (1.6) of the extrapolation parameters {f;} are asymptotically
consistent to a special case of the parameters we proposed in (3.2).

(iii) The choice of the power w depends on the specific problems. We choose w = 0.98
in the numerical experiments for solving two classes of DC regularized least
squares problems, see Sect. 5.

(iv) We can easily deduce that the sequence {fy} is increasing to 1 from (3.2). There-
fore, given a fixed positive integer K, we can choose B, = Bx wheneverk > K,
which implies the supremum of gy is strictly less than 1.

More concrete examples of such setting of extrapolation parameters have been
extensively used for the Nesterov’s accelerated forward—backward algorithm, see [16]
for more details.

4 Convergence analysis

In this section, we are going to analyze the convergence behaviors of EPDCA. We
first define the following auxiliary sequence:

HOH g b = f (6) 4+ (6F) — 065 4+ 7 (8) + St =412

where © € [L,EZ,L] with B = sup B < 1, €K € dg,(x*1) and g;‘(’g‘k) is the
k

conjugate function of g (xk). Based on the Young’s inequality, we obtain that
HGE g6 3k > f (xk) + g (xk> — g (xk) + % ek — Xk 112 = Wk, @.1)

It is worth mentioning that using this auxiliary sequence structure, we can establish
the global convergence of the sequence generated by our method to solve problem
(1.1) without requiring g5 to be continuously differentiable. The idea of constructing
such an auxiliary sequence similarity can be found in [20].

Lemma 4.1 Let {x*} be a sequence generated by EPDCA and . € [LEZ, L], it holds
that

. _m—L LB} — _
HOM 20 — HOR 6,00 < S = M =P == -
(4.2)

Furthermore, the sequence {H (xk, & k. xk_l)} is nonincreasing.
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1410 L. Gao, B. Wen

Proof Using the strong convexity of the objective in the subproblem (3.1), we can
compare the objective values of this strongly convex function at x**! and x* that

L 2
gn (xk+1) + <Vf (yk> _ gkt xk+1> + > ka+1 _ yk H

L 2L 2
s () +{or (1) e d) e g I g

Rearranging terms, we obtain that

L 2
2n (xk-i-l) <a (xk) T <—Vf <yk) s xk) i > ka _ yk H
) il | )
2kt =y

_ Lk
2

L
2

On the other hand, using the fact that V f is Lipschitz continuous with a Lipschitz
constant of L > 0, we have

¥ (xk+l> <7 (yk) +(Vf <yk)’xk+l _ yk>+ % ka+1 _ H2

Using the above two inequalities, we obtain further that

£ ()
<1 ()45 () A T e () )
- %nxk“ —
O R
(#5981 () et )Gt
(4.3)

where the second inequality follows from the convexity of f, and the last inequality
holds due to the relation x* — y* = xk — (x* + Br(xF — xk71)) = — B (xF — XK1y,
From the definition of the auxiliary sequence {H (x*, £%, x¥~1)} and the conjugate
function g¥, we have

2

%
H (xk+1’ ghtl xk) —f (xk+l> T (xk+1> _ (xk+1, §k+1> g (§k+1> + - ka+1 ok H
2 2
1)+ 5 e ()
2
_ <xk+|’$k+l>+g;< <Ek+l) n % ka+1 _ H

()b e e ()t ) |

2
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+ <xk _xk+17§k+1> e (xk> * % ka+1 ik H2
B N (e [ e

where the first inequality follows from (4.3), and the second equality follows from the
fact that £5+1 € 9 g, (x*). Combing the Young’s inequality on (4.4), we obtain that

H (1,61 1)
5 () B =) (55 -
(8 + g7 (8)
7)o )+ £ -
TR R C RO [

L 2 L 2
(s s () o= (-2

where the second equality follows from the definition of the sequence { H (x*, £, x¥—1)}.
Therefore,

H (xk+l,ék+l’xk) _H (xk7 £k, xk—l)
=(5-5) b= (G5 I T

Recall that LEZ <u<=<lL andE = sup PBr < 1, we obtain that for any k > 0,
k

<

=

L L w L -
—Z <0 and 2822 < =32 _
y S and 2 =5 =58

(S~

<0.

Consequently, we see immediately that
H(xk+1 ghtl xk) —H (xk gk xk—l) <0

which means that the auxiliary sequence {H (xk, gX, xk_l)} is nonincreasing. This
completes the proof. O

Before analyzing the convergence behaviors, on the basis of Fermat’s rule [28,

Theorem 10.1], we give the definition of stationary points of the objective function W
as follows.
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1412 L. Gao, B. Wen

Definition 4.1 Let W be given in (1.1). We say that X is a stationary point of W if
0€dVf(xX)+ 0g,(X) — dgs(X).

The set of all stationary points of W is denoted by X'.

We next give the global subsequential convergence of the sequence {x*} generated
by EPDCA to solve problem (1.1) .

Theorem 4.1 (Global subsequential convergence) Let {x*} be the sequence generated
by EPDCA and u € [LBZ, L]. Then the following statements hold:

(1) The sequences {xk} and {Ek} are bounded.
(i) ||xk - xk_1|| — Qas k — oc.
(iii) Any accumulation point of the sequence { xk} is a stationary point of V.

Proof (i) Since the sequence {H (xk, & N xk_l)} is nonincreasing from Lemma 4.1,
together with the inequality (4.1), we obtain that

v (xk> <H (xk,ék,xkfl) <H (xo,so,xfl) < 00.

Noting that by assumption W is level-bounded, thus we have the sequence {xk} is
bounded. Moreover, due to the boundedness of {xk}, the continuity of g, and the fact
that £F € 9g,(x*~1), we immediately have the sequence {£& kY is also bounded. This
proves (i).

(i1) From Lemma 4.1 and according to the fact that u < L, we have

H (xk+1’ ghtt xk) _H (xk’ gk, xk—l)
L 2 LBE— 2
<M kaﬂ _xk” N Bi — 1 ka _XHH
2 2
LB% — 2
R k]

By rearranging the terms above, we obtain that

— LB? 2
H ; Bi ka k1 H <H (xk’ %.k7xk—1> _H (xk+l’ Sk-i-l,xk) ' 4.5)

Furthermore, summing up both sides of the above inequality with £ ranging from 1 to
m, we have

0=< Iil: |:M_2L@<2 ka —xk—1H2:| = i (H (xk,gk,xk—l) _H (ka,gk“,xk))

— H(xl,’g’l,xo) _H(merl’%.mel’xm). (46)
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Letting m to the limit in (4.6), we conclude that

)
n— LB k —1])%
S e

. —2 2
Using the fact that © > LB~ > Lﬁ,f, we have 2120:1 ka — xk-1 ” < 00. Therefore,
we immediately obtain that ||xk — xk=1 || — 0 as k — oo. This proves (ii).

(iii) Let x* be an accumulation point of {xk } Then there exists a subsequence

{xki } convergent to x*. From the first-order optimality condition of the subproblem
(3.1), we obtain that

0eag, (xka) +Vf (ykf> — Ekf+l + L (xkf+l - ykf) , “@.7)

where %1 € 9g; (x*7) . On the other hand, due to the fact that ||x*/ — xk=1| — 0
from (ii), we have

ot _ yk,- — oki+l (xk,- + By, (xk,- _xkj—1>)

= (xk-f+1 — xk-f) — B, (xk-/ - xk-"_l) — 0. @

In addition, recall that the sequence {S kj +1} is bounded from (i), so without loss of
generality we can assume that the limit of the sequence {5 kj+l } exists, and it belongs to
dgs (x*) due to the closedness of dg;. Noting the closedness of g, and the continuity
of V f, then taking j to the limit in (4.7), we obtain that

0€dg, (x*) +Vf (x*) — 3gs (x*) , 4.9)

which means that x* is a stationary point of W. This completes the proof. O

Before analyzing the global convergence results of EPDCA, we will give some
properties of the auxiliary sequence { H (xk, £k, xk’l)}.
Proposition 4.1 Let {x*} be the sequence generated by EPDCA for solving (1.1) and
u e [LEZ, L]. Then the following statements hold:
(i) lim dist ((0,0,0), 9H (x*, &k, x*=1)) = 0.
k— 00
(i) ¢:= lim H (xk, Sk,xkfl) exists.
k— 00
(iii) The set of accumulation points of { (xk, gk xk-1 ) } denoted by Y, is a nonempty
compact set. Moreover, H = ¢ on Y.

Proof (i) Taking the subdifferential of the auxiliary sequence { H (xk, £k, xk’l)}, we
obtain that for k > 1,

V() +agn (xF) — 6" + p (xF =)
ot (+*, €5, 1) = “xk 4 ag? (&)
g (xk = Xk )
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1414 L. Gao, B. Wen

Using the first-order optimality of the subproblem (3.1), we have
—vr (P - L (=) e dgaeh).
From the above relation and the fact that x*~1 € 9 gl k ), we obtain further that

Vf (xk) —Vf (yk—l) _L (xk _ yk—l) T (xk _xk—l)
xk=l — xk c o0H <xk,$k,xk_l),
—u xk _ xkfl)

forallk > 1. This together with the relation that xX — yk=1 = xk —xk=1_ g, | (x*=1—
x¥72) and the Lipschitz continuity of V f, we conclude that there exists A > 0 such
that

dist ((0, 0,0),0H (xk, ék, xk_1)> <A (”xk — k-1 H + ka_l — xk=2 H) .

Since the facts that ||xk — xk-1 || — 0 and ||xk_1 — xk—2 || — 0 from Theorem 4.1
(ii), we deduce that klim dist ((0, 0,0),0H (xk, Ek, xk_l)) = 0. This proves (i).
—00

(ii) Noting that the inequality H (x*, &%, x*=1) > W(x*) holds in (4.1) and due
to the level-boundedness of W, we obtain that the sequence {H (xk , Ek , xk’])} is
bounded below. In addition, the sequence {H (x*, ¥, x*=1)} is nonincreasing from
Lemma 4.1. Therefore, we conclude that { := klim H (x*, &%, xk=1) exists. This

—
proves (ii). >

(iii) Using the facts {x*} and {£¥} are bounded from Theorem 4.1 (i), we know
immediately that the set of accumulation points of {(x*, &%, x*~1)} is a nonempty
compact set Y.

We now show that H = ¢ on Y. To this end, take any (%, é , D) € T, then there exists
a convergent subsequence {(x*/, &%, xk=1)} such that limj_, o (x*7, &5/, xKi71) =
(£, &, D). From the lower semicontiny of the sequence {H (x*, ¥, x*~1)} and the
definition of ¢, we have

H(&, £, D) < liminf H (xk/, gk.f,xk.f—l) —¢ @.11)

j—o00

On the other hand, since x*/ is the minimizer of the subproblem (3.1), we have

2
o () {5 (7)) -

o H2 (4.12)

< gn(® +<Vf (ykf*l) — &k, >+% £—y
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By rearranging the terms above, we obtain that

g”( ) (Vf< kl)lsj Xt - > H k_IH (4.13)

<4+ |

Using the facts that y%/ =1 = x% =1 gy (xbi=1 = xKi=2), || xF — x¥=1|| - 0 from
Theorem 4.1(ii), and lim; _, xKi = %, we have the following relations:

Y T ety P
S P e B
(4.15)

In addition, using the continuous differentiability of f, lim; o xki = X, and the
boundedness of { gki } and { yki }, we have

lim <Vf( kj —1) _gki ki —£> = 0. (4.16)

J—)

Therefore, from the definition of the auxiliary sequence { H (xk € k. xk _1)}, we obtain
that

= lim H ,ék-/,xk’ 1)
j—o00
2
(4 () )+ o
Jj—>00

g
() el 2
() () () o5
- () o () ) S

¢

o (<) ~ (<4 v )

glimsupf(xf)+§ f—ykf_IH +g,(%) — ( , ki >+g (5 )

Jj—o0

= limsup f (xkf') + g, (%) — <xkf — xki=1, Ekf> — g (xkfl)
Jj—00
= f() +gn(®) — g5(}) = W(R) < H(&,§,D),
(4.17)
where the third equality follows from the facts that |x* —x%i=1| — 0 and (4.14),
the fourth equality follows from (4.16), the first inequality holds due to (4.13), the fifth
equality follows from (4.15) and the fact that &K/ e dg ( ) the sixth equality
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holds due to || x*/ — x*i=!| — 0 from Theorem 4.1 (ii), the boundedness of {£X} and
the continuity of f and gs, while the last inequality follows from the relation (4.1).
Therefore, we conclude that H (%, £, D) = lim j_, o H (x*/, €5, x%=1) from (4.11)
and (4.17). Due to the arbitrariness of (x, é, D), we have H = ¢ on Y. This completes
the proof. O

Next, we are going to analyze the global convergence and the convergence rate of
the sequence {x¥} generated by EPDCA to solve (1.1).

Theorem 4.2 (Global convergence) Let {x*} be the sequence generated by EPDCA
for solving (1.1) and n € [LEZ, L]. Assume the auxiliary function H(x,&,v) is
a Kurdyka—t.ojasiewicz function. Then the sequence {xk } converges to a stationary
point of V; moreover, Z,fil ||xk — xk-1 H < 00.

Proof From Theorem 4.1 (iii), it is sufficient to prove the sequence {xk} is con-
vergent. We first consider the case that there exists an integer k > 0, such that
H (x*, &%, x*=1) = ¢. Due to the sequence {H (x¥, €%, x*=1)} is nonincreasing and

convergent to ¢, we obtain that for any j > 0, H (xk+j, gkt xk+j_1) = ¢ is satis-

fied. Therefore, from (4.5) we conclude that for all kK > ]_ > 0, it holds that x¥ = x¥*/,
which means that the sequence {x¥} converges finitely.

In the following, we consider the case that for any k > 0, H (x*, &%, xk=1) > ¢
holds. Recall from Proposition 4.1 (iii) that Y is a compact subsetand H = ¢ on T,
where Y is the set of the accumulation points of {(xk L€ k , xk_l) } In addition, noting
that H(x, &, v) is a Kurdyka—tojasiewicz function, according to Lemma 2.1, there
exists a positive scalar € and a continuous concave function ¢ € &, with > 0 such
that

¢ (H(x,&,v) —¢)-dist((0,0,0), d0H(x, £, v)) > 1
for all (x, &, v) € W, where

W={(x,&v) e R" x R" x R" : dist((x, &, v), Y) < €}
ﬁ{(x,é,v)eR"xR”xR”:{<H(x,§,v)<{+n}.

Since {x*} and {£*} are bounded from Theorem 4.1 (i), and Y is the set of accumu-
lation points of {(x¥, £¥, x*=1)} from Proposition 4.1 (iii), we obtain that

lim dist ((xk,gk,xk—l) , T) —0.

Hence, there exists k& > 0 such that dist ((x¥, &%, x*=1) , T) < € whenever k > k;.
Similarly, from the sequence {H (xk, gk, xk_l)} is nonincreasing and convergent to
¢, there exists k> > 0 such that ¢ < H (x*, €K, x*=1) < ¢ + n for all k > k. Taking
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k = max {k, k,}, then the sequence {(x*, &%, x*~1)} belongs to W whenever k > k.
Hence we have

& (H (xk, gk,xkfl) - g) - dist ((0, 0,0),0H (xk, g",x’H)) >1, Vk >k
(4.18)
Since ¢ is a concave function, we see further that

[¢ (H (xk’ Ek’xkq) _ éh) — ¢ (H (xk+17%.k+l’xk) _ {)]
- dist ((o, 0,0), 9H (xk, gk, xk_1>)
> ¢ (H (xk, gk, xk_l> — ;) - dist ((0, 0,0), 9H <xk, gk, xk_1>)
) (H (xk’ gk, xkfl) _H (xk+l7§k+1’xk))

2
> H (xk7 $k7xk71) _H (karl’ §k+l’xk) >T ka _xkfl‘

b

where the second inequality holds due to (4.18) and the fact that { H (x*, &%, x¥=1)}

12
is nonincreasing, the third inequality follows from (4.5) and T = # From the
above inequality and (4.10), we obtain that

= o 1 (82 ) <)< (2. 0) <)
]
(4.19)

Taking the square root on both sides of (4.19) and using the inequality of arithmetic
and geometric means, we have

ot = 1] <2 (1 ot b)) = (1 001, 001 8) — )
) J ettt et ot
S% (¢ (H (xk’ sk’xkfl) _ §> _ o (H (xk+1’€k+1’xk> _ g_))

1
A A

+

’

which implies that

g It < (o (o (v t) =) o (1 (24 ) =)
N e}

(4.20)
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Summing the above relation from k = k to 0o, we obtain that
o0
2A A 1y 7 v
] o () <) 43 <
k=k

which implies that Y72, [x* — x¥7!| < oo, i.e., the sequence {x*} is a Cauchy
sequence. Thus, the sequence {xk} converges to a stationary point of W from Theorem
4.1 (iii). This completes the proof. O

Remark 4.1 1t is worth mentioning that the idea of Theorem 4.2 is similar to Theorem
2.9 proposed in [4], but the details are slightly different. In order to make the proof
easier to read and understand, we write out the concrete proof.

In the following, we consider the convergence rate of the sequence {xk} under the
assumption that the auxiliary function H(x, &, v) is a KL function whose ¢ € &,
takes the form ¢ (s) = cs'~? for some 6 € [0, 1).

Theorem 4.3 (Rate of convergence) Let {x*} be the sequence generated by EPDCA
for solving (1.1) and n € [LEz, L]. Suppose that {xk} converges to some x* € X,
the auxiliary function H(x, &, v) is a KL function with ¢ in the KL inequality taking
the form ¢ (s) = csi—? for some 6 € [0, 1) and ¢ > 0. Then the following statements
hold:

(1) If0 = 0, then there exists ko > 0 so that x* is constant for k > k.
(i) If0 € (0, 3], thenthere existcy > 0, ki > 0,andn € (0, 1) suchthat | x* — x*| <
cmkfork > kj.
(i) If0 e (%, 1), then there exist co > 0 and ky > 0 such that ||xk — x*” < Czk_%
fork > k».

Proof (i) If 6 = 0, we will prove that there must exist an integer ky > 0 such that

H (xko, gho, xko_l) = ¢. We assume to the contrary that for all £k > 0, it holds that

H (x*, &%, x*=1) > ¢. Since klim x¥ = x* and the sequence {H (xk, g5, xk_l)} is
— 00

nonincreasing and convergent to ¢, from ¢ (s) = cs and the inequality (4.18), we have

1
dist ((0, 0,0), 9H (xk,sk,xkfl)) > -,
c
for all sufficiently large k, which contradicts Proposition 4.1 (i). Therefore, there exists
ko > 0 so that H (x*o, gk, xko=1) = ¢ Due to the sequence {H (x¥, &%, x*=1)} is

nonincreasing and convergent to ¢, it must holds that H (xkoﬂ , ékoﬂ' , xkoti *1) =

for any j_ > 0. Thus, we conclude from (4.5) that there exists ko > 0 so that x¥ is
constant for k > ko. This proves (i).

that H (x*0, k0 x%=1) = ¢ then we can show that the sequence {x*} is finitely
convergent as above, and the desired conclusions hold trivially. Therefore, for 6 €
(0, 1), we only need to consider the case when H (xk, Ek, xk_l) > ¢ forall k > 0.
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Define Ry = H (x, &%, x*=1) — ¢ and Sy = Z?‘;k |« — x=1|, where S is
well-defined due to Theorem 4.2. Using (4.20), for any k£ > k ,where k is defined as
in (4.18), we have

j=k

52;; [? (qﬁ (H (xf,gj,xjfl) _ g“) —¢>(H (xj+l’§j+]’xj> _ §>)
(-]

2o ) o0
2A 1

= ?¢ (Re) + 3 (Sk—1 — Sk) -

Using the above inequality and the fact that the sequence {Si} is nonincreasing, we
obtain that for all k > k,

2A 1
Sk < Tfﬁ (Ry) + 3 (Sk—2 — S) . 4.21)

On the other hand, since klim x* = x* and the sequence {H (x, €K, x¥=1)} is
— 00

nonincreasing and convergent to ¢, from (4.18) with ¢ (s) = cs1=? we have
(1= 6) (Ry)~? dist ((o, 0,0), 9H (xk, gk, xk*‘)) > 1, (4.22)

for all sufficiently large k. In addition, from (4.10) and the definition of S, we obtain
that

(000,98 (.5.1) 2441 2

=A(Sk—1 — Sk+1) < A (Sk—2 — Sp) .

(4.23)

Combining the relations (4.22) and (4.23), we further have
(R’ < A-c(1=0)(Sk2— Sp) .

Raising to a power of % and multiplying by c to both sides of the above inequality,
we obtain that

(R <c(Ac(1—0) (Sia— ST
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Combining this with (4.21) and according to the fact that ¢ (Rx) = ¢ (Rx) 10 we see
that for all sufficiently large k,

1-6 1 1—6
Sk <AL (Sk—2—S) 7 + 3 (Sk—2 — Sk) < A1 (Sk—2 — Sk) @+ Sk—2 — Sk,
(4.24)

where A = 24¢(A - c(1—6))'7".

(ii))When 0 € (O, %], the inequality 10%9 > 1 holds. According to the fact that
||xk — xk-1 || — 0 from Theorem 4.1 (ii) and the definition of S;, we obtain that
Sk—2 — Sx — 0. Combining these and (4.24), we conclude that there exists k; > 0
so that for all k > ki, it holds that Sy < (A1 + 1) (Sk—2 — Sk), which implies that
S < %Sk_g. Therefore, we obtain that for any k > ki,
k—ki1+1

ka —x*

o0
j ; A +1
Sl nza(f3E)
= Al +2

This proves (ii).
(ii)When 6 € (4, 1), we deduce that 15 < 1. From this with (4.24) and the fact
Sk—> — S — 0, we see that there exists k» > 0 such that for all k > k>,

1-0 1-0 1-0
Sk <A1 (Sk2 =87 +(Sk2—=8S)7 =A1+D(Sk2—S)7 .

Raising the above inequality to a power of 1"%0 to both sides, we have for any k > k»,

9
S < Ay (Sk—2— 1)

where Ay = (A1 + 1)1679 . From [2, Theorem 2], we obtain that there exists M > 0

and all sufficiently large k, the inequality Sy < M k_% holds. This completes the
proof. O

5 Numerical experiments

In this section, we perform numerical experiments to illustrate the efficiency of EPDCA
for solving the optimization problem (1.1). We compare our algorithm with pDCAe
proposed in [31], which has different choices of the extrapolation parameters {S}
given in (1.6), and the general iterative shrinkage and thresholding algorithm (GIST)
proposed in [10] on a DC regularized least squares problem as follows:

1
min {\Il(x) = 5 llAx — bI? + gn(x) — gs(x) | x € R”} , 5.1
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where A € R™" b € R™, g, : R — R is a proper closed convex function and
gs : R" — R is a continuous convex function. More concrete examples can be found
in [31].

In the following we consider two different classes of regularizers. One is the £1_»
regularized least squares problem [32]:

) 1
min {‘Pel_z(X) =5 lAx = bI* + Alxl — Alx]l | x € R"}, (5.2)

where A € R™*" b € R™, and A > 0 is the regularization parameter. It is easy to
see that (5.2) is in the form of (5.1) with g,(x) = Allx||; and gs(x) = A|lx]||. We
assume that A does not have zero columns so that Wy, , is level-bounded [18]. So by
Theorem 4.1, the sequence {xk} generated by our method to solve problem (5.2) is
bounded, and any accumulation point of {xk} is a stationary point. In addition, noting
from [31, Exemple 4.1] that if chosen A < %||ATb||Oo, we obtain that the sequence
{xk } generated by our method for solving problem (5.2) is globally convergent.
The other is the logarithmic regularized least square problem [6]:

. 1 é

min {wlog(x) = E||Ax —b|* + Z [Alog (Ixil +€) —Aloge] |x € R”} ,
i=1

(5.3)

where A € R™"*" b € R™, € > 0is a constant and A > 0 is the regularization

parameter. We observe that (5.3) is in the form of (5.1) with g,(x) = %IIX Iy and

gs(x) =>" A [I’;—‘I —log (|x;| + €) + log 6] . It is easy to show that W, is level-

bounded. This together with Theorem 4.2, we see that the sequence {xk } generated
by EPDCA to solve problem (5.3) is globally convergent.

In the following, we perform several numerical tests to compare the behaviors of
our method with pDCAe and GIST for solving (5.2) and (5.3), respectively. All the
numerical experiments have been performed in Matlab 2018b on a 64-bit PC with an
Intel(R) Core(TM) 17-4790 CPU (3.60GHz) and 32GB of RAM.

In our numerical experiments, for given (m, n, s), we first randomly generate a
matrix A € R™*" with i.i.d. standard Gaussian entries, and each column of A is
normalized. Then a s-sparsity vector § € R” is uniformly generated at random and
let y = sign(y). Finally, we generate b = Ay + 0.01 - 71, where n € R is a random
vector with i.i.d. standard Gaussian entries.

For each triple (m,n,s) = (720i,2560i,80i), i = 1,2,...,8, we generate
50 instances randomly as described above and compare all three methods in terms
of the average performance over the instances. We choose the Lipschitz constant
L of Vf as Amax (ATA), initialize these algorithms at the origin, and terminate
these algorithms when the iterations reach the maximum number of 5000 times or
Il — = /max 1, ) < 1072

With regard to parameters, for EPDCA, we choose the extrapolation parameters
{Br} asin (3.2) and seta = 0.8, b = 5, w = 0.98. In addition, we adopt the restart
strategy and set K = 500 in Remark 3.1 (iv) on our method to guarantee 8 = sup B <

k
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Fig. 1 Comparison of GIST, pDCAe and EPDCA with the problem sizes m = 720, n = 2560 and s = 80
on solving £_» regularized least squares problem (5.2)

1. For pDCAe, the extrapolation parameters are chosen as the extrapolation coefficients
used in [31]. For GIST, the algorithmic framework and the setting of parameters can
be found in [19, Appendix A].

For the ¢1_; regularized least squares problem, the numerical results are presented
in Tables 1 and 2, which correspond with & = 1x 1073 and A = 5 x 10~ respectively.
While for the logarithmic regularized least square problem, the numerical results are
presented in Tables 3 and 4, which also correspond with A = 1x 103 andx = 5x10~*
respectively. In all the tables, we give the computation of L = Apax (ATA) ((GFN
the number of iterations, CPU times in seconds which does not include the time for
computing L, and the function values at termination, averaged over the 50 random
instances.

In Fig. 1, We plot ||x¥ — x*|| against the number of iterations to compare with the
convergence performance of each algorithm on solving £ _, regularized least squares
problem (5.2), where x* denotes the approximate solution obtained at termination of
the respective method. We choose A = 1 x 107 in Fig. laand A = 5 x 10~* in Fig.
1b, which correspond with Tables 1 and 2, respectively. In Fig. 2, We plot [|x¥ — x*||
against the number of iterations to compare with the convergence performance of each
algorithm on solving logarithmic regularized least square problem (5.3). We choose
A =1x 1073 in Fig. 2aand A = 5 x 10~* in Fig. 2b, which correspond with Tables
3 and 4, respectively. The green, blue and red line correspond to the three methods,
GIST, pDCAe and EPDCA, respectively.

We conclude from these tables and figures that our method takes fewer iterations
and less CPU time than pDCAe and GIST to get a good approximation of the minimum
value of the two test regularized least squares problems.

6 Conclusion

In this paper, based on the generalized Nesterov momentum scheme for the acceler-
ated forward—backward algorithm (AFBA) proposed in [16] and pDCAe [31] for DC
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Fig.2 Comparison of GIST, pDCAe and EPDCA with the problem sizes m = 720, n = 2560 and s = 80
on solving logarithmic regularized least square problem (5.3)

programming, we propose a new extrapolated proximal difference-of-convex algo-
rithm (EPDCA), which equips a more general setting of the extrapolation parameters
{ B} for solving the DC optimization problem (1.1). We establish global subsequential
convergence of the sequence generated by our method. In addition, by assuming the
Kurdyka—t.ojasiewicz property of the auxiliary function, we establish global conver-
gence of the sequence generated by EPDCA and analyze its convergence rate, which
can allow g to be a nonsmooth function. To evaluate the performance of the proposed
method, we consider two classes of DC regularized least squares problems including
the £1_, regularized least squares problem and logarithmic regularized least square
problem. Numerical results illustrate the efficiency of our method and its superiority
over other well-known methods.

In future research, we can utilize the advantage of nonmonotone line search tech-
nique in [23] to enlarge the step size and meanwhile speed up the convergence of
the proposed algorithm. Furthermore, the difference-of-Moreau-envelopes smoothing
technique has been developed to solve DC programming in [30]. These variational
methods may inspire further improvements and extensions.
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