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Abstract
A class of singularly perturbed parabolic partial differential equations with a large
delay and an integral boundary condition is studied. The problem’s solution features
a weak interior layer besides a boundary layer. This paper presents a higher-order
accurate numerical method on a specially designed non-uniform mesh. The technique
employs the Crank-Nicolson difference scheme in the temporal variable, whereas an
upwind difference scheme in space. The proposed method is unconditionally stable
and converges uniformly independent of the perturbation parameter. The numerical
result for twomodel problems is presented,which agreeswith the theoretical estimates.

Keywords Delay differential equation · Integral boundary condition · Singular
perturbation · Interior/boundary layers

Mathematics Subject Classification 65Mxx · 65Qxx · 35Kxx

1 Introduction

Ordinary and partial differential equations have played a vital role in the mathematical
modelling of various real-world phenomena in science and engineering. To make the

This document is the result of the research project MTR/2021/000117 funded by Science and Engineering
Research Board, Department of Science & Technology, Government of India.

B Aditya Kaushik
akaushik@dtu.ac.in

Nitika Sharma
sharmanitika44@gmail.com

1 Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India

2 University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-022-01783-2&domain=pdf


1072 N. Sharma, A. Kaushik

model more realistic, it is sometimes needed to include past states of the system rather
than only the current state. Modelling of such systems leads to delay differential
equations (DDEs). These equations arise in many scientific areas such as control
theory [33], nonlinear optics [23], neuroscience [35], population dynamics [21], HIV
infection models [13], optical feedback [18], and others [15, 38]. Specific examples of
delay systemswith large delay include semiconductor lasers with two optical feedback
loops of different lengths [34], ring-cavity lasers with optical feedback [18], and others
[15, 38]. In DDE, however, the evolution of the system at a certain time depends on
the past history, the introduction of such delay in the model improves the dynamics of
the model but increases the complexity of the system. Therefore, studying this class
of differential equations (DE) is important.

When we associate a mathematical model with physical phenomena, we often
capture essentials and neglect the minor components, involving small parameters. DE
inwhich the highest-order derivative term is affected by a small parameter ε is classified
as singularly perturbed problem (SPP). The main characteristics of these problems are
the appearance of boundary/interior layer in the solution when ε → 0. Moreover,
the presence of delay term makes the problem more challenging. These layers are the
small regions, where the solution changes extremely rapidly. Such phenomena cause
significant numerical challenges that can only be overcome by employing specially
designed numerical methods. While solving SPP, unless specially designed meshes
are used, conventional numerical methods fail to reduce error below a certain fixed
limit. Such meshes are designed based on prior knowledge of the location of the layers
under consideration. To overcome these limitations, many researchers have developed
various parameter uniform numerical methods that behave well enough independent
of the perturbation parameter.

Many researchers have made efforts to develop parameter uniform numerical meth-
ods for singularly delay differential equation (SPDDE) [8, 25]. In [2], the authors
discussed a SPDDE with Dirichlet boundary condition. While the authors in [4] stud-
ied SPDDE with Robin type boundary condition. In [30], a hybrid difference method
is used for parabolic problems with time delay. A stable finite difference scheme for
a singularly perturbed problem with delay and advanced term is presented in [29]. In
[19], a standard finite difference scheme is presented to solve parabolic SPDDE on
an equidistributed mesh. For a time-delayed convection-diffusion problem, a hybrid
scheme is given in [14].While a hybrid difference approach for a parabolic differential
equation with delay and advance terms is studied in [20, 36]. A very good amount of
literature is available for time delay problems but the study of problems with space
delay is still in the initial stage [7, 26, 28, 40].

In the past few years, a growing interest can be seen towards the study of SPDDEs
with integral boundary conditions due to their wide applications in science and engi-
neering such as heat conduction, oceanography, electrochemistry, blood flow models,
cellular systems, thermodynamics, population dynamics, etc. [1, 5, 10, 11, 16, 17, 22,
24, 42]. For the existence, uniqueness and well-posedness of the solution to such types
of problems, the readers are referred to [3, 6, 9] and references therein. The solution
of such problems is not known at the boundary points of the domain and the boundary
values are associated with the solution at the interior points of the domain. Recently,
the interest of researchers for the numerical solution of such class of problems has
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increased considerably. In [39], the authors studied SPDDE with integral boundary
condition using an upwind finite difference method on piecewise uniform Shishkin
mesh. In [41], a hybrid difference scheme is used to find the approximate solution for
SPDDE with large delay and integral boundary condition. It is proved that the method
is almost second-order convergent which is optimal compared to [27]. The theory and
numerical approximation for a time-dependent SPDDE with integral boundary con-
dition is little developed. In [40], a parabolic SPDDE of reaction-diffusion type with
integral boundary condition is studied. The method presented has almost second order
of convergence in space and one in time. In the literature, so far, no one has consid-
ered parabolic SPDDE of convection-diffusion type with integral boundary condition.
Motivated by the above works, in this article, a parameter uniform numerical method
is presented to solve singularly perturbed parabolic DDE with integral boundary con-
dition and having a large delay in space. An implicit numerical scheme comprising
the Crank-Nicolson scheme in the time direction and the finite difference scheme in
the space direction is used to find an approximate solution. The method presented is
parameter uniform and has second order of convergence in time and almost first order
in space.

2 The analytical problem

Let D = μ × � := (0, 2) × (0, T ] and consider the following parabolic delay
differential equation with integral boundary condition

−εyss(s, t) + p(s)ys(s, t) + q(s)y(s, t) + r(s)y(s − 1, t) + yt (s, t) = g(s, t) in D,

y(s, t) = ψ1(s, t) in �1 := {(s, t), s ∈ [−1, 0], t ∈ [0, T ]},
y(s, t) = ψ2(s, t) on �2 := {(s, 0), s ∈ [0, 2]},
Ky(s, t) = y(2, t) − ε

∫ 2
0 f (s)y(s, t)ds = ψ3(s, t) on �3 = {(2, t), t ∈ [0, T ]},

⎫
⎪⎪⎬

⎪⎪⎭
(2.1)

where ε � 1 is a small positive parameter, g(s, t), p(s), q(s), and r(s) are sufficiently
smooth functions. Also, assume that the initial-boundary data ψ1, ψ2 and ψ3 are
smooth and bounded functions such that

p(s) ≥ p0 > p∗
0 > 0, q(s) ≥ q0 > 0, r(s) ≤ r0 < 0,

p∗
0 + q0 + r0 > 0, q(s) + r(s) ≥ 2η > 0,

y(1−, t) = y(1+, t), ys(1−, t) = ys(1+, t).

⎫
⎬

⎭
(2.2)

Here, f (s) is non-negative, monotonic function such that
∫ 2

0
f (s)ds < 1. Moreover,

the given data satisfies the compatibility conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ2(0, 0) = ψ1(0, 0), ψ2(2, 0) = ψ3(2, 0),

−ε
∂2ψ2(0, 0)

∂s2
+ p(0)

∂ψ2(0, 0)

∂s
+ q(0)ψ2(0, 0) + r(0)ψ1(−1, 0) + ∂ψ1(0, 0)

∂t
= g(0, 0),

−ε
∂2ψ2(2, 0)

∂s2
+ p(2)

∂ψ2(2, 0)

∂s
+ q(2)ψ2(2, 0) + r(2)ψ2(1, 0) + ∂ψ3(2, 0)

∂t
= g(2, 0).
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Rewriting (2.1) as

Ly(s, t) = G(s, t),

where

Ly(s, t)

=

⎧
⎪⎨

⎪⎩

−εyss(s, t) + p(s)ys(s, t) + q(s)y(s, t) + yt (s, t) if (s, t) ∈ (0, 1] × [0, T ]
−εyss(s, t) + p(s)ys(s, t) + q(s)y(s, t) + r(s)y(s − 1, t) + yt (s, t)

if (s, t) ∈ (1, 2) × [0, T ]

and

G(s, t) =
{
g(s, t) − r(s)ψ1(s − 1, t) if (s, t) ∈ (0, 1] × [0, T ]
g(s, t) if (s, t) ∈ (1, 2) × [0, T ].

These assumptions confirms the existence and uniqueness of the solution [2, 31]. The
solution of (2.1) exhibits a weak interior layer at s = 1 and a strong boundary layer at
s = 2.

Lemma 2.1 Let P(s, t) ∈ C2,1(D̄). If P(0, t) ≥ 0, P(s, 0) ≥ 0, KP(2, t) ≥ 0 with
LP(s, t) ≥ 0 for all (s, t) ∈ D and [Ps](1, t) = Ps(1+, t) − Ps(1−, t) ≤ 0. Then
P(s, t) ≥ 0 for all (s, t) ∈ D̄.

Proof Let (sk, tk) ∈ D and P(sk, tk) = min
(s,t)∈D̄

P(s, t). Consequently,

Ps(s
k, tk) = 0, Pt (s

k, tk) = 0 and Pss(s
k, tk) > 0. (2.3)

Suppose P(sk, tk) < 0, it follows that (sk, tk) /∈ � := �1 ∪ �2 ∪ �3.

Case I: If sk ∈ (0, 1), then

LP(sk, tk) = −εPss(s
k, tk) + p(sk)Ps(s

k, tk) + q(sk)P(sk, tk) + Pt (s
k, tk)

< 0, from (2.2) and (2.3).

Case II: If sk ∈ (1, 2), then

LP(sk, tk) = −εPss(s
k, tk) + p(sk)Ps(s

k, tk) + q(sk)P(sk, tk)

+r(sk)P(sk − 1, tk) + Pt (s
k, tk)

≤ −εPss(s
k, tk) + q(sk)P(sk, tk) + r(sk)P(sk, tk)

< 0, from (2.2) and (2.3).

Case III: If sk = 1, then

[Ps](sk, tk) = Ps(s
k+, tk) − Ps(s

k−, tk) > 0 since P(sk, tk) < 0.
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The result thus follows from a contradiction. 	

As a consequence of Lemma 2.1, obtaining the following stability estimate is

straightforward.

Lemma 2.2 The solution of (2.1) satisfies

‖y‖∞,D̄ ≤ ‖y‖∞,� + 1

η
‖G‖∞,D̄ . (2.4)

Proof Define θ±(s, t) = ‖y‖∞,� + 1

η
‖G‖∞,D̄ ± y(s, t), (s, t) ∈ D̄. For (s, t) ∈ �,

θ±(s, t) ≥ 0, and if (s, t) ∈ D, it follows that

Lθ±(s, t) = (q + r)(s)

(

‖y‖� + ‖G‖D̄
η

)

± Ly(s, t) ≥ 2η

(

‖y‖� + ‖G‖D̄
η

)

± G ≥ 0

and the result follow as a consequence of Lemma 2.1. 	

Generally, we may take homogeneous boundary data ψ1 = ψ2 = ψ3 = 0 by sub-

tracting some appropriate smooth function from y that satisfies the original boundary
data [37].

Lemma 2.3 Let y be the solution of (2.1) then there exists a constant C independent
of ε such that

∣
∣
∣
∣
∂ i y(s, t)

∂t i

∣
∣
∣
∣ ≤ C for all (s, t) ∈ D̄ and i = 0, 1, 2.

Proof For i = 0, the result follows from Lemma 2.2. The assumption ψ1(s, t) =
ψ3(s, t) = 0 gives y = 0 along the left and right hand sides of D, which implies
yt = 0 along these sides. Also, ψ2(s, t) = 0 gives y = 0 along the line t = 0. Thus
ys = 0 = yss along the line t = 0. Now, put t = 0 in (2.1) to obtain

−εyss(s, 0) + p(s)ys(s, 0) + q(s)y(s, 0) + r(s)y(s − 1, 0) + yt (s, 0) = g(s, 0)

implying yt (s, 0) = g(s, 0) since ys(s, 0) = yss(s, 0) = y(s, 0) = y(s − 1, 0) = 0.
Thus |yt | ≤ C on � as g(s, t) is continuous on D̄. On applying differential operator
L on yt (s, t), we get

Lyt (s, t) = gt (s, t) ⇒ |Lyt | = |gt | ≤ C .

An application of the Lemma 2.1 yields |yt | ≤ C on D̄.
Now ytt = 0 on �1 ∪ �3 as yt = 0 on �1 and �3. Differentiating (2.1) with respect

to t and put t = 0 to obtain

− εysst (s, 0) + p(s)yst (s, 0) + q(s)yt (s, 0)
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+r(s)yt (s − 1, 0) + ytt (s, 0) = gt (s, 0). (2.5)

Since yt (s, 0) = g(s, 0),

yst (s, 0) = gs(s, 0), ysst (s, 0) = gss(s, 0)

and by definition

yt (s − 1, 0) = lim
�t→0

y(s − 1,�t) − y(s − 1, 0)

�t
= 0.

From (2.5), we have

ytt (s, 0) = εgss(s, 0) − p(s)gs(s, 0) − q(s)gs(s, 0) + gt (s, 0).

Since g is continuous on D̄. Therefore, for significantly large value of C , |ytt | ≤ C
on �2. Hence, |ytt | ≤ C on �. Moreover, it is easy to verify that

|Lytt (s, t)| = |gtt (s, t)| ≤ C

on D and the proof follows from Lemma 2.1. 	


3 Semi-discretization in time

LetTt
M = {tk = kT /M, k = 0 : M}be a equidistantmeshwhich partition the domain

[0, T ] intoM number of sub-intervals. Next, we semi-discretize (2.1) using the Crank-
Nicholson scheme in the time variable. The resulting semi-discrete problem on Tt

M

reads

−ε

2
Yss(s, tk+1) + p(s)

2
Ys(s, tk+1) + l(s)Y (s, tk+1) + r(s)

2
Y (s − 1, tk+1)

= ε

2
Yss(s, tk) − p(s)

2
Ys(s, tk) + m(s)Y (s, tk) − r(s)

2
Y (s − 1, tk)

+g(s, tk+1) + g(s, tk)

2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.1)

where s ∈ [0, 2] and k = 0, 1, . . . , M − 1, such that

Y (s, 0) = ψ2(s, 0), 0 ≤ s ≤ 2,
Y (s, tk+1) = ψ1(s, tk+1), −1 ≤ s ≤ 0, −1 ≤ k ≤ M − 1,
Y (2, tk+1) = ψ3(2, tk+1), −1 ≤ k ≤ M − 1.

⎫
⎬

⎭
(3.2)

Here, Y (s, tk+1) denotes a numerical approximation of continuous solution y at (k+1)

time step, l(s) = �tq(s) + 2

2�t
and m(s) = 2 − �tq(s)

2�t
.
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Writing (3.1) as

LCNY (s, tk+1) = Ĝ(s, tk+1) (3.3)

where

LCNY

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

LCN1Y = −ε

2
Yss(s, tk+1) + p(s)

2
Ys(s, tk+1) + l(s)Y (s, tk+1) if s ∈ (0, 1],

LCN2Y = −ε

2
Yss(s, tk+1) + p(s)

2
Ys(s, tk+1) + l(s)Y (s, tk+1)

+r(s)

2
Y (s − 1, tk+1) if s ∈ (1, 2)

and

Ĝ(s, tk+1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĝ1 = ε

2
Yss(s, tk) − p(s)

2
Ys(s, tk) + m(s)Y (s, tk) − r(s)

2
Y (s − 1, tk)

+g(s, tk+1) + g(s, tk)

2
− r(s)

2
ψ1(s − 1, tk+1) if s ∈ (0, 1],

Ĝ2 = ε

2
Yss(s, tk) − p(s)

2
Ys(s, tk) + m(s)Y (s, tk) − r(s)

2
Y (s − 1, tk)

+g(s, tk+1) + g(s, tk)

2
if s ∈ (1, 2].

(3.4)

Operator LCN satisfies the following discrete maximum principle.

Lemma 3.1 Let the function χ(s, tk+1) satisfies χ(s, tk+1) ≥ 0 for s = 0, 2 and
LCNχ(s, tk+1) ≥ 0 for all s ∈ μ. Then χ(s, tk+1) ≥ 0 for all s ∈ μ̄.

Proof Let χ(ξ, tk+1) = min
s∈μ

χ(s, tk+1) for some ξ ∈ μ. Then

χs(ξ, tk+1) = 0 and χss(ξ, tk+1) > 0. (3.5)

Suppose χ(ξ, tk+1) < 0, it follows that (ξ, tk+1) /∈ � since χ(ξ, tk+1) ≥ 0 for
s = 0, 2.

Case I: If χ ∈ (0, 1], then

LCNχ(ξ, tk+1) = −ε

2
χss(ξ, tk+1) + p(ξ)

2
χs(ξ, tk+1) + l(ξ)χ(ξ, tk+1)

< 0, from (2.2) and (3.5).

Case II: If χ ∈ (1, 2), then

LCNχ(ξ, tk+1)

= −ε

2
χss(ξ, tk+1) + p(ξ)

2
χs(ξ, tk+1) + l(ξ)χ(ξ, tk+1) + r(ξ)

2
χ(ξ − 1, tk+1)
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≤ −ε

2
χss(ξ, tk+1) + p(ξ)

2
χs(ξ, tk+1) + l(ξ)χ(ξ, tk+1) + r(ξ)

2
χ(ξ, tk+1)

= −ε

2
χss(ξ, tk+1) +

(
�tq(ξ) + 2

2�t

)

χ(ξ, tk+1) + r(ξ)

2
χ(ξ, tk+1)

= −ε

2
χss(ξ, tk+1) +

(
q(ξ) + r(ξ)

2

)

χ(ξ, tk+1) + 1

�t
χ(ξ, tk+1)

≤ −ε

2
χss(ξ, tk+1) + ηχ(ξ, tk+1) + 1

�t
χ(ξ, tk+1)

< 0, from (2.2) and (3.5).

The required result follows from contradiction. 	

Lemma 3.2 Let Y (s, tk+1) be the solution of (3.1). Then

‖Y (s, tk+1)‖μ̄ ≤ max

{

|Y (0, tk+1)|, |Y (2, tk+1)|, �t

η�t + 1
‖Ĝ‖μ̄

}

.

Proof Define ζ±(s, tk+1) = max
{
|Y (0, tk+1)|, �t

η�t+1‖Ĝ‖μ̄

}
± Y (s, tk+1) for s ∈

[0, 1]. Clearly, ζ±(0, tk+1) ≥ 0. Moreover, it follows that

LCN ζ±(s, tk+1) = LCN1ζ±(s, tk+1)

= l(s)max

{

|Y (0, tk+1)|, �t

η�t + 1
‖Ĝ1‖

}

± LCN1Y (s, tk+1)

≥ �tq(s) + 2

2�t

�t

η�t + 1
‖Ĝ1‖ ± Ĝ1

≥ (q(s) + r(s))�t + 2

2(η�t + 1)
‖Ĝ1‖ ± Ĝ1

≥ 0, from (2.2).

Similarly, define ζ±(s, tk+1) = max

{

|Y (2, tk+1)|, �t

η�t + 1
‖Ĝ‖μ̄

}

± Y (s, tk+1) for

s ∈ [1, 2]. Clearly, ζ±(2, tk+1) ≥ 0. Also, it follows that

LCN ζ±(s, tk+1)

= LCN2ζ±(s, tk+1)

=
(

l(s) + r(s)

2

)

max

{

|Y (2, tk+1)|, �t

η�t + 1
‖Ĝ2‖

}

± LCN2Y (s, tk+1)

≥
(

�tq(s) + 2

2�t
+ r(s)

2

)
�t

η�t + 1
‖Ĝ2‖ ± Ĝ2

≥
(
q(s) + r(s)

2
+ 1

�t

)
�t

η�t + 1
‖Ĝ2‖ ± Ĝ2

≥ 0, from (2.2).
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An application of Lemma 3.1 yields the desired result. 	

Next, we compute global errors using local error bounds. From (3.3)

LCN Ỹ (s, tk+1) = G̃(s, tk+1) (3.6)

where LCN is as defined in (3.3), and

G̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

2
yss(s, tk) − p(s)

2
ys(s, tk) + m(s)y(s, tk) − r(s)

2
y(s − 1, tk)

+g(s, tk+1) + g(s, tk)

2
− r(s)

2
ψ1(s − 1, tk+1) if s ∈ (0, 1]

ε

2
yss(s, tk) − p(s)

2
ys(s, tk) + m(s)y(s, tk) − r(s)

2
y(s − 1, tk)

+g(s, tk+1) + g(s, tk)

2
if s ∈ (1, 2]

with the following boundary conditions

Ỹ (s, 0) = ψ2(s), s ∈ [0, 2],
Ỹ (s, tk+1) = ψ1(s, tk+1), −1 ≤ s ≤ 0, −1 ≤ k ≤ M − 1,

Ỹ (2, tk+1) = ψ3(tk+1), −1 ≤ k ≤ M − 1.

Lemma 3.3 The local truncation error (LTE) êk+1 := Ỹ (s, tk+1)− y(s, tk+1) at k+1
time step satisfies

∥
∥êk+1

∥
∥∞ ≤ C(�t)3.

Proof For proof, see [12]. 	

Moreover, LTE at each time step contributes to the estimate for global error Ek :=

y(s, tk) − Y (s, tk). Then, it follows that

‖Ek+1‖∞ =
∥
∥
∥
∥
∥

k∑

i=1

êi

∥
∥
∥
∥
∥

∞
≤ ∥

∥ê1
∥
∥∞ + ∥

∥ê2
∥
∥∞ + . . . + ∥

∥êk
∥
∥∞ ≤ C�t2. (3.7)

As a result, the time semi-discretization procedure achieves uniform convergence.
The solution Y (s, tk+1) of problem (3.1) admits a decomposition into smooth and

singular components [32]. We write

Y (s, tk+1) := X(s, tk+1) + Z(s, tk+1).

Here, the smooth component X(s, tk+1) satisfies

LCN1X(s, tk+1) = Ĝ1(s, tk+1),

X(0, tk+1) = X0(0, tk+1),

X(1, tk+1) = (l(s))−1Ĝ1(1, tk+1)

⎫
⎬

⎭
(3.8)
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in (0, 1], and in (1, 2) satisfies

LCN2X(s, tk+1) = Ĝ2(s, tk+1),

X(1, tk+1) = (l(s))−1
(
Ĝ2(1, tk+1) − r(1)

2 X(0, tk+1)
)

,

X(2, tk+1) = X0(2, tk+1)

⎫
⎪⎬

⎪⎭
(3.9)

where X0(s, tk+1) satisfies the associated reduced problem, and Z(s, tk+1) satisfies

LCN Z(s, tk+1) = 0, s ∈ (0, 2)
Z(0, tk+1) = 0,
Z(2, tk+1) = Y (2, tk+1) − X(2, tk+1),

Z(1+, tk+1) − Z(1−, tk+1) = X(1−, tk+1) − X(1+, tk+1),

Zs(1+, tk+1) − Zs(1−, tk+1) = Xs(1−, tk+1) − Xs(1+, tk+1).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.10)

The solution of (2.1) contains a boundary layer at s = 2 and an interior layer at
s = 1. Further, decompose Z(s, tk+1) as Z(s, tk+1) := ZI (s, tk+1) + ZB(s, tk+1)

where ZB(s, tk+1) and ZI (s, tk+1) satisfies

LCN ZB(s, tk+1) = 0, s ∈ (0, 1) ∪ (1, 2)
ZB(0, tk+1) = 0,
Z(2, tk+1) = Y (2, tk+1) − X(2, tk+1)

⎫
⎬

⎭
(3.11)

and

LCN Z I (s, tk+1) = 0, s ∈ (0, 1) ∪ (1, 2)
ZI (0, tk+1) = 0, ZI (2, tk+1) = 0,
dZ I
ds (1+, tk+1) − dZ I

ds (1−, tk+1) = dX
ds (1−, tk+1) − dX

ds (1+, tk+1).

⎫
⎬

⎭
(3.12)

The following lemma provides bounds on the derivatives of smooth component
X(s, tk+1) and singular component Z(s, tk+1).

Lemma 3.4 For k = 0, 1, 2, 3, the smooth component X(s, tk+1) and singular com-
ponent Z(s, tk+1) satisfy the following estimates

∣
∣
∣
∣
dk X(s, tk+1)

dsk

∣
∣
∣
∣ ≤ C(1 + ε2−k) for s ∈ (0, 1) ∪ (1, 2),

∣
∣
∣
∣
dk ZB(s, tk+1)

dsk

∣
∣
∣
∣ ≤ Cε−k exp

(−p∗
0(2 − s)

ε

)

for s ∈ (0, 1) ∪ (1, 2), and

∣
∣
∣
∣
dk Z I (s, tk+1)

dsk

∣
∣
∣
∣ ≤

{
Cε1−k exp

(−p∗
0 (1−s)
ε

)
for s ∈ (0, 1]

Cε1−k for s ∈ (1, 2).

Proof For proof, see [39]. 	
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4 Spatial discretization

The problem’s solution exhibits a strong boundary layer at s = 2 and a weak interior
layer at s = 1. Consequently, to generate a piecewise-uniform mesh D̄N

s , we partition
the given interval [0, 2] into four subintervals as

[0, 2] = [0, 1 − β] ∪ [1 − β, 1] ∪ [1, 2 − β] ∪ [2 − β, 2]

where β = min

{

0.5,
2ε ln N

p∗
0

}

is defined as the mesh transition parameter. Each

subinterval contains N/4 mesh elements. Therefore, we may write

D̄
N
s = {si }N0 =

{
si = 0 for i = 0,

si = si−1 + hi for i = 1, . . . , N

where

hi =

⎧
⎪⎨

⎪⎩

4

N
(1 − β) for i = 1 : N/4, N/2 + 1 : 3N/4,

4

N
β for i = N/4 + 1 : N/2, 3N/4 + 1 : N .

For i ≥ 1, a function Vi,k+1 and step size hi discretize (3.1) using the difference
formula

D+
s Vi,k+1 = Vi+1,k+1 − Vi,k+1

hi+1
,

D−
s Vi,k+1 = Vi,k+1 − Vi−1,k+1

hi
and

δ2s Vi,k+1 = 2(D+
s − D−

s )Vi,k+1

hi + hi+1
.

The discrete problem on D̄
N
s × Tt

M thus reads

LN
CNYi,k+1 = Ĝi,k+1, i = 1, . . . , N − 1 (4.1)

where

LN
CNYi,k+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

LN
CN1Yi,k+1 = −ε

2
δ2s Yi,k+1 + pi

2
D−
s Yi,k+1 + li Yi,k+1

for i = 1, . . . , N/2 − 1,

LN
CN2Yi,k+1 = −ε

2
δ2s Yi,k+1 + pi

2
D−
s Yi,k+1 + li Yi,k+1 + ri

2
Yi−N/2,k+1

for i = N/2 + 1, . . . , N − 1
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and

Ĝi,k+1

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ĝ1(si , tk+1) = ε

2
δ2s Yi,k − pi

2
D−
s Yi,k + miYi,k − ri

2
Yi−N/2,k + 1

2

(
gi,k+1 + gi,k

)

−ri
2

ψ1(si−N/2, tk+1) for i = 1, . . . , N/2 − 1,

Ĝ2(si , tk+1) = ε
2 δ2s Yi,k − pi

2 D−
s Yi,k + miYi,k − ri

2 Yi−N/2,k + 1
2

(
gi,k+1 + gi,k

)

for i = N/2 + 1, . . . , N − 1.

Moreover, for i = N/2

D+
s YN/2,k+1 = D−

s YN/2,k+1

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yi,0 = ψ2,i,0 for i = 0, . . . , N ,

Yi,k+1 = ψ1,i,k+1 for i = −N/2, −N/2 + 1, . . . 0, k = 0, 1, . . . , M − 1,

KNYN ,k+1 = YN ,k+1 − ε

N∑

i=1

fi−1Yi−1,k+1 + fi Yi,k+1

2
hi = ψ3,N ,k+1 for k = 0, 1, . . . , M − 1.

The operator LN
CN satisfies the following discrete maximum principle.

Lemma 4.1 Let Zi,k+1 ≥ 0 for i = 0, . . . , N, LN
CN Zi,k+1 ≥ 0 for i = 1, . . . , N/2 −

1, N/2 + 1, . . . , N and D+
s ZN/2,k+1 − D−

s ZN/2,k+1 ≤ 0. Then Zi,k+1 ≥ 0 for
i = 0, 1 . . . , N.

Proof Let j∗ ∈ {0, 1, . . . , N } \{N/2} and Z j∗,k+1 = min
D̄N
s ×Tt

M
Zi,k+1. Assume that

Z j∗,k+1 < 0, it follows that j∗ /∈ {0, N }.
Case I: For j∗ ∈ {1, 2, . . . , N/2 − 1}

LN
CN1Z j∗,k+1 = −ε

2
δ2s Z j∗,k+1 + p j∗

2
D−
s Zi∗,k+1 + l j∗ Z j∗,k+1

= −ε

ĥ j∗

{
Z j∗+1,k+1 − Z j∗,k+1

h j∗+1
− Z j∗,k+1 − Z j∗−1,k+1

h j∗

}

+ p j∗

2

{
Z j∗,k+1 − Z j∗−1,k+1

h j∗

}

+ l j∗ Z j∗,k+1

< 0.

Case II: For j∗ ∈ {N/2 + 1, . . . , N − 1}

LN
CN2Z j∗,k+1 = −ε

2
δ2s Z j∗,k+1 + p j∗

2
D−
s Zi∗,k+1 + l j∗ Z j∗,k+1 + r j∗

2
Z j∗−N/2,k+1

≤ −ε

2
δ2s Z j∗,k+1 + p j∗

2
D−
s Zi∗,k+1 + l j∗ Z j∗,k+1 + r j∗

2
Z j∗,k+1
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= −ε

2
δ2s Z j∗,k+1 + p j∗

2
D−
s Zi∗,k+1 + (l j∗ + r j∗)Z j∗,k+1

= −ε

2
δ2s Z j∗,k+1 + p j∗

2
D−
s Zi∗,k+1 +

(
q j∗ + r j∗

2
+ 1

�t

)

Z j∗,k+1

≤ −ε

2
δ2s Z j∗,k+1 + p j∗

2
D−
s Zi∗,k+1 +

(

η + 1

�t

)

Z j∗,k+1

= −ε

ĥ j∗

{
Z j∗+1,k+1 − Z j∗,k+1

h j∗+1
− Z j∗,k+1 − Z j∗−1,k+1

h j∗

}

+ p j∗

2

{
Z j∗,k+1 − Z j∗−1,k+1

h j∗

}

+
(

η + 1

�t

)

Z j∗,k+1

< 0.

Case III: For j∗ = N/2, D+
s ZN/2,k+1 − D−

s φN/2,k+1 > 0.

The required result follows from contradiction. 	

Consequently, the following stability estimate of the discrete operator LN

CN can be
obtained.

Lemma 4.2 Let Zi,k+1 be the solution of (4.1). Then

|Zi,k+1| ≤ max

{

|Z0,k+1|, |ZN ,k+1|, �t

η�t + 1
‖LN

CN Zi,k+1‖
}

.

Proof Let χ±
i,k+1 := max

{
|Z0,k+1|, �t

η�t+1‖LN
CN1Zi,k+1‖

}
± Zi,k+1 for i =

1, . . . , N/2 − 1. Clearly, χ±
0,k+1 ≥ 0 and

LN
CN1χ

±
i,k+1 = li max

{

|Z0,k+1|, �t

η�t + 1
‖LN

CN1Zi,k+1‖
}

± LN
CN1Zi,k+1

= li max

{

|Z0,k+1|, �t

η�t + 1
‖LN

CN1Zi,k+1‖
}

± Ĝ1(si , tk+1)

≥ li�t

η�t + 1
‖Ĝ1‖ ± Ĝ1

≥ (qi + ri )�t + 2

2�t

�t

η�t + 1
‖Ĝ1‖ ± Ĝ1

≥ 2η�t + 2

2�t

�t

η�t + 1
‖Ĝ1‖ ± Ĝ1

≥ 0.

In case, i = N/2+1, . . . , N−1, defineχ±
i,k+1 = max

{
|ZN ,k+1|, �t

η�t+1‖LN
CN2Zi,k+1‖

}
±

Zi,k+1. Clearly, χ
±
N ,k+1 ≥ 0 and

LN
CN2χ

±
i,k+1 =

(
li + ri

2

)
max

{

|ZN ,k+1|, �t

η�t + 1
‖LN

CN2Zi,k+1‖
}

± LN
CN2Zi,k+1
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=
(
li + ri

2

)
max

{

|ZN ,k+1|, �t

η�t + 1
‖LN

CN2Zi,k+1‖
}

± Ĝ2(si , tk+1)

≥
(
qi + ri

2
+ 1

�t

) (
�t

η�t + 1

)

‖Ĝ2‖ ± Ĝ2

≥
(

η + 1

�t

) (
�t

η�t + 1

)

‖Ĝ2‖ ± Ĝ2
≥ 0.

Moreover, if i = N/2, (D+
s − D−

s )χ±
i,k+1 = 0. Hence, the required result follows

from Lemma 4.1. 	


5 Error analysis

Let us decompose Yi,k+1 into smooth and singular components to obtain a parame-
ter uniform error estimate. We write Yi,k+1 := Xi,k+1 + Zi,k+1 where the smooth
component X and the singular component Z satisfies

LN
CN1Xi,k+1 = Ĝ1(si , tk+1) for i ∈ {1, 2, . . . , N/2 − 1} ,

X0,k+1 = X(0, tk+1), XN/2−1,k+1 = X(1−, tk+1),

LN
CN2Xi,k+1 = Ĝ2(si , tk+1) for i ∈ {N/2 + 1, . . . , N − 1} ,

XN/2+1,k+1 = X(1+, tk+1), XN ,k+1 = X(2, tk+1),

⎫
⎪⎪⎬

⎪⎪⎭
(5.1)

and

LN
CN Zi,k+1 = 0, for i ∈ {1, . . . , N − 1} \ N/2,

Z0,k+1 = Z(0, tk+1), ZN ,k+1 = Z(2, tk+1),

XN/2+1,k+1 + ZN/2+1,k+1 = XN/2−1,k+1 + ZN/2−1,k+1,

D−
s XN/2,k+1 + D−

s ZN/2,k+1 = D+
s XN/2,k+1 + D+

s ZN/2,k+1.

⎫
⎪⎪⎬

⎪⎪⎭
(5.2)

The error ei,k+1 is given by

ei,k+1 = Y (si , tk+1) − Yi,k+1 = (X(si , tk+1) − Xi,k+1) + (Z(si , tk+1) − Zi,k+1).

Theorem 5.1 Let Y (si , tk+1) andYi,k+1 be the solutions of (3.1) and (4.1), respectively.
Then

∣
∣Y (si , tk+1) − Yi,k+1

∣
∣ ≤ CN−1 ln2 N , for 0 ≤ i ≤ N .

Proof The proof follows on the lines similar to the one presented in [39] for ordinary
differential equations. 	


Finally, we combine (3.7) and Theorem 5.1 to obtain the principle convergence
estimate that reads.
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Fig. 1 Surface plot of the numerical solution of Example 6.1 with M = N = 128 and ε = 2−4

Fig. 2 Numerical solutions of Example 6.1 for different values of ε at t = 2

Theorem 5.2 Let y and Y be the solutions of the continuous problem (2.1) and the
discrete problem (4.1), respectively. Then

∣
∣y(si , tk+1) − Yi,k+1

∣
∣ ≤ C(�t2 + (N−1 ln2 N ))

for 0 ≤ i ≤ N and 0 ≤ k ≤ M.

6 Numerical experiments

In this section, we consider two model problems, present numerical results using the
proposed method, and verify the theoretical estimates numerically.
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Table 1 EN ,�t and PN ,�t for Example 6.1 with different ε, M and N

ε M = N = 32 64 128 256 512 1024

2−1 1.081e-02 5.961e-03 3.117e-03 1.595e-03 8.078e-04 2.857e-04

0.8587 0.9354 0.9666 0.9814 1.4995 1.5612

2−3 3.050e-02 1.726e-02 7.182e-03 2.791e-03 9.452e-04 3.352e-04

0.8213 1.2650 1.3636 1.5621 1.4956 1.5516

2−5 1.720e-02 9.412e-03 4.872e-03 2.232e-03 8.921e-04 3.172e-04

0.8698 0.9499 1.1262 1.3232 1.4918 1.5245

2−7 1.753e-02 9.578e-03 4.235e-03 2.094e-03 8.232e-04 3.099e-04

0.8720 1.1774 1.0161 1.3473 1.4094 1.4126

2−9 1.785e-02 9.914e-03 4.246e-03 1.875e-03 7.582e-04 2.859e-04

0.8483 1.2234 1.1792 1.3062 1.4071 1.4221

2−11 1.794e-02 1.043e-02 5.021e-03 2.098e-03 9.620e-04 3.900e-04

0.7824 1.0547 1.2590 1.1249 1.3026 1.3861

Table 2 EN ,�t and PN ,�t for Example 6.1 with N = 512 and ε = 2−6

s M = 32 64 128 256 512 1024

sN/2+1 8.416e-03 2.258e-03 5.966e-04 1.547e-04 3.926e-05 9.972e-06

1.9881 1.9202 1.9473 1.9783 1.9771 1.9916

sN/2+4 8.699e-03 2.366e-03 6.274e-04 1.652e-04 4.172e-05 1.053e-05

1.8784 1.9150 1.9252 1.9854 1.9862 1.9885

sN/2+6 8.920e-03 2.428e-03 6.447e-04 1.633e-04 3.926e-05 9.720e-06

1.8773 1.9131 1.9811 2.0557 2.0148 2.0557

Table 3 EN ,�t and PN ,�t for Example 6.2 with different ε, M and N

ε M = N = 32 64 128 256 512 1024

2−1 2.822e-02 9.562e-03 4.223e-03 1.832e-03 6.140e-04 1.902e-04

1.5613 1.1790 1.2048 1.5771 1.6907 1.6973

2−3 1.831e-02 7.134e-03 2.917e-03 1.025e-03 3.872e-04 1.325e-04

1.3598 1.2902 1.5089 1.4045 1.5471 1.6603

2−5 2.090e-02 8.523e-03 4.245e-03 1.834e-03 7.179e-04 2.625e-04

1.2941 1.0056 1.2108 1.3531 1.4515 1.5658

2−7 2.387e-02 1.145e-02 4.675e-03 1.893e-03 8.633e-04 3.236e-04

1.0595 1.2923 1.3043 1.1327 1.4157 1.5139

2−9 2.461e-02 1.156e-02 4.692e-03 1.852e-03 7.278e-04 2.728e-04

1.0901 1.3009 1.3411 1.3475 1.4157 1.4652

2−11 2.480e-02 1.256e-02 5.281e-03 2.356e-03 9.320e-04 3.615e-04

0.9815 1.2502 1.1645 1.3379 1.3663 1.4913
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Fig. 3 Surface plot of the numerical solution of Example 6.2 with M = N = 128 and ε = 2−4

Fig. 4 Numerical solutions of Example 6.2 for different values of ε with t = 2

Table 4 EN ,�t and PN ,�t for Example 6.2 with N = 512 and ε = 2−6

s M = 32 64 128 256 512 1024

sN/2+1 7.810e-03 2.034e-03 5.184e-04 1.313e-04 3.295e-05 8.048e-06

1.9410 1.9722 1.9812 1.9945 2.0336 2.0341

sN/2+4 7.825e-03 2.014e-03 5.220e-04 1.341e-04 3.425e-05 8.712e-06

1.9580 1.9479 1.9607 1.9691 1.9750 1.9917

sN/2+6 8.164e-03 2.098e-03 5.495e-04 1.412e-04 3.602e-05 9.102e-06

1.9603 1.9328 1.9604 1.9709 1.9845 1.9906
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Fig. 5 Numerical solution of Example 6.1 for different t when ε = 2−1

Fig. 6 Numerical solution of Example 6.1 for different t when ε = 2−4

Example 6.1 Consider the following problem with integral boundary condition

[−εyss + (2 + s(2 − s))ys + 3y + yt ](s, t) − y(s − 1, t)

= 4se−t t2, (s, t) ∈ (0, 2) × (0, 2],
y(s, t) = 0, (s, t) ∈ �1, y(s, t) = 0, (s, t) ∈ �2,

y(2, t) = ε

6

∫ 2

0
y(s, t)ds, (s, t) ∈ �3.
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Fig. 7 Numerical solution of Example 6.2 for different t when ε = 2−1

Fig. 8 Numerical solution of Example 6.2 for different t when ε = 2−4

Example 6.2 Consider the following problem with integral boundary condition:

[−εyss + 3ys + (s + 10)y + yt ](s, t) − y(s − 1, t) = 2(1 + s2)t2, (s, t) ∈ (0, 2)

× (0, 2],
y(s, t) = t2, (s, t) ∈ �1, y(s, t) = 0, (s, t) ∈ �2,

y(2, t) = ε

6

∫ 2

0
s sin(s)y(s, t)ds, (s, t) ∈ �3.
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Fig. 9 Loglog plot of maximum pointwise error for Example 6.1

Fig. 10 Loglog plot of maximum pointwise error for Example 6.2

The exact solution of the above examples is not known for comparison. There-
fore, the double mesh principle [32] is used to estimate the proposed method’s error
and rate of convergence. The maximum absolute error (EN ,�t ) and order of conver-

gence (PN ,�t ) is defined as EN ,�t := max
∣
∣
∣YN ,�t (si , tk+1) − Ỹ2N ,�t/2(si , tk+1)

∣
∣
∣ and

PN ,�t := log2

(
EN ,�t

E2N ,�t/2

)

. Here, YN ,�t (si , tk+1) and Ỹ2N ,�t/2(si , tk+1) denotes the

numerical solutions on D̄
N
s × Tt

M and D̄
2N
s × Tt

2M , respectively.
The maximum absolute error (EN ,�t ) and corresponding order of convergence

(PN ,�t ) for Example 6.1 and Example 6.2 are tabulated for different values of ε, M ,
and N in Tables 1 and 3 , respectively. In addition to this Tables 2 and 4 depict the
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order of convergence in time variable for Examples 6.1 and 6.2 when N = 512 and
ε = 2−6.

The presence of both interior and a boundary layer is apparent from the surface
plots of the numerical solution for Examples 6.1 and 6.2 displayed in Figs. 1 and
3 , respectively. Figures 2 and 4 further illustrates the presence of the layers when
t = 2 for Example 6.1 and Example 6.2. In contrast, Figs. 5-8 presents the solution
for different time t and for different values of ε for given examples. It is to observe
that as ε approaches the limiting value, it attributes the stiffness to the system and
leads to the exponential changes across the interior and boundary layers. The log-log
plot of errors are given in Figs. 9-10 for Example 6.1 and Example 6.2, respectively.
It agrees with the expected convergence rate for the proposed method on the specially
generated mesh.

7 Conclusion

A class of singularly perturbed parabolic partial differential equations with a large
delay and an integral boundary condition is solved numerically. The proposed method
consists of an upwind finite difference scheme on a non-uniform mesh in space and
a Crank-Nicolson scheme on a uniform mesh in the time variable. The non-uniform
mesh in the spatial direction is chosen so that most of the mesh points remain in the
regions with rapid transitions. The method is invested for consistency, stability, and
convergence. The error analysis of the proposedmethod reveals the parameter uniform
convergence of first-order in space and second-order in time. Numerical experiments
corroborate the theoretical findings.
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