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Abstract
We show that a recursive relation for finding square roots of numbers is naturally
obtained from an iteration process, and that the relation is solvable in closed form,
explaining some results in the literature in an elegant way. We also present a class
of recursive relations for finding square roots of numbers which are also solvable in
closed form, considerably extending and unifying such recursive relations.

Keywords Recursive relation · Solvable equation · Solution in closed form · Square
root

Mathematics Subject Classification Primary 39A20

1 Introduction

LetN, Z,R,C stand for the sets of natural, integer, real and complex numbers respec-
tively,N0 = N∪{0} andR+ = (0,∞). Assume that s, t ∈ Z, then we use the notation
j = s, t instead of writing s ≤ j ≤ t , j ∈ Z. By Cn

j , n ∈ N0, j = 0, n, we denote
the binomial coefficients.

There are many recursive relations by which square roots of numbers can be found.
One of the most known ones is the following

xn+1 = 1

2

(
xn + a

xn

)
, n ∈ N0, (1)
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974 S. Stević

where a ∈ R+. It is well known that for any x0 ∈ R+, such defined sequence xn
converges to

√
a, when n → +∞ (see, e.g., [5, 7, 8]).

Equation (1) can be obtained by choosing the function

f (x) = x2 − a (2)

in the Newton iteration process

xn+1 = xn − f (xn)

f ′(xn)
, n ∈ N0, (3)

(see, e.g., [8, 37]).
A square root of a number a can be also obtained by using the recursive relation

xn+2 = xn+1xn + a

xn+1 + xn
, n ∈ N0. (4)

It is interesting that (4) can be obtained by using the secant method

xn+2 = f (xn+1)xn − f (xn)xn+1

f (xn+1) − f (xn)
, n ∈ N0, (5)

to the function in (2) (see, e.g., [39]).
Another recursive relation for finding a square root of a number a is the following

xn+1 = x3n + 3axn
3x2n + a

, n ∈ N0. (6)

This relation seems not so known as (1), but also frequently appears in the literature
(see, e.g., [17, 23, 30]).

Since (6) is a recursive relation of the form

xn+1 = f (xn), n ∈ N0,

where the function

f (t) = t3 + 3at

3t2 + a

for a ∈ R+, maps R+ into itself, convergence of its positive solutions can be dealt
with by using some standard arguments (see, e.g., [5, Problems 9.34, 9.35]) in various
ways (see, e.g., the arguments in [23, 30]).

What is interesting related to recursive relations (1) and (4), is the fact that their
solutions can be found in closed form (see, e.g., [7, 8, 19, 37, 39]). These are two
examples of nonlinear recursive relations/difference equations solvable in closed form.
Generally speaking, solvability of nonlinear difference eqations is a rare phenomena.
This is one of the reasons why for nonlinear difference equations is also studied the
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existence of invariants. For some recent related results on solvability and invariants
for nonlinear difference equations see, e.g., [3, 4, 25–27, 29, 31, 32, 34–36, 38, 40,
41] and the related references therein. Some old results on the topics can be found,
e.g., in [1, 2, 6, 10, 11, 14, 20–24]. For some other related equations see also [13, 15,
16, 18, 28, 33, 42].

Here we show how recursive relation (6) can be obtained from an iteration process
in the literature. Beside this, we show that the recursive relation is also solvable in
closed form by presenting its general solution, and present a class of recursive relations
for finding square roots which are also solvable in closed form, extending and unifying
recursive relations (1) and (6).

2 Main results

This section presents our main results in this paper.

2.1 An iteration process forming (6)

It is a natural question if recursive relation (6) can be also obtained from a known
iteration process. Here we deal with the problem.

The considerations in the previous section suggest that the requested iteration pro-
cess should be related to the Newton one. To find the roots of the algebraic equation

f (x) = 0

on an interval I , where f is a given function, is the same as to find the roots of the
equation

f (x)g(x) = 0

if the roots of the function g does not belong to the interval. Hence, in (3), instead of
f we can use the function f g ( [9]), and obtain

xn+1 = xn − f (xn)g(xn)

f ′(xn)g(xn) + f (xn)g′(xn)
, n ∈ N0, (7)

By suitable choice of function g we can obtain various iteration processes.
Let

g(t) = tb, b ∈ R.

Then, by some simple calculations (7) becomes

xn+1 = xn − f (xn)xn
f ′(xn)xn + b f (xn)

= xn
f ′(xn)xn + (b − 1) f (xn)

f ′(xn)xn + b f (xn)
, n ∈ N0. (8)
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976 S. Stević

Since we want to find a root of a number a it is natural to choose the function f as
in (2). By using it in (8) we obtain

xn+1 = xn
2x2n + (b − 1)(x2n − a)

2x2n + b(x2n − a)
= xn

(b + 1)x2n − a(b − 1)

(b + 2)x2n − ab
, n ∈ N0. (9)

To get recursive relation (6) from (9) is only possible if

b + 1

b + 2
= 1

3
,

from which it follows that b = −1/2. By using such obtained b in (9) we really obtain
(6).

The above consideration shows that recursive relation (6) is obtained from the
iteration process in (7) with

g(t) = t−
1
2 . (10)

Note that function (10) does not have a zero on R+, so the functions

t2 − a and (t2 − a)t−
1
2

have the same set of zeros on R+.

2.2 Solvability of recursive relation (6)

The fact that recursive relations (1) and (4) are solvable in closed form naturally
suggests investigation of solvability of recursive relation (6). Here we deal with the
problem.

It should be pointed out that it is a quite rare situation when nonlinear recursive
relation is solvable in closed form. This is why majority of authors use other methods
for dealing with the nonlinear relations, which was also the case in [23] and [30],
where was considered relation (6).

Let x∗ be an equilibrium of (6). Then we have

x∗ = x∗ (x∗)2 + 3a

3(x∗)2 + a
,

from which it follows that

2x∗((x∗)2 − a)

3(x∗)2 + a
= 0.

Hence

x∗ ∈ {0,√a,−√
a}.

123



On a class of recursive relations for calculating… 977

Since we calculate square root of a number different from zero, the equilibrium x∗ = 0
is of no interest in the investigation.

What is interesting, is to consider the sequence

en = xn − √
a, n ∈ N0.

The difference is usually considered when is studied convergence of a sequence.
Simple calculation shows that

xn+1 − √
a = (xn − √

a)3

3x2n + a
, n ∈ N0. (11)

Further, similarly is obtained

xn+1 + √
a = (xn + √

a)3

3x2n + a
, n ∈ N0. (12)

From (11) and (12) we have

xn+1 − √
a

xn+1 + √
a

=
(
xn − √

a

xn + √
a

)3

, n ∈ N0,

from which it easily follows that

xn − √
a

xn + √
a

=
(
x0 − √

a

x0 + √
a

)3n

, n ∈ N0. (13)

Finally, from (13) we obtain

xn = √
a
1 +

(
x0−√

a
x0+√

a

)3n

1 −
(
x0−√

a
x0+√

a

)3n , n ∈ N0. (14)

Let

yn :=
(
x0 − √

a

x0 + √
a

)3n

, n ∈ N0.

Then, (14) can be written as follows

xn = √
a
1 + yn
1 − yn

, n ∈ N0.
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978 S. Stević

Since

x3n + 3axn
3x2n + a

=
(√

a 1+yn
1−yn

)3 + 3a
√
a 1+yn

1−yn

3(
√
a 1+yn

1−yn
)2 + a

=√
a

(1 + yn)3 + 3(1 + yn)(1 − yn)2

(1 − yn)(3(1 + yn)2 + (1 − yn)2)

=√
a
1 + y3n
1 − y3n

= √
a
1 +

(
x0−√

a
x0+√

a

)3n+1

1 −
(
x0−√

a
x0+√

a

)3n+1 = xn+1

we have that the sequence defined in (14) is a solution to Eq. (6). In fact, (14) is the
general solution to the equation.

From the previous detailed consideration we see that the following theorem on
solvability of relation (6) holds.

Theorem 1 Assume that a ∈ R+ and x0 ∈ R+. Then, recursive relation (6) is solvable
in closed form and its general solution is given by the formula

xn = √
a
(x0 + √

a)3
n + (x0 − √

a)3
n

(x0 + √
a)3n − (x0 − √

a)3n
, n ∈ N0. (15)

Remark 1 Note that in the above consideration we have not used the assumption x0 ∈
R+. This means that formula (15) also holds if x0 ∈ R or x0 ∈ C. Beside this, the
consideration also holds for any a ∈ C \ {0}. Hence, formula (15) also holds in this
case.

From (15) we also see that a solution to (6) is well defined if and only if

(
x0 − √

a

x0 + √
a

)3n


= 1 (16)

for every n ∈ N. Note that if x0, a ∈ R+, then the relation in (16) holds for every
n ∈ N.

Remark 2 If a = 0, then (6) becomes

xn+1 = x3n
3x2n

, n ∈ N0, (17)

from which it easily follows that

xn = x0
3n

, n ∈ N0, (18)
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when x0 
= 0. This means that recursive relation (6) is also solvable in this case and
that the general solution in this case is given by formula (18). If x0 = 0, then the
solution to (17) is not well-defined.

Remark 3 Note that from (11) we have

|xn+1 − √
a| ≤ |xn − √

a|3
a

, n ∈ N0,

from which it follows that for a > 1 the sequence xn converges to
√
a very quickly.

Namely, according to the standard terminology, the rate of the convergence has the
third order [12].

Remark 4 By using formula (15) the convergence result in [23, 30] immediately fol-
lows. Namely, if a > 0, then every positive solution to (6) is convergent. Indeed, if
x0 > 0, then we have

∣∣∣∣ x0 − √
a

x0 + √
a

∣∣∣∣ < 1.

Hence

lim
n→+∞

(
x0 − √

a

x0 + √
a

)3n

= 0.

By letting n → +∞ in formula (15) and using the last relation, the result easily
follows.

2.3 Two other recursive relations for calculating square roots

It is a natural problem to find some other recursive relations for calculating square
roots which are solvable in closed form.

Here we present two examples of such recursive relations, which are related to
relations (1) and (6), and give some comments with respect to the obtained formulas
for their solutions.

Consider the recursive relation

xn+1 = x4n + 6ax2n + a2

4x3n + 4axn
, n ∈ N0. (19)

Let x∗ be an equilibrium of (19). Then we have

x∗ = (x∗)4 + 6a(x∗)2 + a2

4(x∗)3 + 4ax∗ ,
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from which it follows that

(3(x∗)2 + a)((x∗)2 − a)

4(x∗)3 + 4ax∗ = 0.

Hence

x∗ ∈ {√a,−√
a}.

By some calculation we have

xn+1 − √
a = (xn − √

a)4

4x3n + 4axn
, n ∈ N0. (20)

and

xn+1 + √
a = (xn + √

a)4

4x3n + 4axn
, n ∈ N0. (21)

From (20) and (21) we have

xn+1 − √
a

xn+1 + √
a

=
(
xn − √

a

xn + √
a

)4

, n ∈ N0.

Hence

xn − √
a

xn + √
a

=
(
x0 − √

a

x0 + √
a

)4n

, n ∈ N0,

and consequently

xn = √
a
1 +

(
x0−√

a
x0+√

a

)4n

1 −
(
x0−√

a
x0+√

a

)4n , n ∈ N0.

As is the case of relation (6) it is verified that the last expression is a solution to relation
(19).

From this we obtain the following theorem.

Theorem 2 Assume that a ∈ C \ {0} and x0 ∈ C. Then, recursive relation (19) is
solvable in closed form and its general solution is given by the formula

xn = √
a
(x0 + √

a)4
n + (x0 − √

a)4
n

(x0 + √
a)4n − (x0 − √

a)4n
, n ∈ N0. (22)
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Remark 5 If a = 0, then (19) becomes

xn+1 = x4n
4x3n

, n ∈ N0, (23)

from which it follows that

xn = x0
4n

, n ∈ N0, (24)

when x0 
= 0. Hence, recursive relation (19) is also solvable in this case and its
general solution is given by formula (24). If x0 = 0, then the solution to (23) is not
well-defined.

Remark 6 By using formula (22), we easily see that for a > 0 every positive solution
to (19) converges to

√
a.

Remark 7 Recursive relation (19) could be also obtained by a known iteration process
or by a modification of a known iteration process, but, at the moment, we do not see
from which one.

Now we consider the recursive relation

xn+1 = x5n + 10ax3n + 5a2xn
5x4n + 10ax2n + a2

, n ∈ N0. (25)

Let x∗ be an equilibrium of (25). Then we have

x∗ = (x∗)5 + 10a(x∗)3 + 5a2x∗

5(x∗)4 + 10a(x∗)2 + a2
,

from which it follows that

4x∗((x∗)2 + a)((x∗)2 − a)

5(x∗)4 + 10a(x∗)2 + a2
= 0.

Hence

x∗ ∈ {0,√a,−√
a}.

The equilibrium x∗ = 0 is of no special interest for calculating square roots.

We have

xn+1 − √
a = (xn − √

a)5

5x4n + 10ax2n + a2
, n ∈ N0. (26)

and

xn+1 + √
a = (xn + √

a)5

5x4n + 10ax2n + a2
, n ∈ N0. (27)
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982 S. Stević

From (26) and (27) we have

xn+1 − √
a

xn+1 + √
a

=
(
xn − √

a

xn + √
a

)5

, n ∈ N0.

Hence

xn − √
a

xn + √
a

=
(
x0 − √

a

x0 + √
a

)5n

, n ∈ N0,

and consequently

xn = √
a
1 +

(
x0−√

a
x0+√

a

)5n

1 −
(
x0−√

a
x0+√

a

)5n , n ∈ N0.

As is the case of relation (6) it is verified that the last expression is a solution to relation
(25).

So, we get the following theorem.

Theorem 3 Assume that a ∈ C \ {0} and x0 ∈ C. Then, recursive relation (25) is
solvable in closed form and its general solution is given by the formula

xn = √
a
(x0 + √

a)5
n + (x0 − √

a)5
n

(x0 + √
a)5n − (x0 − √

a)5n
, (28)

for n ∈ N0.

Remark 8 If a = 0, then (25) becomes

xn+1 = x5n
5x4n

, n ∈ N0, (29)

from which it follows that

xn = x0
5n

, n ∈ N0, (30)

when x0 
= 0. So, recursive relation (25) is also solvable in this case and its general
solution is given by formula (30). If x0 = 0, then the solution to (29) is not well-
defined.

Remark 9 From (26) we have

|xn+1 − √
a| ≤ |xn − √

a|5
a2

, n ∈ N0,
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from which it follows that when a > 1 the sequence xn converges to
√
a very quickly

(the rate of convergence has the fifth order).

Remark 10 By using formula (28), we easily see that for a > 0 every positive solution
to (25) converges to

√
a.

2.4 Two families of recursive relations generalizing the ones in (19) and (25)

Unlike relations (1) and (6), the recursive relations in (19) and (25) could be new (as
far as we know they are new).

It is a natural question if the recursive relations are special cases of some classes of
solvable nonlinear recursive relations. Here we deal with the problem.We present two
families of recursive relations which naturally generalize the ones in (1), (6), (19) and
(25). We show their solvability by presenting closed form formulas for their general
solutions.

First, we consider a family of recursive relations, which generalizes relations (1)
and (19).

Theorem 4 Let k ∈ N and a ∈ C \ {0}. Consider the recursive relation

xn+1 = x2kn + C2k
2 ax2k−2

n + C2k
4 a2x2k−4

n + · · · + C2k
2k−2a

k−1x2n + ak

C2k
1 x2k−1

n + C2k
3 ax2k−3

n + · · · + C2k
2k−1a

k−1xn
, (31)

for n ∈ N0, where x0 ∈ C. Then, relation (31) is solvable in closed form and its
general solution is given by the formula

xn = √
a
(x0 + √

a)(2k)
n + (x0 − √

a)(2k)
n

(x0 + √
a)(2k)n − (x0 − √

a)(2k)n
, n ∈ N0. (32)

Proof We have

xn+1 − √
a = x2kn + C2k

2 ax2k−2
n + C2k

4 a2x2k−4
n + · · · + C2k

2k−2a
k−1x2n + ak

C2k
1 x2k−1

n + C2k
3 ax2k−3

n + · · · + C2k
2k−1a

k−1xn
− √

a

= (xn − √
a)2k

C2k
1 x2k−1

n + C2k
3 ax2k−3

n + · · · + C2k
2k−1a

k−1xn
, (33)

and

xn+1 + √
a = x2kn + C2k

2 ax2k−2
n + C2k

4 a2x2k−4
n + · · · + C2k

2k−2a
k−1x2n + ak

C2k
1 x2k−1

n + C2k
3 ax2k−3

n + · · · + C2k
2k−1a

k−1xn
+ √

a

= (xn + √
a)2k

C2k
1 x2k−1

n + C2k
3 ax2k−3

n + · · · + C2k
2k−1a

k−1xn
, (34)

for n ∈ N0.
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From (33) and (34) we have

xn+1 − √
a

xn+1 + √
a

=
(
xn − √

a

xn + √
a

)2k

, n ∈ N0.

Hence

xn − √
a

xn + √
a

=
(
x0 − √

a

x0 + √
a

)(2k)n

, n ∈ N0,

from which formula (32) easily follows. ��

From Theorem 4 the following corollary easily follows.

Corollary 1 Assume that k ∈ N, a ∈ R+. Then every positive solution to (31) converges
to

√
a.

Now we consider a family of recursive relations, which generalizes relations (6)
and (25).

Theorem 5 Let k ∈ N and a ∈ C \ {0}. Consider the recursive relation

xn+1

= x2k+1
n + C2k+1

2 ax2k−1
n + C2k+1

4 a2x2k−3
n + · · · + C2k+1

2k−2a
k−1x3n + C2k+1

2k akxn

C2k+1
1 x2kn + C2k+1

3 ax2k−2
n + · · · + C2k+1

2k−1a
k−1x2n + ak

,

(35)

for n ∈ N0, where x0 ∈ C. Then, relation (35) is solvable in closed form and its
general solution is given by the formula

xn = √
a
(x0 + √

a)(2k+1)n + (x0 − √
a)(2k+1)n

(x0 + √
a)(2k+1)n − (x0 − √

a)(2k+1)n
, n ∈ N0. (36)

Proof We have

xn+1 − √
a

= x2k+1
n + C2k+1

2 ax2k−1
n + C2k+1

4 a2x2k−3
n + · · · + C2k+1

2k−2a
k−1x3n + C2k+1

2k ak xn

C2k+1
1 x2kn + C2k+1

3 ax2k−2
n + · · · + C2k+1

2k−1a
k−1x2n + ak

− √
a

= (xn − √
a)2k+1

C2k+1
1 x2kn + C2k+1

3 ax2k−2
n + · · · + C2k+1

2k−1a
k−1x2n + ak

, (37)
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and

xn+1 + √
a

= x2k+1
n + C2k+1

2 ax2k−1
n + C2k+1

4 a2x2k−3
n + · · · + C2k+1

2k−2a
k−1x3n + C2k+1

2k ak xn

C2k+1
1 x2kn + C2k+1

3 ax2k−2
n + · · · + C2k+1

2k−1a
k−1x2n + ak

+ √
a

= (xn + √
a)2k+1

C2k+1
1 x2kn + C2k+1

3 ax2k−2
n + · · · + C2k+1

2k−1a
k−1x2n + ak

, (38)

for n ∈ N0.

From (37) and (38) we have

xn+1 − √
a

xn+1 + √
a

=
(
xn − √

a

xn + √
a

)2k+1

, n ∈ N0.

Hence

xn − √
a

xn + √
a

=
(
x0 − √

a

x0 + √
a

)(2k+1)n

, n ∈ N0,

from which formula (36) follows. ��
From Theorem 5 the following corollary easily follows.

Corollary 2 Assume that k ∈ N, a ∈ R+. Then every positive solution to (35) converges
to

√
a.
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2. Adamović, D.: Solution to problem 194. Mat. Vesnik 23, 236–242 (1971)
3. Andruch-Sobilo, A., Migda, M.: On the rational recursive sequence xn+1 = axn−1/(b + cxnxn−1),

Tatra Mt. Math. Publ. 43, 1–9 (2009)
4. Bajo, I., Liz, E.: Global behaviour of a second-order nonlinear difference equation. J. Differ. Equat.

Appl. 17(10), 1471–1486 (2011)

123



986 S. Stević
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