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Abstract
Wepropose a newkind of stochastic absolute value equations involving absolute values
of variables. By utilizing an equivalence relation to stochastic bilinear program, we
investigate the expected value formulation for the proposed stochastic absolute value
equations. We also consider the expected residual minimization formulation for the
proposed stochastic absolute value equations. Under mild assumptions, we give the
existence conditions for the solution of the stochastic absolute value equations. The
solution of the stochastic absolute value equations can be gotten by solving the discrete
minimization problem. And we also propose a smoothing gradient method to solve the
discrete minimization problem. Finally, the numerical results and some discussions
are given.

Keywords Stochastic absolute value equations · Expected value formulation ·
Expected residual minimization formulation

Mathematics Subject Classification 90C30 · 90C15

1 Introduction

Let (�,F , ρ) be a probability space, where � ⊆ Rn and ρ is a standard probability
measure, we propose a new kind of stochastic absolute value equations, which is to
find a vector x ∈ Rn such that

A(ω)x − |x | = b(ω), (1.1)
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where A(ω) ∈ Rn×n and b(ω) ∈ Rn for ω ∈ � are random quantities on a probability
space (�,F , ρ), |x | is the componentwise absolute value of vector x ∈ Rn . We call
(1.1) the stochastic absolute value equations (SAVE). When A(ω) is a deterministic
matrix and b(ω) is a deterministic vector, then SAVE (1.1) reduces to the absolute value
equation (AVE) which is equivalent to the general linear complementarity problem
[1–4]. The AVE was widely used in solving linear programs, bimatrix games and
fundamental problems of mathematical programming, one can see [2–5]. In the past
few decades, the stochastic variational inequality problems [6, 7], the stochastic linear
complementarity problems [8–12], the stochastic nonlinear complementarity problems
[13, 14] and the stochastic tensor complementarity problems [15–17] were also widely
studied in solvingmanyoptimization problemswith uncertainty.However, no attention
has been paid to SAVE (1.1) which contains the characteristics of AVE and stochastic
optimization problems.

As the AVE is an NP hard problem [2], it is also a hard work to solve SAVE (1.1).
Generally, for the stochastic optimization problems, there are two general approaches
to get the solution of the problems [8–10]. The first approach applies the expected
value (EV)methodwhich formulates the problem as a deterministic problem by taking
the expect of the stochastic quantity, and the second approach is the expected residual
minimization (ERM)method, which is a natural extension of the least-squares method
of minimizing the residual. In this paper, the equivalent relation between SAVE (1.1)
and stochastic bilinear program is given. By using the EV formulation, we propose an
expected value formulation for SAVE (1.1). We also study the ERM formulation for
SAVE (1.1). We generate samples by the quasi-Monte Carlo methods and prove that
every accumulation point of the discrete approximation problem is the solution of the
expected residual minimization problem for SAVE (1.1).

The remainder of this paper is organized as follows. In Sect. 2, we show that SAVE
(1.1) is equivalent to a stochastic bilinear program, which is a stochastic optimization
problem with the formula as a stochastic generalized linear complementarity prob-
lem. Combined with an example, we give a discussion about the EV formulation. In
Sect. 3, we first establish the boundedness of the solution set of the expected residual
minimization problem, and then show that each accumulation point of the sequence
generated by the ERM formulation is a solution of the expected residual minimization
problem. In Sect. 4, we propose a smoothing gradient method for solving SAVE (1.1).
Some numerical experiments are also given to verify the theoretical results of the ERM
formulation. Finally, we complete our paper with some conclusions in Sect. 5.

2 Expected value formulation

We start by showing that SAVE (1.1) is equivalent to a stochastic bilinear program. By
the equivalence of the stochastic bilinear program and the stochastic generalized linear
complementarity problem, SAVE (1.1) can be reformulated as a stochastic generalized
linear complementarity problem. Then the expected value formulation will be used to
solve SAVE (1.1).
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Stochastic absolute value equations 923

Theorem 2.1 SAVE (1.1) is equivalent to the stochastic bilinear program, i.e.,

0 = min
x∈Rn

{((A(ω) + I )x − b(ω))T ((A(ω) − I )x − b(ω)) | (A(ω) + I )x

− b(ω) ≥ 0, (A(ω) − I )x − b(ω) ≥ 0}.

Proof By SAVE (1.1), from |x | ≤ A(ω)x − b(ω), we have

(A(ω) + I )x − b(ω) ≥ 0, (A(ω) − I )x − b(ω) ≥ 0,

i.e., the above formulations are the equivalence of the constraints for the stochastic
bilinear program. So we have

|x | = A(ω)x − b(ω) � ((A(ω) + I )x − b(ω))T ((A(ω) − I )x − b(ω)) = 0,

(A(ω) + I )x − b(ω) ≥ 0, (A(ω) − I )x − b(ω) ≥ 0

We complete the proof. ��
Theorem 2.2 SAVE (1.1) is equivalent to the stochastic generalized linear comple-
mentarity problem, i.e.,

(A(ω) + I )x − b(ω) ≥ 0, (A(ω) − I )x − b(ω) ≥ 0,

((A(ω) + I )x − b(ω))T ((A(ω) − I )x − b(ω)) = 0.
(2.1)

Proof By the equivalence of the stochastic bilinear program and the stochastic gener-
alized linear complementarity problem, we get this theorem. ��

In the following of this paper, E[·] stands for the expectation of every elements of
matrix and vector. Ā denotes the expectation of A(ω) and b̄ denotes the expectation
of b(ω), i.e.,

Ā = E[A(ω)], b̄ = E[b(ω)].

Then, we get the expected value formulation of the stochastic generalized linear com-
plementarity problem as

(( Ā + I )x − b̄)T (( Ā − I )x − b̄) = 0,

( Ā + I )x − b̄ ≥ 0, ( Ā − I )x − b̄ ≥ 0.
(2.2)

In general, the solution set of (2.1) is not equivalent to the solution set of (2.2) for all
ω ∈ �. So, in this section, we consider a kind of discrete probability space, which has
only finitely many elements, i.e., � = {ω1, ω2, · · · , ωm}. Now, (2.1) is equivalent to

⎧
⎪⎨

⎪⎩

G(x) ≥ 0, H(x) ≥ 0, G(x)T H(x) = 0,

(A(ωi ) + I )x − b(ωi ) ≥ 0,

(A(ωi ) − I )x − b(ωi ) ≥ 0,

(2.3)
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where G(x) = ( Ā + I )x − b̄, H(x) = ( Ā − I )x − b̄, i = 1, 2, · · · ,m.
In the following of this section, we reformulate (2.3) as a nonlinear equations with

nonnegative constraints, i.e., the expected value formulation of SAVE (1.1). (2.2)
is a generalized linear complementarity problem, and it can be reformulated as a
semismooth equations by Fischer-Burmeister (FB) function. FB function is an NCP
function [1], which is defined as

φFB(a, b) =
√
a2 + b2 − a − b,

where a, b ∈ R. Then x is a solution of (2.3) if and only if

H̃(x, y) = 0, y ≥ 0, (2.4)

where

H̃(x, y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�(x)
(A(ω1) + I )x − b(ω1) − y1
(A(ω1) − I )x − b(ω1) − y2

...

(A(ωm) + I )x − b(ωm) − y2m−1
(A(ωm) − I )x − b(ωm) − y2m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

�(x) =
⎛

⎜
⎝

φFB(( Ā + I )x − b̄)1, (( Ā − I )x − b̄)1
...

φFB(( Ā + I )x − b̄)n, (( Ā − I )x − b̄)n

⎞

⎟
⎠ ,

with

y = (yT1 , yT2 , · · · , yT2m)T , yi ∈ Rn, i = 1, 2, · · · , 2m.

Now, we give a simple example to illustrate the transformation process.

Example 2.1 Consider SAVE (1.1), where

A(ω) =

⎛

⎜
⎜
⎝

10 + ω 1 2 0
1 11 + ω 3 1
0 2 12 + ω 1
1 7 0 13 + ω

⎞

⎟
⎟
⎠ , b(ω) =

⎛

⎜
⎜
⎝

12 + ω

15 + ω

14 + ω

20 + ω

⎞

⎟
⎟
⎠ ,

� = {ω1, ω2} = {0, 2}, Pi = P(ωi ∈ �) = 1
2 , i = 1, 2.
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Stochastic absolute value equations 925

We know that (1, 1, 1, 1)T is the solution of this example. Now, we use the EV for-
mulation to solve the above example. Firstly, we get

A =

⎛

⎜
⎜
⎝

11 1 2 0
1 12 3 1
0 2 13 1
1 7 0 14

⎞

⎟
⎟
⎠ , b =

⎛

⎜
⎜
⎝

13
16
15
21

⎞

⎟
⎟
⎠ .

Then by (2.4), we know that Example 2.1 can be transformed into the following
constrained equations

H̃(x, y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φFB(12x1 + x2 + 2x3 − 13, 10x1 + x2 + 2x3 − 13)
φFB(x1 + 13x2 + 3x3 + x4 − 16, x1 + 11x2 + 3x3 + x4 − 16)

φFB(2x2 + 14x3 + x4 − 15, 2x2 + 12x3 + x4 − 15)
φFB(x1 + 7x2 + 15x4 − 21, x1 + 7x2 + 13x4 − 21)

11x1 + x2 + 2x3 − 12 − y1
x1 + 12x2 + 3x3 + x4 − 15 − y2

2x2 + 13x3 + x4 − 14 − y3
x1 + 7x2 + 14x4 − 20 − y4
9x1 + x2 + 2x3 − 12 − y5

x1 + 10x2 + 3x3 + x4 − 15 − y6
2x2 + 11x3 + x4 − 14 − y7
x1 + 7x2 + 12x4 − 20 − y8
13x1 + x2 + 2x3 − 14 − y9

x1 + 13x2 + 3x3 + x4 − 17 − y10
2x2 + 15x3 + x4 − 16 − y11
x1 + 7x2 + 16x4 − 22 − y12
11x1 + x2 + 2x3 − 14 − y13

x1 + 12x2 + 3x3 + x4 − 17 − y14
2x2 + 13x3 + x4 − 16 − y15
x1 + 7x2 + 14x4 − 22 − y16

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where yi ≥ 0, i = 1, 2, · · · , 16. The optimization solution of the above constrained
equations is equivalence to the optimization solution of the following constrained
optimization problem

min
1

2
‖H̃(x, y)‖2

s.t . y ≥ 0.

We use fmincon function in Matlab Optimization Toolbox to solve the transformed
constrained optimization problem. The numerical results are given in the following
table, where x0 denotes the initial point, x∗ denotes the optimum solution.

Remark From thenumerical results of the above example,weknow that theSAVE(1.1)
with finite discrete distribution can be solved by constrained optimizationmethods.But
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Table 1 Numerical results for Example 2.1

x0 x∗ 1
2 ‖ H̃ ‖2

(2.5127,−2.4490,0.0596,1.9908)T (1.000000,1.000000,1.000000,1.000000)T 2.5580 × 10−12

(−1.4834,3.3083,0.8526,0.4972)T (1.000002,1.000001,1.000002,1.000001)T 2.8157 × 10−9

(−3.3782,2.9428,−1.8878,0.2853)T (1.000000,1.000000,1.000000,1.000000)T 1.0359 × 10−10

(−3.9335,4.6190,−4.9537,2.7491)T (1.000000,1.000000,1.000000,1.000000)T 1.0346 × 10−10

(3.5303,1.2206,−1.4905,0.1325)T (1.000000,1.000000,1.000000,1.000000)T 1.0320 × 10−10

the EV transformation is a more complicated form with nonsmooth complementarity
function andonly solveSAVE(1.1)withfinite discrete distribution. So, in the following
section, we consider the expected residual minimization formulation, which can avoid
transforming the SAVE into a complicated constrained optimization problem. And
the expected residual minimization formulation can also be used to solve SAVE (1.1)
with any distribution involving the finite discrete distribution.

3 Expected residual minimization formulation

To apply the expected residual minimization formulation to solve SAVE (1.1), we first
formulate the problem as the following optimization problem

min
x∈Rn

F(x), (3.1)

where F(x) = E[‖A(ω)x−|x |−b(ω)‖2] = ∫

�
‖A(ω)x−|x |−b(ω)‖2ρ(ω) dω. Dis-

crete the involved problem by the quasi-Monte Carlo method, then the solution of the
original problem can be approximated obtained by solving the discrete minimization
problem.

To proceed, we give the following assumption.

Assumption 3.1 Let ρ : � → R+ be a continuous probability density function on
probability space (�,F , P). Suppose that

∫

�

(‖A(ω)‖ + 1)2ρ(ω) dω < ∞,

∫

�

‖b(ω)‖2ρ(ω) dω < ∞,

where A(ω) ∈ Rn×n , b(ω) ∈ Rn , ω ∈ �.

For γ > 0, we denote the level set of function F by �(γ ), i.e.,

�(γ ) = {x | F(x) ≤ γ }.

Lemma 3.1 Suppose that there exists an ω̄ ∈ �, such that ρ(ω̄) > 0 and A(ω) =
diag(sign(x)). Then the level set �(γ ) is bounded.
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Stochastic absolute value equations 927

Proof By ρ is continuous, there exists ρ0 > 0 such that

ρ(ω) ≥ ρ0, for all ω ∈ B = D(ω̄, δ) ∩ �,

where D(ω̄, δ) is a closed sphere with center ω̄ and radius δ. We now consider a
sequence {xk} ∈ Rn . By the continuity of φ, then there exists ωk ∈ B, such that

‖φ(xk, ωk)‖ = min
ω∈B ‖φ(xk, ω)‖,

where φ(xk, ω) = A(ω)xk − |xk | − b(ω).
Denote λ = ∫

B dω > 0. Then

F(xk) ≥ ∫

B ‖φ(xk, ω)‖2ρ(ω) dω
≥ ‖φ(xk, ωk)‖2ρ̄

∫

B dω
= λρ̄‖φ(xk, ωk)‖2.

Now, we only need to prove ‖φ(xk, ωk)‖ → +∞ as ‖xk‖ → +∞. Suppose ‖xk‖ →
+∞ holds, we know that xik → +∞ or xik → −∞ for some i . So, we get

((A(ωk) − diag(sign(xk)))xk − b(ωk))i → +∞ or ((A(ωk)

−diag(sign(xk)))xk − b(ωk))i → −∞

for some i , i.e., we get ‖φ(xk, ωk)‖ → +∞ holds for ‖xk‖ → +∞. Hence, the proof
is completed. ��

In the following of this section, the quasi-Monte Carlo method for numerical inte-
gration is used as in [8, 18]. The transformation function ω = u(ν) is used to go from
an integral on � to the integral on the unit hypercube [0, 1]m . And the observations
{νi }, i = 1, · · · , N̄ are generated in this unit hypercube.
Then, we get

F(x) = ∫

�
‖φ(x, ω)‖2ρ(ω) dω

= ∫

�̄
‖φ(x, u(ν))‖2ρ(u(ν))u′(ν) dν

= ∫

�̄
‖φ(x, u(ν))‖2ρ̄(ν) dν,

where ρ̄(ν) = ρ(u(ν))u′(ν), �̄ = [0, 1]m .
For each k, we denote

Fk(x) = 1

N̄k

∑

νi∈�̄k

‖φ(x, νi )‖2ρ(νi ),

where φ(x, νi ) = A(νi )x − |x | − b(νi ), �̄k := {νi , i = 1, · · · , N̄k} is a set of
observations generated by a quasi-Monte Carlo method such that �̄k ⊆ �, N̄k → ∞
as k → ∞. In the remainder of this section, to simplify the natation, we suppose
� = [0, 1]m and let ω denote ν.
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Now, we consider

min
x∈Rn

Fk(x). (3.2)

Obviously, (3.2) is the approximation problem to (3.1).

Lemma 3.2 For any fixed x ∈ Rn, we get

lim
k→∞ Fk(x) = F(x).

Proof From the definition of φ, we get

‖φ(x, ω)‖ = ‖A(ω)x − |x | − b(ω)‖
≤ ‖A(ω)x‖ + ‖x‖ + ‖b(ω)‖
≤ (‖A(ω)‖ + 1)‖x‖ + ‖b(ω)‖,

i.e.,

0 ≤ ‖φ(x, ω)‖2 ≤ 2[((‖A(ω)‖ + 1)‖x‖)2 + ‖b(ω)‖2].

By Assumption 3.1, we know that (‖A(ω)‖ + 1)2ρ(ω) is a nonnegative continuous
function and it is also bounded. Therefore, we get ‖φ(x, ·)‖2ρ(·) is integrable and
0 ≤ F(x) < ∞. By ‖φ(x, ·)‖2ρ(·) is continuous, we have

lim
k→∞ Fk(x) = F(x),

for x ∈ Rn . This completes the proof. ��
Denote ϑ as the optimal solution set of (3.1), and ϑk as the optimal solution set of

(3.2). Now, we give the following theorem to show the relation of the expected resid-
ual minimization problem (3.1) and the approximate expected residual minimization
problem (3.2).

Theorem 3.1 If ρ(ω̄) > 0 holds for ω̄ ∈ �, then ϑk is nonempty and bounded when k
is large enough. And every accumulation point of {xk} ⊆ ϑk is contained in the set ϑ .

Proof We assume that xk → x̄, k → ∞. Let F(x) < γ , by the continuity of F , we
know that F(xk) ≤ γ for all large k, i.e., xk ∈ D̄(γ ) for all large k. Now, we show
that

|Fk(xk) − Fk(x)| → 0, when k → ∞.

For all x, y ∈ Rn , we get

‖φ(x, ω) − φ(y, ω)‖ = ‖A(ω)x − |x | − b(ω) − A(ω)y + |y| + b(ω)‖
= ‖A(ω)x − A(ω)y + |y| − |x |‖
≤ ‖A(ω)‖‖x − y‖ + ‖x − y‖
= (‖A(ω)‖ + 1)‖x − y‖.
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Stochastic absolute value equations 929

Denote L(ω) = ‖A(ω)‖ + 1, we also get

‖φ(x, ω)‖ ≤ (‖A(ω)‖ + 1)‖x‖ + ‖b(ω)‖
= (‖A(ω)‖ + 1)‖x‖ + ‖b(ω)‖.

By Lemma 3.1, D̄(γ ) is closed and bounded, we have

|‖φ(x, ω)‖2 − ‖φ(y, ω)‖2| = |(‖φ(x, ω)‖ + ‖φ(y, ω)‖)(‖φ(x, ω)‖ − ‖φ(y, ω)‖)|
≤ ((‖A(ω)‖ + 1)‖x‖ + (‖A(ω)‖ + 1)‖y‖ + 2‖b(ω)‖)

(‖A(ω)‖ + 1)‖x − y‖
= (L(ω)‖x‖ + L(ω)‖y‖ + 2‖b(ω)‖)L(ω)‖x − y‖
≤ (2L(ω)C1 + 2‖b(ω)‖)L(ω)‖x − y‖,

where C1 = max{‖x‖|x ∈ D̄(γ )}, x, y ∈ D̄(γ ). By

(2L(ω)C1 + 2‖b(ω)‖)L(ω) ≤ (L(ω)C1 + ‖b(ω)‖)2 + [L(ω)]2
= [L(ω)C1]2 + ‖b(ω)‖2 + [L(ω)]2 + 2C1L(ω)‖b(ω)‖
≤ [L(ω)C1]2 + ‖b(ω)‖2 + [L(ω)]2 + [C1L(ω)]2 + ‖b(ω)‖2
= (2C2

1 + 1)[L(ω)]2 + 2‖b(ω)‖2,

we obtain

|Fk(xk) − Fk(x)| ≤ 1
N̄k

N̄k∑

i=1
|‖φ(xk, ωi )‖2 − ‖φ(x, ωi )‖2|ρ(ωi )

≤ 1
N̄k

N̄k∑

i=1
((2C2

1 + 1)[L(ωi )]2 + 2‖b(ωi )‖2)ρ(ωi )‖xk − x‖
≤ �‖xk − x‖,

where � is a constant and for all large k satisfying

� ≥ 1

N̄k

N̄k∑

i=1

(((2C2
1 + 1)[L(ωi )]2 + 2‖b(ωi )‖2)ρ(ωi )).

So, for k → ∞, we get

|Fk(xk) − Fk(x)| → 0.

From the above results and Lemma 3.2, we obtain

|Fk(xk) − F(x)| ≤ |Fk(xk) − Fk(x)| + |Fk(x) − F(x)| → 0,

when k → ∞. By xk ∈ ϑk , we get

Fk(xk) ≤ Fk(x), f or x ∈ Rn .
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930 S. Du et al.

Therefore, we have

F(x) = lim
k→∞ Fk(xk) ≤ lim

k→∞ Fk(x) = F(x), x ∈ Rn .

We complete the proof. ��

Now, we give two special kinds of SAVE (1.1), which can be solved without using
discrete approximation.

Case I. Let � = [α̃1, β̃1] × · · · × [α̃N , β̃N ] with α̃ j < β̃ j , j = 1, · · · , N , and
ω̃ j , j = 1, · · · , N are independent. When ρ satisfies Assumption 3.1 and ρ j denotes
the density function for ω̃ j , j = 1, · · · , N . We know that

F(x) =
n∑

i=1

Fi (x),

where

Fi (x) = ∫ β̃1
α̃1

· · · ∫ β̃N
α̃N

[(A(ω̃)x − |x | − b(ω̃))i ]2ρ1(ω̃1) · · · ρN (ω̃N ) dω̃1 · · · dω̃N .

Case II. Let A(ω) ≡ A and b(ω) ≡ b̃ + Tω, where A ∈ Rn×n , b̃ ∈ Rn and
T ∈ Rn×m are given constants. For each i , the i th row of the matrix T has just one
positive element ti , and the density function ρ is defined by

ρ(ω) =
{
1, ω ∈ [0, 1]m
0, otherwise.

In this case, we get F(x) =
n∑

i=1
Fi (x), where

Fi (x) = ∫ 1
0 · · · ∫ 1

0 [(Ax − |x | − b(ω))i ]2ρ1(ω1)ρ2(ω2) · · · ρm(ωm) dω1 dω2 · · · dωm

= ∫ 1
0 · · · ∫ 1

0

∫ 1
0 [(Ax − |x | − b̃ − tiω j )i ]2ρ j (ω j ) dω jρ1(ω1) · · · ρ j−1(ω j−1)

ρ j+1(ω j+1) · · · ρm(ωm) dω1 · · · dω j−1 dω j+1 · · · dωm

= [Ax − |x | − b̃]2i + 1
3 t

2
i − [Ax − |x | − b̃]i ti .

4 A smoothing gradient method

In this section, we use the ERM formulation to transform SAVE (1.1) into an uncon-
strained optimization problem. For SAVE (1.1) contains nonsmooth term |x |, we
consider smoothing method to solve it. Smoothing gradient method is an effective
smoothing method to deal with this kind of problems [19–21], so we use the smooth-
ing gradient method to solve SAVE (1.1).
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Firstly, we generate samples ωi , i = 1, 2, · · · , N , i.e.,

f (x) = 1

N

N∑

i=1

‖A(ωi )x − |x | − b(ωi )‖2ρ(ωi ),

and we choose the smoothing function of |xi | as

ψ(xi , μ) =
√

x2i + μ, i = 1, 2, · · · , n,

whereμ ≥ 0. Denoteψ(x, μ) = (

√

x21 + μ,

√

x22 + μ, · · · ,
√
x2n + μ)T . Then SAVE

(1.1) can be transformed into the following unconstrained optimization problem

min
x∈Rn

f̃ (x, μ) = 1

N

N∑

i=1

‖A(ωi )x − ψ(x, μ) − b(ωi )‖2ρ(ωi ). (4.1)

And the gradient of the objective function in (4.1) is

∇x f̃ (x, μ) = 2

N

N∑

i=1

J (A(ωi )x − ψ(x, μ) − b(ωi ))
T (A(ωi )x − ψ(x, μ) − b(ωi ))ρ(ωi ),

where J (A(ωi )x −ψ(x, μ)− b(ωi )) is the Jacobian of (A(ωi )x −ψ(x, μ)− b(ωi )).
Next, we give the smoothing gradient method for SAVE (1.1).

Algorithm 1 Smoothing gradient method
Step 0 Given an initial point x0 ∈ Rn , μ0 ∈ R, σ, δ, ρ, γ̄ ∈ (0, 1), ε > 0, set k = 0.
Step 1 If ‖∇x f̃ (xk , μk )‖ ≤ ε, stop. Otherwise, go to Step 2.
Step 2 Computing the search direction dk = −∇ f̃ (xk , μk ).
Step 3 Determine αk = max

j
{ρ j , j = 0, 1, 2, · · · } satisfying

f̃ (xk+1, μk ) − f̃ (xk , μk ) ≤ δαk∇x f̃ (xk , μk )
T dk .

Set xk+1 = xk + αkdk .
Step 4 If ‖∇ f̃ (xk , μk )‖ ≥ γ̄ μk , then set μk+1 = μk ; Otherwise choose μk+1 = σμk .
Step 5 Let k = k + 1 and return to Step 1.

It is easy to find that f̃ (·, μ) ≥ 0 for any constant μ ≥ 0 and ∀x ∈ Rn , ∇x f̃ (·, μ)

is uniformly continuous on the level set L(x0, μ) = {x ∈ Rn| f̃ (x, μ) ≤ f̃ (x0, μ)}.
Next, we give the global convergence of the proposed smoothing gradient method.
From [22], we get the following lemma.
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Lemma 4.1 Given a constantμ ≥ 0. Let {xk} be the sequence generated by Algorithm
1, then

lim
k→∞‖∇x f̃ (xk, μ)‖ = 0.

Theorem 4.1 Let {μk} and {xk} be the sequence generated by Algorithm 1. Then

lim
k→∞‖∇x f̃ (xk+1, μk)‖ = 0.

Proof Define K = {k|μk+1 = σμk}. Suppose K is a finite set, then there exists an
integer k̂ such that for all k > k̂,

‖∇x f̃ (xk, μk−1)‖ ≥ γ̄ μk, (4.2)

set μk = μk̂ = μ, we get

min
x∈Rn

f̃ (x, μ).

From Lemma 4.1, we have

lim
k→∞‖∇x f̃ (xk, μ)‖ = 0,

which contradicts with (4.2). So K is an infinite set, i.e., lim
k→∞μk = 0. Set K =

{k0, k1, · · · }, for k0 < k1 < · · · , then

lim
k→∞‖∇x f̃ (xki+1, μki )‖ ≤ γ̄ lim

i→∞μki = 0.

The proof is completed. ��
In the following of this section, we verify the effectiveness of Algorithm 1 via the

following given examples. The parameters used in Algorithm 1 are chosen as ρ = 0.5,
σ = 0.5, δ = 0.5, μ0 = 0.01, γ̄ = 0.5. We terminate our algorithm if k ≥ 10000 or
‖∇x f̃ (xk, μk)‖ < 1.0e − 5 satisfied. We implement all numerical test in MATLAB
R2019b and run the codes on a PC with 1.80GHz CPU.

Example 4.1 Consider SAVE (1.1), where

A(ω) =
(
2 + ω 1

5 1 + ω

)

, b(ω) =
(

4 + ω

5 + 3ω

)

.

We generate samples ωi , i = 1, 2, · · · , N , which obey the uniform distribution of
[0, 1]. The numerical results of Example 4.1 are shown in Table2 and Fig. 1, where
N denotes the number of ωi , x0, x∗ and f (x∗) denote the initial point, the optimum
solution and the optimum value, respectively.
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Table 2 Numerical results of
Example 4.1

N x0 x∗ f (x∗)

10 (0.9415,1.7138)T (1.0000,3.0000)T 1.2332e-09

50 (1.5088,0.6925)T (1.0000,3.0000)T 1.2342e-09

100 (1.6206,1.1140)T (1.0000,3.0000)T 1.2553e-09

200 (1.6822,0.7090)T (1.0000,3.0000)T 1.2360e-09

500 (1.3098,1.7802)T (1.0000,3.0000)T 1.2104e-09

100 101 102

k

0

0.5

1

1.5

2

2.5

3

3.5

4

va
l

N=10
N=50
N=100
N=200
N=500

Fig. 1 Numerical results of Example 4.1

Example 4.2 Consider SAVE (1.1), where

A(ω) =

⎛

⎜
⎜
⎝

2 + ω 1 0 0
2 1 + ω 0 0
0 0 2 + ω 1
0 2 0 1 + ω

⎞

⎟
⎟
⎠ , b(ω) =

⎛

⎜
⎜
⎝

2 + ω

2 + ω

2 + ω

2 + ω

⎞

⎟
⎟
⎠ .

We generate samples ωi , i = 1, 2, · · · , N , which obey the uniform distribution of
[0, 1]. The detailed numerical results are shown in Table3 and Fig. 2, where N denotes
the number of ωi , x0, x∗ and f (x∗) denote the initial point, the optimum solution and
the optimum value, respectively.
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Table 3 Numerical results of Example 4.2

N x0 x∗ f (x∗)

10 (1.3027,1.4874,0.6039,0.1792)T (1.0000,1.0000,1.0000,1.0000)T 5.7084e-09

50 (1.0894,1.9952,1.0220,1.7470)T (1.0000,1.0000,1.0000,1.0000)T 5.7252e-09

100 (0.9878,1.7254,0.4858,1.6685)T (1.0000,1.0000,1.0000,1.0000)T 5.8684e-09

200 (0.2891,0.7410,1.2448,1.9951)T (1.0000,1.0000,1.0000,1.0000)T 5.7938e-09

500 (1.6171,1.9691,1.7718,0.4277)T (1.0000,1.0000,1.0000,1.0000)T 5.7870e-09

100 101 102

k

0

0.5

1

1.5

2

2.5

va
l

N=10
N=50
N=100
N=200
N=500

Fig. 2 Numerical results of Example 4.2

Example 4.3 Consider SAVE (1.1), where

A(ω) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5 + ω 0 0 0 0 2 1 0 0 3
1
2 2 + ω 0 1

2 1 0 1 0 6 0
0 1

4 7 + ω 3
4 0 2 0 0 1

2
1
2

1 1 2 2 + ω 1
2 0 3

2 2 0 1
0 0 2

5
1
4 6 + ω 2 0 1 7

20 1
2 1

2 4 0 0 1 + ω 1
2 2 1 0

0 5 0 2
3 0 2

3 3 + ω 1
4 1 5

12
2 1 1 1 1 1

2 0 4 + ω 1
2 0

1
7

5
7 0 0 1 0 1

7 0 9 + ω 0
3 0 2 1 5

2 0 1
2

1
4

1
4 1 + ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Table 4 Numerical results of
Example 4.3

N x∗ f (x∗)

10 (1.0858,1.0705,· · · ,1.0122)T 0.0063

50 (1.0882,1.0776,· · · ,1.0097)T 0.0072

100 (1.0893,1.0727,· · · ,0.9988)T 0.0086

200 (1.0890,1.0725,· · · ,0.9998)T 0.0084

500 (1.0892,1.0737,· · · ,1.0001)T 0.0084

100 101 102 103
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N=200
N=500

Fig. 3 Numerical results of Example 4.3

and

b(ω) = (10 + ω, 10 + ω, · · · , 10 + ω)T ∈ R10.

We generate samples ωi , i = 1, 2, · · · , N , which obey the uniform distribution of
[0, 1]. The initial points are randomly generated. The detailed numerical results are
shown in Table4 and Fig. 3, where N denotes the number of ωi , x∗ and f (x∗) denote
the optimum solution and the optimum value respectively.
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Table 5 Numerical results of
Example 4.4 (n = 100)

N x∗ f (x∗)

10 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4082e-07

50 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4026e-07

100 (1.0000,1.0000,· · · ,1.0000)T100×1 1.3966e-07

200 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4032e-07

500 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4027e-07

Table 6 Numerical results of
Example 4.4 (n = 500)

N x∗ f (z∗)

10 (1.0000,1.0000,· · · ,1.0000)T500×1 7.0087e-07

50 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9867e-07

100 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9962e-07

200 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9930e-07

500 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9897e-07

Example 4.4 Consider SAVE (1.1), where

A(ω) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 + ω 1
1 2 + ω 1

1 2 + ω 1
. . .

. . .
. . .

1 2 + ω 1
1 2 + ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×n

,

and

b(ω) = (2 + ω, 3 + ω, 3 + ω, · · · , 3 + ω, 2 + ω)T ∈ Rn .

We generate samples ωi , i = 1, 2, · · · , N , which obey the uniform distribution
of [0, 1]. The initial points are randomly generated. The detailed numerical results
are shown in Tables5, 6, Figs. 4 and5, where n denotes the dimension, N denotes
the number of ωi , x∗ and f (x∗) denote the optimum solution and the optimum value
respectively.

From the above numerical results, we can see that SAVE (1.1) can be solved by
simple unconstrained optimizationmethod.And the ERMformulation can avoid trans-
forming SAVE (1.1) into a complicated constrained optimization problem.

123



Stochastic absolute value equations 937

100 101 102 103

k

0

5

10

15

20

25

30

35

40

va
l

N=10
N=50
N=100
N=200
N=500

Fig. 4 Numerical results of Example 4.4 (n = 100)
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Fig. 5 Numerical results of Example 4.4 (n = 500)
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5 Conclusions

In this paper, we propose a new kind of absolute value equation problem with ran-
dom quantities, which is called stochastic absolute value equations. The properties
of the proposed stochastic absolute value equations are studied. The expected value
formulation and expected residual minimization formulation for solving the proposed
stochastic absolute value equations are also given. Absolute value equations is widely
used in studying engineering problems, economics and management problems. It is
very meaningful to study this kind of stochastic absolute value equations, which is a
more extensive problem than the absolute value equations.
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