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Abstract
Concerned in this paper is a discrete predator-prey system with Allee effect and other
food resources for the predators. The conditions on the existence and stability of
fixed points are obtained. It is shown that the system can undergo fold bifurcation
and flip bifurcation by using the center manifold theorem and bifurcation theory.
Numerical simulations are provided to illustrate the feasibility of the main results
and the influence of Allee effect on the stability of the system. Our study indicates
that other food resources for the predator can enrich the dynamical behaviours of the
system, including cascades of period-doubling bifurcation in orbits of period-2, 4, 8,
and chaotic sets.
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1 Introduction

The predation relationship between predator and prey is one of the dominant themes
in ecology, due to its universal existence and importance. Predator-prey models have
been extensively studied with the first one being proposed by Lotka and Volterra. A
general Lotka-Volterra predator-prey model can be written as

{
ẋ = x(b1 − a11x − a12y),
ẏ = y(b2 + a21x − a22y),

(1)

where b1 and ai j ’s are positive constants, b2 > 0 means that the predator has other
food resources and b2 < 0 otherwise. According to Ma [1], a positive fixed point must
be globally stable when exists.

Allee effect [2] is a crucial phenomenon that has been studied by many scholars
[3–10]. It can be regarded as a negative density dependence of the per capita growth
rate of a population when its density is smaller than a critical value. It may be caused
by many factors including the difficulty in finding a mate, reduced defence against
predators at low densities, special trends of social dysfunction, etc. Allee effect may
enhance [11, 12] or decrease [13–21] the stability of the system. By the biological
meanings, the Allee function f (u, x) should satisfy the following requirements:

f (u, 0) = 0, lim
x→∞ f (u, x) = 1,

∂ f (u, x)

∂x
> 0,

where u is the Allee constant, x is the population density. Noting that f (u, x) = x
u+x

meets the above requirements.
For a bio-mathematical model, when species have non-overlapping generations or

the population densities are too small, discrete models described by difference equa-
tions are more realistic than the continuous–time models. The dynamic behaviours of
discrete predator-prey systems have been extensively studied over the past decades.
To name a few, see [22–37] and references therein. All these works have demonstrated
that discrete systems indeed have more complex dynamic behaviours than the contin-
uous ones. In particular, several discrete models with Allee effect are discussed in [11,
12, 38–41]. Among these investigations, Celik and Duman [11] studied the following
discrete predator-prey system with the prey population subject to an Allee effect,

{
Nn+1 = Nn + r Nn (1 − Nn)

Nn
u+Nn

− aNn Pn,
Pn+1 = Pn + aPn (Nn − Pn) .

(2)

They showed that theAllee effect has a stabilizing effect for system (2) and the positive
fixed point arrives stability much faster due to the Allee effect.

The models mentioned above are all based on a one-to-one relationship between
the predator and the prey, i.e., the predator species takes the prey species as its unique
food resource. Thus the extinction of the prey species will lead to the extinction of
the predator species. However, predators are generally polyphagies and do not hunt
for only one type of prey. Based on this, Zhu et al. [42] and Chen et al. [36] proposed
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respectively continuous and discrete models where the predator species has other food
resources and the prey species is subject to fear effect. So far, little has been done for
discrete predator-prey systems with both Allee effect and other food resources for
predators.

Motivated by the above discussion and works, we propose a continuous predator-
prey system with Allee effect and other food resources for the predator and study the
dynamical behaviours of its discrete version obtained by the forward Euler scheme.
The continuous model is

{
dx
dt = r x

(
1 − x

K

) x
u1+x − axy,

dy
dt = pxy + ey − hy2,

(3)

where x and y are the densities of the prey and the predator at time t , respectively. Here
r , K , u1, a, p, e, and h are all positive constants. r and e represent the intrinsic growth
rates of the prey and predator, respectively; K is the carrying capacity of the prey in
the absence of the predator; a denotes the maximum predation rate of the predator
and p

a stands for the conversion rate of prey’s biomass to predator’s biomass; u1 is the
Allee effect constant of the prey; and h describes the death rate due to intra-species
competition of the predator.

For the sake of simplicity, we make the following change of variables,

x̄ = x

K
, ȳ = h

r
y, t̄ = r t .

Denote

u = u1
K

, b = a

h
, c = pK

r
, m = e

r
.

After dropping the bars, system (3) becomes

{
dx
dt = x (1 − x) x

u+x − bxy,
dy
dt = cxy + my − y2.

(4)

Applying the forward Euler scheme to system (4) and taking the step size δ → 1,
we obtain the following discrete system,

{
x → x + x (1 − x) x

u+x − bxy,

y → y + cxy + my − y2.
(5)

The aim of this paper is to study the dynamical behaviours of system (5), which include
the existence and stability of fixed points, and the bifurcation phenomena.

The rest of this paper is arranged as follows. Sect. 2 is devoted to the existence
and stability of fixed points. Then, in Sect. 3, we show that system (5) can undergo
fold bifurcation and flip bifurcation under appropriate conditions on the parameters.
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Numerical simulations are provided in Sect. 4 to illustrate the feasibility of the main
results. The paper ends with a brief conclusion.

2 The existence and stability of fixed points

2.1 The existence of fixed points

The fixed points of system (5) satisfy the following equations,

{
x = x + x (1 − x) x

u+x − bxy,

y = y + cxy + my − y2.

Obviously, system (5) always admits the boundary fixed points E0(0, 0), E1(0,m),
and E2(1, 0). For the positive fixed points, we only need to consider positive solutions
of the following equations,

{
(bc + 1)x2 + (bcu + bm − 1)x + bmu = 0,

y = cx + m.
(6)

For positive fixed points, x must satisfy 0 < x < 1. Let � denote the discriminant of
the first equation of (6) and express � in terms of m, i.e.,

�(m) = b2m2 − 2(b2cu + 2bu + b)m + (bcu − 1)2.

Then �(m) has two roots,

m∗ =
(√

u(bc + 1) − √
u + 1

)2
b

, m∗∗ =
(√

u(bc + 1) + √
u + 1

)2
b

.

Note that 0 ≤ m∗ < m∗∗.

Theorem 1 The following statements on positive fixed points of system (5) hold.

1. If either m > m∗ or bcu ≥ 1, then there is no positive fixed point.
2. If m = m∗ and bcu < 1, then there is a unique positive fixed point E31(x31, y31),

where x31 =
√

u(u+1)
bc+1 − u and y31 = cx31 + m.

3. If 0 < m < m∗ and bcu < 1, then there are two distinct positive fixed

points E32(x32, y32) and E33(x33, y33), where x32 = 1−bcu−bm−√
�(m)

2(bc+1) , x33 =
1−bcu−bm+√

�(m)
2(bc+1) , y32 = cx32 + m, and y33 = cx33 + m.

Proof Let f (x) = (bc + 1)x2 + (bcu + bm − 1)x + bmu. We only need to show
when f has positive zeros in (0, 1). Note that f ′(x) = 2(bc + 1)x + bcu + bm − 1.
It follows that f ′(x̄) = 0 with x̄ = 1−bm−bcu

2(bc+1) . If bcu ≥ 1, then x̄≤ − bm
2(bc+1) < 0.
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This, combined with f (0) = bmu > 0, implies that f (x) has no positive zeros when
bcu ≥ 1. So in the following, we assume that bcu < 1, which implies that m∗ 	= 0.

If m∗ < m < m∗∗, then �(m) < 0, which means that f (x) has no real zeros.

If m ≥ m∗∗, then x̄ = 1−bm−bcu
2(bc+1) ≤ 1−bm∗∗−bcu

2(bc+1) = −2u(bc+1)−2
√
u(bc+1)(u+1)

2(bc+1) < 0.
It follows from the argument at the beginning of the proof that f (x) has no positive
zeros.

Ifm = m∗, then�(m) = 0. In addition, x̄ = 1−bm∗−bcu
2(bc+1) =

√
u(u+1)
bc+1 −u > 0 since

bcu < 1. It is easy to see that x̄ < 1. Therefore, x̄ is the only positive real zero of f . It
follows that system (5) has a unique positive fixed point E31(x31, y31) when m = m∗
and bcu < 1, where x31 = x̄ and y31 = cx31 + m.

If 0 < m < m∗, we have�(m) > 0. It follows from bcu < 1 that x̄ > 1−bm∗−bcu
2(bc+1) >

0. Note that f (0) > 0, f (1) = b(1 + m)(1 + u) > 0, and f ′(1) = 1 + 2bc + bcu +
bm > 0. Thus f (x) = 0 has two distinct positive roots x32 = 1−bcu−bm−√

�(m)
2(bc+1) and

x33 = 1−bcu−bm+√
�(m)

2(bc+1) , both in (0, 1). This shows that system (5) has two distinct
positive fixed points E32(x32, y32) and E33(x33, y33), where y32 = cx32 + m and
y33 = cx33 + m. 
�

2.2 The stability of fixed points

In this subsection, we use linearization to discuss the stability of the fixed points
obtained in the previous subsection.

The Jacobian matrix of system (5) evaluated at a fixed point E(x, y) is given by

J (E) =
(
J11 J12
J21 J22

)
, (7)

where

J11 = 1 − x(3x − 2)

u + x
− x2(1 − x)

(u + x)2
− by,

J12 = −bx,

J21 = cy,

J22 = 1 + cx + m − 2y.

Write the characteristic equation of J (E) as F(λ) = λ2 + Bλ +C = 0. Assume that
λ1 and λ2 are the two roots of F(λ) = 0. Then E is classified as follows.

Definition 1 The fixed point E of (5) is

1. locally asymptotically stable if max{|λ1|, |λ2|} < 1 and it is called a sink;
2. unstable if max{|λ1|, |λ2|} > 1;
3. non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

The following results tell us how to determine the type of the fixed point E .
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Lemma 1 ([43, Lemma 2]) Assume that F(1) > 0. Then

1. |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
2. |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
3. (|λ1| > 1 and |λ2| < 1) or (|λ1| < 1 and |λ2| > 1) if and only if F(−1) < 0;
4. λ1 = −1 and |λ2| 	= 1 if and only if F(−1) = 0 and B 	= 0, 2;
5. λ1 andλ2 are conjugate complex roots and |λ1| = |λ2| = 1 if and only if B2−4C <

0 and C = 1.

Note that F(1) > 0 and F(−1) = 0 imply that B 	= 0. Hence B 	= 0 is redundant
in (iv) of Lemma 1, which will be ignored in the coming discussion.

The following result can be proved in the same manner as Lemma 1 and hence the
detail is omitted here.

Lemma 2 Assume that F(1) < 0. Then

1. |λ1| > 1 and |λ2| > 1 if and only if F(−1) < 0;
2. (|λ1| > 1 and |λ2| < 1) or (|λ1| < 1 and |λ2| > 1) if and only if F(−1) > 0;
3. λ1 = −1 and |λ2| 	= 1 if and only if F(−1) = 0.

For the boundary fixed points E0(0, 0), E1(0,m), and E2(1, 0), we have J (E0) =(
1 0
0 1 + m

)
, J (E1) =

(
1 − bm 0
cm 1 − m

)
, and J (E2) =

( u
u+1 −b
0 1 + c + m

)
,

respectively. Then we can easily get their stability, which is summarized below.

Theorem 2 For the three boundary fixed points E0, E1, and E2 of system (5),

1. E0(0, 0) is always non-hyperbolic;
2. E1(0,m) is

(a) stable if m < min{ 2b , 2};
(b) non-hyperbolic if m = 2

b or m = 2;
(c) unstable for the other cases;

3. E2(1, 0) is always unstable.

Now, we turn to the positive fixed points of (5). Recall that the positive fixed points
E3i (i = 1, 2, 3) satisfy

x3i (1 − x3i )

u + x3i
= by3i , y3i = cx3i + m. (8)

Substitute (8) into (7) to simplify the Jacobian matrix evaluated at E3i as

J (E3i ) =
(
1 + αi x3i −bx3i

cy3i 1 − y3i

)
,

where αi = u(1−x3i )
(u+x3i )2

− x3i
u+x3i

. Thus the characteristic equation of J (E3i ) is

F(λ) = λ2 + Pλ + Q = 0,
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where P = −2−αi x3i + y3i and Q = 1+αi x3i − y3i +(bc − αi ) x3i y3i . In particular,

F(1) = (bc − αi ) x3i y3i � H(x3i )x3i y3i ,

F(−1) = 4 + (bc − αi ) x3i y3i + 2 (αi x3i − y3i ) .

Theorem 3 Under the conditions on the existence of positive fixed points of (5) in
Theorem 1,

1. E31 is always non-hyperbolic;
2. E32 is

(a) non-hyperbolic if (bc − α2)cx232 + 2(α2 − c)x32 + 4 > 0 and

m = (bc − α2)cx232 + 2(α2 − c)x32 + 4

2 − (bc − α2)x32
;

(b) unstable for the other cases;

3. The properties of E33 are listed in Table 1.

Proof Note that H(x3i ) = h(x3i )
(u+x3i )2

, where

h(x) = (bc + 1)x2 + (2bcu + 2u)x + bcu2 − u.

Then the sign of F(1) is determined by that of h(x3i ).

(i) At E31, x31 =
√

u(u+1)
bc+1 − u. A simple calculation gives h(x31) = 0 and hence

F(1) = 0. Therefore, E31 is always non-hyperbolic.
Recall from Theorem 1 that one of the conditions on the existence of E32 and E33
is bcu < 1. Then h(0) = bcu2−u < 0. Since the vertex of h(x) is at the left of the
y-axis, h(x) is monotonically increasing for x > 0. Moreover, since 0 < m < m∗,
it follows from

f (x31) = (bc + 1)x231 + (bcu + bm − 1)x31 + bmu

= [(bc + 1)x231 + (bcu + bm∗ − 1)x31 + bm∗u] + b(m − m∗)(x31 + u)

< 0

that x32 < x31 < x33.
(ii) For E32, by the above discussion, h(x32) < h(x31) = 0 and hence F(1) =

(bc−α2)x32y32 < 0, which implies that bc−α2 < 0. By Lemma 2, if F(−1) = 0
then E32 is non-hyperbolic and otherwise it is unstable. Noting

F(−1) = (bc − α2)x
2
32 + 2(α2 − c)x32 + 4 − m[2 − (bc − α2)x32],

we easily see that F(−1) = 0 if and only if (bc− α2)x232 + 2(α2 − c)x32 + 4 > 0

and m = (bc−α2)x232+2(α2−c)x32+4
2−(bc−α2)x32

. Then 2(a) and 2(b) follow immediately.
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(iii) For E33, we have h(x33) > h(x31) = 0 and hence F(1) > 0. Express F(−1) and
Q − 1 as

F(−1) = [(bc − α3)x33 − 2]m + (bc − α3)cx
2
33 + 2(α3 − c)x33 + 4

� [(bc − α3)x33 − 2]m + m̃

and

Q − 1 = [(bc − α3)x33 − 1]m + (bc − α3)cx
2
33 + (α3 − c)x33

� [(bc − α3)x33 − 1]m + m,

respectively. Then the result on stability of E33 follows easily from Lemma 1. 
�

3 Bifurcation analysis

In this section, we investigate the possible bifurcations occurring at the fixed points
of system (5) by using the center manifold theorem [44] and bifurcation theory [45,
46]. We start with the fold bifurcation.

3.1 Fold bifurcation

Recall from Theorem 1(ii) that if

m1 = m∗ =
(√

u(bc + 1) − √
u + 1

)2
b

and bcu < 1 (9)

then system (5) has only one positive fixed point E31(x31, y31) and the eigenvalues of
the Jacobian matrix J (E31) are λ1 = 1 and λ2 = 1 + α1x31 − (cx31 + m1). Suppose
that

m1 	= (α1 − c)x31, m1 	= (α1 − c)x31 + 2. (10)

Then |λ2| 	= 1.
Let w = x − x31, v = y − y31, and η = m −m1. Then system (5) can be rewritten

as

⎛
⎝w

η

v

⎞
⎠ →

⎛
⎝1 + α1x31 0 −bx31

0 1 0
cy31 y31 1 − y31

⎞
⎠

⎛
⎝w

η

v

⎞
⎠

+
⎛
⎝βw2 − bwv + O

(
(|w| + |v| + |η|)3)
0

cwv − v2 + ηv

⎞
⎠ ,

(11)
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where β = u3+u2

(u+x31)3
− 1. We choose

T1 =
⎛
⎝ −bx31 0 −bx31

0 1−λ2
y31

0
−α1x31 1 −y31

⎞
⎠ ,

which is invertible. Then with the transformation

⎛
⎝w

η

v

⎞
⎠ = T1

⎛
⎝ x̃

η1
ỹ

⎞
⎠ ,

we transform (11) into

⎛
⎝ x̃

η1
ỹ

⎞
⎠ →

⎛
⎝1 1 0
0 1 0
0 0 λ2

⎞
⎠

⎛
⎝ x̃

η1
ỹ

⎞
⎠ +

⎛
⎝φ (x̃, ỹ, η1)

0
ψ (x̃, ỹ, η1)

⎞
⎠ , (12)

where

φ (x̃, ỹ, η1) = β y31
bx31(λ2 − 1)

w2 − by31 + bcx31
bx31(λ2 − 1)

wv + v2

λ2 − 1
− ηv

λ2 − 1

+O
(
(|x̃ | + |ỹ| + |η1|)3

)
,

ψ (x̃, ỹ, η1) = − βα1x31
bx31(λ2 − 1)

w2 + bα1x31 + bcx31
bx31(λ2 − 1)

wv − v2

λ2 − 1
+ ηv

λ2 − 1
,

w = − bx31(x̃ + ỹ), η = 1 − λ2

y31
η1,

v = −α1x31 x̃ + η1 − y31 ỹ.

By the center manifold theory, in a small neighborhood of η1 = 0, there exists
a center manifold Wc(0) of (12) at the fixed point (x̃, ỹ) = (0, 0), which can be
represented as

Wc(0) =
{
(x̃, ỹ, η1) ∈ R

3|ỹ = h (x̃, η1) , h(0, 0) = 0, Dh(0, 0) = 0
}

,

where x̃ and η1 are sufficiently small. Suppose that the expression of h is

h (x̃, η1) = n1 x̃
2 + n2 x̃η1 + n3η

2
1 + O

(
(|x̃ | + |η1|)3

)
, (13)

which must satisfy

h (x̃ + η1 + φ (x̃, h (x̃, η1) , η1) , η1) = λ2h (x̃, η1) + ψ (x̃, h (x̃, η1) , η1) . (14)
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Substituting (13) into (14) and comparing the coefficients of the like terms x̃ kηl1, we
get

n1 = α1x231(bβ + α1 − α1b − bc)

(λ2 − 1)2
,

n2 = 2α1x231(bβ + α1 − α1b − bc)

(λ2 − 1)3
+ x31(α1b + bc − 2α1)

(λ2 − 1)2
− α1x31

y31(λ2 − 1)
,

n3 = 1

(λ2 − 1)2
+ 1

y31(λ2 − 1)
+ α1x231(bβ + α1 − α1b − bc)

(λ2 − 1)3

+2α1x231(bβ + α1 − α1b − bc)

(λ2 − 1)4
+ x31(α1b + bc − 2α1)

(λ2 − 1)3
− α1x31

y31(λ2 − 1)2
.

Therefore, the map (12) restricted to the center manifold Wc(0) can be written as

F1 : x̃ → x̃ + η1 + k1 x̃
2 + k2 x̃η1 + k3η

2
1 + O

(
(|x̃ | + |η1|)3

)
,

where

k1 = x31(α2
1x31 + bβ y31)

λ2 − 1
− bα1x31(cx31 + y31)

λ2 − 1
,

k2 = bcx31 − 2α1x31 + by31
λ2 − 1

− α1x31
y31

,

k3 = 1

λ2 − 1
+ 1

y31
.

Since F1(0, 0) = 0, ∂F1
∂ x̃ (0, 0) = 1, ∂F1

∂η1
(0, 0) = 1, and ∂2F1

∂ x̃2
(0, 0) = 2k1 	= 0, we

obtain the following result.

Theorem 4 The system (5) undergoes a fold bifurcation at E31 if conditions (9) and
(10) hold. Moreover, the fixed points E32 and E33 bifurcate from E31 for m < m1,
coalesce at E31 for m = m1, and disappear for m > m1.

3.2 Flip bifurcation

Now we discuss the flip bifurcations of system (5).
System (5) can undergo flip bifurcation at the boundary fixed point E1(0,m) when

parameters vary in a small neighborhood ofm = 2 orm = 2
b . Since a center manifold

of system (5) at E1 is x = 0 and system (5) restricted to it is the logistic model,

y → g(y) = (1 + m)y − y2.

Its nontrivial fixed point is y1 = m. If g′(y1) = 1−m 	= 0 when parameters vary in a
small neighborhood of m = 2 or m = 2

b , then flip bifurcation can occur (see Fig. 2).
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In this case, the prey species becomes extinct and, by choosing m as the bifurcation
parameter, the predator species undergoes the flip bifurcation to chaos due to the other
food resources.

Since E32 is always unstable, with the biological significance inmind, in the follow-
ing we focus on the flip bifurcation at E33. Here we again choose m as the bifurcation
parameter.

Rewrite the conditions in rows 8 to 10 of Table 1 as the following three subsets,

FA1 =
{
(b, c, u,m)

∣∣∣∣ b, c, u,m > 0, (bc − α3)x33 < 2, m̃ > 0,
m = m̃

2−(bc−α3)x33
,m 	= (α3 − c)x33 + 4

}
,

FA2 =
{
(b, c, u,m)

∣∣∣∣ b, c, u,m > 0, (bc − α3)x33 > 2, m̃ < 0,
m = m̃

2−(bc−α3)x33
,m 	= (α3 − c)x33 + 4

}
,

FA3 =
{
(b, c, u,m)

∣∣∣∣ b, c, u,m > 0, (bc − α3)x33 = 2,
α3x33 + 2 = 0,m 	= (α3 − c)x33 + 4

}
.

We show that flip bifurcation may undergo when parameters vary in one of FA1, FA2
and FA3.

Take parameter values (b, c, u,m2) arbitrarily from FA1, FA2, or FA3. Then the
eigenvalues of J (E33) are λ1 = −1 and λ2 	= ±1. Let w = x − x33, v = y − y33,
and μ = m − m2. Then system (5) can be rewritten as

⎛
⎝w

v

μ

⎞
⎠ →

⎛
⎝1 + α3x33 −bx33 0

cy33 1 − y33 y33
0 0 1

⎞
⎠

⎛
⎝w

v

μ

⎞
⎠

+
⎛
⎝β1w

2 − bwv + O
(
(|w| + |v| + |μ|)3)

cwv − v2 + μv

0

⎞
⎠ ,

(15)

where β1 = u3+u2

(u+x33)3
− 1. We choose

T2 =
⎛
⎝ −bx33 −bx33 −bx33y33

−α3x33 − 2 2 − y33 −α3x33y33
0 0 2 − 2λ2

⎞
⎠ ,

which is invertible. With the transformation
⎛
⎝w

v

μ

⎞
⎠ = T2

⎛
⎝ X

Y
μ1

⎞
⎠ ,

the map (15) becomes

⎛
⎝ X

Y
μ1

⎞
⎠ →

⎛
⎝−1 0 0

0 λ2 0
0 0 1

⎞
⎠

⎛
⎝ X

Y
μ1

⎞
⎠ +

⎛
⎝ f (X ,Y , μ1)

g (X ,Y , μ1)

0

⎞
⎠ , (16)
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where

f (X ,Y , μ1) = β1(y33 − 2)

bx33(α3x33 − y33 + 4)
w2 − cx33 + y33 − 2

x33(α3x33 − y33 + 4)
wv

+ v2

α3x33 − y33 + 4
− μv

α3x33 − y33 + 4
+ O

(
(|w| + |v| + |μ|)3),

g (X ,Y , μ1) = − β1(α3x33 + 2)

bx33(α3x33 − y33 + 4)
w2 − cx33 + α3x33 + 2

x33(α3x33 − y33 + 4)
wv

− v2

α3x33 − y33 + 4
+ μv

α3x33 − y33 + 4
,

w = −bx33(X + Y + y33μ1),

v = −(α3x33 + 2)X + (2 − y33)Y − α3x33y33μ1,

μ = (2 − 2λ2)μ1.

Now we determine the center manifold Wc(0) of (16) at the fixed point (X ,Y ) =
(0, 0) in a small neighborhood of μ1 = 0, which can be expressed as

Wc(0) =
{
(X ,Y , μ1) ∈ R

3|Y = h (X , μ1) , h(0, 0) = 0, Dh(0, 0) = 0
}

for X and μ1 sufficiently small. h must satisfy

h (−X + f (X , h (X , μ1) , μ1) , μ1) = λ2h (X , μ1) + g (X , h (X , μ1) , μ1) . (17)

We suppose that h has the form

h (X , μ1) = s1X
2 + s2Xμ1 + s3μ

2
1 + O

(
(|X | + |μ1|)3

)
. (18)

Substituting (18) into (17) and comparing the corresponding coefficients of the like
terms in the left-hand and right-hand sides of the resultant, we can obtain

s1 = (α3x33 + 2) {α3x33 + 2 − b [(α3 + c − β1)x33 + 2]}
λ22 − 1

,

s2 =
−2by33(α3x33 + 1)[(α3 + c)x33 + 2]
+2(α3x33 + 2)[(bβ1 + α3)x33y33 − α3x33 + y33 − 2]

(λ2 + 1)2
,

s3 =
x33y33{(α3x33 + 2)bβ1y33 − [(α3 + c)x33 + 2]bα3y33
+α2

3x33y33 + 2α3(y33 − α3x33 − 2)}
λ22 − 1

.

Therefore, the restricted map of (16) on the center manifold Wc(0) is

F2 : X → −X + c1X
2 + c2Xμ1 + c3μ

2
1 + c4X

3 + O
(
(|X | + |μ1|)3

)
, (19)
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where

c1 = (α3x33 + 2)[2b + 2 − by33 − (bc − α3)x33] + bβ1x33(y33 − 2)

λ2 + 1
,

c2 =
2(y33 − 2)bβ1x33y33 − 2by33(α3x33 + 1)(cx33 + y33 − 2)
+2(α3x33 + 2)[α3x33(y33 − 1) + y33 − 2]

λ2 + 1
,

c3 =
x33y33[bβ1y33(y33 − 2) − (cx33 + y33 − 2)bα3y33
+α2

3x33y33 + 2α3(y33 − α3x33 − 2)]
λ2 + 1

,

c4 = s1[2(y33 − 2)(bβ1x33 + α3x33 + 2) − b(cx33 + y33 − 2)(α3x33 + y33)]
λ2 + 1

.

In order for map (19) to undergo a flip bifurcation, we require that the two discrimi-
natory quantities γ1 and γ2 are not zero, where

γ1 =
(

∂2F2
∂Xμ1

+ 1

2

∂F2
∂μ1

∂2F2
∂X2

) ∣∣∣∣
(0,0)

= c2,

γ2 =
(
1

6

∂3F2
∂X3 +

(
1

2

∂2F2
∂X2

)2
) ∣∣∣∣

(0,0)

= c4 + c21.

In summary, from the above discussion and theory in [45, 46], we have derived the
following result.

Theorem 5 If γ1 	= 0 and γ2 	= 0, then system (5) undergoes a flip bifurcation at the
fixed point E33 when the parameter m varies in a small neighborhood of m2. Moreover,
if γ2 > 0 (resp., γ2 < 0), then the period-2 orbits that bifurcate from E33 are stable
(resp., unstable).

4 Numerical simulations

This section presents the bifurcation diagrams and phase portraits of system (5) to
confirm the feasibility of the main results. Further, numerical simulations are provided
to investigate the influence of Allee effect on the stability of system (5).

Example 1 (Fold bifurcation at the positive fixed point E31) We choosem as the bifur-
cation parameter. With

m ∈ [0, 1], b = 0.5, c = 0.3, u = 0.2, (20)

one obtains the bifurcation value m1 ≈ 0.759 and system (5) only has one positive
fixed point E31(0.257, 0.836). It is easy to verify (9) and (10). Further, the eigenvalues
of J (E31) are λ1 = 1 and λ2 = 0.203. All the conditions of Theorem 4 hold and hence
fold bifurcation occurs at E31. Fig. 1 agrees very well with Theorem 4. Moreover, we
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Fig. 1 Fold bifurcation diagram of system (5) in the mx-plane where parameter values are given in (20)
with the initial value (0.5, 0.6). The dash curve corresponds to the unstable fixed point E32 and the solid
curve corresponds to the stable fixed point E33. The fold bifurcation value is m1 ≈ 0.759

can see that E32 is unstable while E33 is stable when m < m1 and they disappear
when m > m1.

Example 2 (Flip bifurcation at the boundary fixed point E1) System (5) always has a
boundary fixed point E1(0,m). Take b = 0.5, c = 0.3, and u = 0.2. From sect 3.2,
we know that flip bifurcation emerges from the fixed point E1 at m = 2 (see Fig. 2).

Example 3 (Flip bifurcation at the positive fixed point E33) Now we choose

m ∈ [0, 3], b = 0.08, c = 0.05, u = 0.2. (21)

According to Theorem 1(3.), system (5) has two distinct positive fixed points E32 and
E33 when m < m∗ = 5.238. After some simple calculations, we can find that the
flip bifurcation emerges from E33 at m ≈ 1.96. With m ∈ [0, 3], the discriminatory
quantities γ1 	= 0 and γ2 > 0, and (b, c, u,m) = (0.08, 0.05, 0.2, 1.96) ∈ FA1. Fig. 3
shows the feasibility of Theorem 5. It is easy to see that E33 is stable for m < 1.96.
When m reaches 1.96, with the increase of m, two points with a period-2 cycle are
bifurcated, and then points with period-4 and period-8 are bifurcated in sequence.
Some phase portraits related to Fig. 3 are displayed in Fig. 4, which include orbits of
periods 2, 4, and 8. When m = 2.9, we can see chaotic sets in Fig. 4f.

Example 4 (Effect of Allee effect) We now investigate the influence of Allee effect on
the stability of system (5) through numerical simulations. Take the parameter values
as
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Fig. 2 Bifurcation diagram of the logistic model y → (1 + m)y − y2 with m ∈ [1, 3]

(a) in themx-plane (b) in themy-plane

Fig. 3 The flip bifurcation diagram of system (5) with parameter values given in (21) and the initial value
(0.5, 0.6)

b = 0.08, c = 0.05, m = 1, u ∈ {0, 0.5, 1, 3, 5, 10}.

Figure 5 shows the graphs of the prey densities and the predator densities for various
u. We considered the cases where system (5) has Allee effect (u 	= 0) and no Allee
effect (u = 0), and set up the control groups u = 0.5 and u = 1 as a way to see the
effect of the magnitude of the Allee constant on properties of system (5). From Fig. 5,
we observe that the Allee effect has little influence on the predator species while the
local stability of the prey species decreases and its density arrives equilibrium value
more slowly as the Allee constant u increases. What’s more, it is clear to see that the
larger u is, the lower is the prey level at the fixed point.
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(a) m = 1.85 (b) m = 1.96 (c) m = 2.2

(d) m = 2.45 (e) m = 2.52 (f) m = 2.90

Fig. 4 Phase portraits for various values of m corresponding to Fig. 3

(a) prey densities (b) predator densities

Fig. 5 Effect of Allee effect on the prey species and the predator species

5 Conclusion

In this paper, a discrete predator-prey system with Allee effect (on the prey species)
and other food resources for predator has been proposed and studied. Conditions on
the existence and the stability of fixed points are obtained. Moreover, taking the ratio
of the intrinsic growth rates of predator to prey (m) as the bifurcation parameter, the
model can undergo fold and flip bifurcations. For fold bifurcation, the number of the
positive fixed points changes from two to one and eventually to 0 as m increases (see
Fig. 1). According to theoretical analysis andExample 2, we obtain that flip bifurcation
can occur at the boundary fixed point E1(0,m), which means that the prey species
is driven to extinct while the predator species first remains stable when m is small
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and gradually becomes chaotic as m increases through flip bifurcation (see Fig. 2).
Further, it is shown that flip bifurcation will occur at the positive fixed point E33,
which includes orbits of period-2, 4, 8 (see Fig. 3). This means that the positive fixed
point E33 is stable if m is small, and when m is large enough, system (5) becomes
unstable and even chaotic. Such a result is contrary to the conclusion drawn by Ma
[1]. In other words, when the prey species is subject to Allee effect, a positive fixed
point is likely to be unstable under certain conditions, rather than globally stable, that
is, the Allee effect would decrease the stability of system (5), at least for the discrete
systems.

In [11], Celik showed that Allee effect has a stabilizing force to system (2) and the
fixed points reach stable steady state much faster when the prey species is subject to
Allee effect. In this paper, however, we find that Allee effect reduces the population
density of prey species at the stable steady state and it takes a longer time to reach
the stable steady state when the Allee effect constant increases in the range of low
values. Namely, the trajectories of system (5) take more time to arrive at the constant
solution as the Allee effect increases in the range of low values, which is different from
the results of Celik. Therefore, the discrete predator-prey system where the predator
has other food resources presents more complex dynamical behaviors than systems in
which the predator only takes the prey species as its unique food resource. When the
Allee effect constant is large enough, the prey species becomes extinct because of low
reproduction rate. Moreover, the larger the Allee effect constant is, the faster the prey
species becomes extinct (see Fig. 5a). It is shown that Allee effect has little impact on
predator species (stable steady state levels decrease by only 0.04) (see 5b).

In summary, our results show that the Allee effect and ratio of intrinsic growth rates
m combined play an important role on the dynamic behaviors of the proposed model.

Acknowledgements This work was supported partially by the Natural Science Foundation of Fujian
Province (2020J01499).
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