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Abstract
Pythagorean fuzzy soft set theory is very effective to simultaneously depict the
parameter-dependent uncertainty and the uncertainty of belongingness in the enti-
ties of a system. The study of information granulation in different extensions of fuzzy
set theory is very close to human reasoning. We extend this concept in Pythagorean
fuzzy soft set theory. Primarily, we define information system for a Pythagorean fuzzy
soft set and its transformation to the information system of another Pythagorean fuzzy
soft set. Additionally, we obtain Pythagorean fuzzy soft information system for a
Pythagorean fuzzy soft graph which is a parameterized family of Pythagorean fuzzy
information systems. The concepts of reduct, core, extended core and discernibility
matrix are investigated on the basis of Pythagorean fuzzy soft indiscernibility relation.
These notions are illustrated in detail through examples and results. Themethod for the
construction of Pythagorean fuzzy soft granules in a soft graph is elaborated with the
help of an example. We apply this method to protein–protein interaction networks of
Parkinson’s disease and consequently obtain protein complexes as Pythagorean fuzzy
soft granules.

Keywords Granular computing · Pythagorean fuzzy soft graph · Indiscernibility
relation · Protein–protein interaction

1 Introduction

The term granular computing was coined by Lin [18] in 1997. Granular computing
is an emerging problem solving technique that makes use of information granules
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for knowledge representation and information manipulation. Information granules
(simply granules) arise during the arrangement of knowledge on the basis of some
similarity, physical resemblance or indistinguishability. It is obvious that whatever
the data-set is under consideration, we usually try to give it conceptual description
according to the problem in hand. Consider image processing as an illustration. While
interpreting an image, we do not concentrate on every single pixel rather we see
different collections of pixels that give a meaningful context to the picture, i.e., we
notice everyday objects we deal with. Briefly, the regions occupied by an object in
the picture involve a group of pixels that have proximity in semantics. This built-in
quality of humans is similar to the construction, representation, interpretation and
manipulation of granules which assist to withdraw definitive conclusions. Granular
computing has become an autonomous area of research due to its scope in data mining
[13, 16, 17, 38, 42], rough set theory [28, 29, 41], theoretical and applied sciences [30,
31], interval analysis [15] and formal concept analysis [39].

There exist connections and relationships in numerous real-world systems that can
be presented effectively through networks. The granulation of networks of such mod-
els is another interesting topic. Since a graph can be considered as a generalization
of crisp set therefore, for the very first time, the idea of granulation of graphs was
suggested by Stell [37] in 1999. Primarily, he illustrated this concept with informal
examples and then presented the complete approach for the granulation of graphs.
Since a hypergraph is an extended model of graph for the visualization of multiple
connections, the notion of granulation was expanded for hypergraphs as well. Liu et
al. [19] proposed a clustering technique based on hypergraph partition and granular
computing which itself discovers the similarities among the objects of a system. Chen
et al. [9] illustrated method for the construction of multiple levels of information gran-
ulation in a hypergraph model. He also described that how to move from one level of
granularity to another and how to solve different problems with the help of considered
hypergraph model. Chen and Zhong [10] proposed algorithms for the formation of
granular structures based on vertex degree and edge weight of a graph. Chiaselotti et
al. [11] presented granular computing for simple graphs with various useful concepts.
They extended the notion of information system [27, 28] of a data-set and considered
the adjacency matrix as the information table of graph. Corresponding to the proposed
information table, the notions of indiscernibility relation, core, extended core, reduct
and discernibility matrix were also discussed for simple graphs.

To represent uncertainty in real-world systems, Zadeh [43] initiated the concept
of fuzzy set in 1965 which is characterized by a mapping that takes an element of
crisp universe and map it into the closed unit interval. Fuzzy sets were presented to
mathematically describe the situations in which the objects do not possess the exact
criteria of membership. In real scenarios, it is believed that the techniques based on
fuzzy set theory play well in comparison to the corresponding crisp methods. A fuzzy
set only provides the degree of membership of an element and, the degree of its non-
membership is assumed to be oneminus the degree of its membership value. However,
this may not necessarily be true in reality. For the compensation of this difficulty,
intuitionistic fuzzy set was introduced by Atanassov [8], which comprises a dependent
hesitation degree as well with the limitation that the sum of degree of membership
and non-membership must not exceed one for any alternative. Another non-standard
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fuzzy set known as Pythagorean fuzzy set was proposed afterwards by Yager [40]
which provides more space for the assignment of grades as compared to intuitionistic
fuzzy set.Obviously, Pythagorean fuzzy set haswide range of applicability as it permits
the Pythagorean membership grades in practical problems.

In 1999, Molodtsov [23] revealed another form of uncertainty which is based on
the parametric properties of elements. He defined soft set as a parameterized family of
crisp sets. In order to combine the benefits of both fuzzy set theory and soft set theory,
another model was suggested by Maji et al. [22]. Roy and Maji [34] highlighted many
decision-making problems that found their solutions when studied in fuzzy soft theory.
Pythagorean fuzzy soft sets were then proposed by Peng et al. [32].

Fuzzy graphs were proposed by Kaufmann [14] which depict uncertainty in the
relationships of a network model. Akram and Nawaz [7] put forward fuzzy soft graphs
and, Nawaz and Akram [25] discussed its application in oligopolistic market structure.
Naz et al. [26] introduced Pythagorean fuzzy graphs and described Pythagorean fuzzy
preference relation with some applications in decision-making. Akram et al. [36]
presented Pythagorean fuzzy soft graph and also discussed its operations, regularity
and edge-regularity. Various hybrid models of fuzzy graph theory are elaborated in [4,
6, 12, 24].

In order to solve problems which are imprecisely defined, it is remarkable to use
words in place of numbers for the concept formulation in information granulation.
Granules in human reasoning are fuzzy in nature and so fuzzy information granula-
tion can be regarded as the generalization of crisp granulation to be applied in different
environments. Several times, Zadeh emphasized on the study of information granula-
tion in fuzzy set theory [44–46]. According to him, fuzzy information granulation is
carried out with the technique of computing with words as the labels of fuzzy granules
are the words of linguistic communication. Akram and Luqman [5] presented granu-
lar structures for the ecological networks in fuzzy soft environment. Akram et al. [2]
extended the degree based models of crisp networks to fuzzy graphs and discussed
fuzzy indiscernibility relation as well. The concept of information granulation has
been extended in different hybrid models of fuzzy set theory [3, 20, 21].

Motivated by the aptness of Pythagorean fuzzy soft set theory, we extend the impor-
tant notions of information granulation in this environment. This article adds the
following notions in the existing literature.

1. It provides method for the transformation of one Pythagorean fuzzy information
system to another.

2. It defines reduct, core and extended core on the basis of Pythagorean fuzzy soft
indiscernibility relation for Pythagorean fuzzy soft graph. It also presents the cor-
responding Pythagorean fuzzy soft discernibility matrix.

3. It describes the technique for the construction of Pythagorean fuzzy soft granules
in a soft graph through an example of protein–protein interaction (PPI) networks.

The research paper is structured as follows. Next section defines a Pythagorean
fuzzy information system based on Pythagorean fuzzy soft set. Section 3 provides
a study on the Pythagorean fuzzy soft information system of a Pythagorean fuzzy
soft graph. Section 4 is devoted to produce a Pythagorean fuzzy soft discernibility
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matrix. Section 5 gives the application of granules formation in the PPI networks of
Parkinson’s disease. Last section concludes the research article.

2 Information systems for Pythagorean fuzzy soft sets

Definition 1 An information system is denoted by the quadruple I = (U , A, f , V ),
where U is a finite set of objects, set A contains the attributes a : U → Va for the
objects of U , f : U × A → V is the information map such that f (u, a) ∈ Va for all
u ∈ U , a ∈ A, and V = ⋃

a∈A
Va is the value set.

An information system is generally presented in table format whose rows and columns
are labeledwith objects u ∈ U and attributes a ∈ A, respectively. The (i, j)-th entry in
the table is the value of attribute a j for the object ui given by f (ui , a j ). Next we define
Pythagorean fuzzy soft set introduced by Peng et al. [32] that allows Pythagorean fuzzy
values to each element of universal set corresponding to each considered parameter.

Definition 2 [32] A Pythagorean fuzzy soft set, denoted by the pair (U, Z), is a
parameterized family of Pythagorean fuzzy subsets. It is defined by the approximate
set-valued mapping U : Z → P(U ), where P(U ) denotes the infinite set of all
Pythagorean fuzzy subsets defined overU . From a Pythagorean fuzzy soft set (U, Z),
one can simply define a Pythagorean fuzzy information system I = (U , A, f , V ),
where A = Z contains attributes of the form ai : U → Vi = [0, 1]2 defined
by ai (u) = (Uμ(z)(u), Uν(z)(u)), f : U × A → V is the information map
such that f (u, ai ) = ai (u) and V = ⋃

i
Vi (where the index i takes the given

range of parameters) denotes the Pythagorean fuzzy set of values. Conversely, if
I = (U , Z , f , V ) denotes a Pythagorean fuzzy information system then Pythagorean
fuzzy soft set (U, Z) can be obtained by considering Z = A as the set of parameters
and U : Z → P(U ) is approximate mapping defined as U(zi ) = ai .

LetP(U , Z) denotes the power set containing all possible Pythagorean fuzzy soft sets
which are defined over universe U and parameter set Z .

Definition 3 Let us take into account the Pythagorean fuzzy soft power sets P(U , Z)

and P(U ′, Z ′) over U and U ′ with parameters from Z and Z ′, respectively. Con-
sider the mappings g : U → U ′ and h : Z → Z ′ and define f = (g, h) :
P(U , Z) → P(U ′, Z ′) which maps the Pythagorean fuzzy soft set (U, Z) from
P(U , Z) to Pythagorean fuzzy soft set f (U, Z) in P(U ′, Z ′) such that: for z′ ∈ Z ′
and u′ ∈ U ′

fz′(U, Z)(u′) =

⎧
⎪⎨

⎪⎩

∨

u∈g−1(u′)

(
∨

z∈h−1(z′)
U(z)

)

(u), if g−1(u′) �= ∅, h−1(z′) ∩ Z ′ �= ∅,

(0, 0), otherwise.

Definition 4 Let us take into account the Pythagorean fuzzy soft power sets P(U , Z)

and P(U ′, Z ′) over U and U ′ with parameters from Z and Z ′, respectively. Con-
sider the mappings g : U → U ′ and h : Z → Z ′ and define f −1 = (g, h) :

123



Granulation of protein–protein interaction networks... 297

P(U ′, Z ′) → P(U , Z) which maps the Pythagorean fuzzy soft set (U′, Z ′) from
P(U ′, Z ′) to Pythagorean fuzzy soft set f −1(U′, Z ′) in P(U , Z) such that: for z ∈ Z
and u ∈ U

f −1
z (U′, Z ′)(u) =

{
U

′(h(z))(g(u)), for h(z) ∈ Z ′,
(0, 0), otherwise.

Example 1 Let us take into consideration two distinct power sets of Pythagorean
fuzzy soft sets P(U , Z) and P(U ′, Z ′) defined over U = {u1, u2, u3, u4, u5, u6},
Z = {z1, z2, z3} and U ′ = {u′

1, u
′
2, u

′
3, u

′
4}, Z ′ = {z′1, z′2}, respectively. Consider the

Pythagorean fuzzy soft sets (U, Z) and (U′, Z ′) in P(U , Z) and P(U ′, Z ′) given by

(U, Z) = (U(z1), U(z2), U(z3)),

where

U(z1) = {〈u1, (0.5, 0.8)〉, 〈u2, (0.6, 0.5)〉, 〈u3, (0.4, 0.7)〉, 〈u4, (0.9, 0.2)〉,
〈u5, (0.7, 0.6)〉, 〈u6, (0.5, 0.8)〉},

U(z2) = {〈u1, (0.4, 0.7)〉, 〈u2, (0.8, 0.3)〉, 〈u3, (0.6, 0.7)〉, 〈u4, (0.6, 0.7)〉,
〈u5, (0.5, 0.8)〉, 〈u6, (0.9, 0.3)〉},

U(z3) = {〈u1, (0.4, 0.7)〉, 〈u2, (0.4, 0.9)〉, 〈u3, (0.7, 0.1)〉, 〈u4, (0.6, 0.7)〉,
〈u5, (0.5, 0.3)〉, 〈u6, (0.8, 0.5)〉},

and

(U′, Z ′) = (U′(z′1), U
′(z′2)),

where

U
′(z′1) = {〈u′

1, (0.5, 0.8)〉, 〈u′
2, (0.7, 0.4)〉, 〈u′

3, (0.6, 0.3)〉, 〈u′
4, (0.9, 0.3)〉},

U
′(z′2) = {〈u′

1, (0.7, 0.5)〉, 〈u′
2, (0.3, 0.8)〉, 〈u′

3, (0.5, 0.6)〉, 〈u′
4, (0.6, 0.7)〉},

respectively. The corresponding Pythagorean fuzzy information systems are respec-
tively given in Tables 1 and 2.

Let us define the mappings g : U → U ′ and h : Z → Z ′ as

g(u1) = u′
4, g(u2) = u′

3, g(u3) = u′
1, g(u4) = u′

3, g(u5) = u′
2, g(u6) = u′

2,

h(z1) = z′1, h(z2) = z′1, h(z3) = z′2.

The Pythagorean fuzzy information system under f = (g, h) : P(U , Z) →
P(U ′, Z ′) is obtained as:
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Table 1 PF information system
I

I z1 z2 z3

u1 (0.5, 0.8) (0.4, 0.7) (0.4, 0.7)

u2 (0.6, 0.5) (0.8, 0.3) (0.4, 0.9)

u3 (0.4, 0.7) (0.6, 0.7) (0.7, 0.1)

u4 (0.9, 0.2) (0.6, 0.7) (0.6, 0.7)

u5 (0.7, 0.6) (0.5, 0.8) (0.5, 0.3)

u6 (0.5, 0.8) (0.9, 0.3) (0.8, 0.5)

Table 2 PF information system
I
′ I

′ z′1 z′2
u′
1 (0.5, 0.8) (0.7, 0.5)

u′
2 (0.7, 0.4) (0.3, 0.8)

u′
3 (0.6, 0.3) (0.5, 0.6)

u′
4 (0.9, 0.3) (0.6, 0.7)

Table 3 PF information system
f (I)

f (I) z′1 z′2
u′
1 (0.6, 0.7) (0.7, 0.1)

u′
2 (0.9, 0.3) (0.8, 0.3)

u′
3 (0.9, 0.2) (0.6, 0.7)

u′
4 (0.5, 0.7) (0.4, 0.7)

fz′
1
(U, Z)(u′

1) =
∨

u∈g−1(u′
1)

( ∨

z∈h−1(z′
1)

U(z)

)

(u)

=
∨

{u3}

( ∨

{z1,z2}
U(z)

)

(u)

= U(z1)(u3) ∨ U(z2)(u3)

= (0.4, 0.7) ∨ (0.6, 0.7) = (0.6, 0.7).

Similarly

fz′
1
(U, Z)(u′

2) = (0.9, 0.3), fz′
1
(U, Z)(u′

3) = (0.9, 0.2), fz′
1
(U, Z)(u′

4) = (0.5, 0.7),

fz′
2
(U, Z)(u′

1) = (0.7, 0.1), fz′
2
(U, Z)(u′

2) = (0.8, 0.3), fz′
2
(U, Z)(u′

3) = (0.6, 0.7),

fz′
2
(U, Z)(u′

4) = (0.4, 0.7).

Thus, the image of Pythagorean fuzzy information system I under f is a Pythagorean
fuzzy information system f (I) given in Table 3.
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Table 4 PF information system
f −1(I′) f −1(I′) z1 z2 z3

u1 (0.9, 0.3) (0.9, 0.3) (0.6, 0.7)

u2 (0.6, 0.3) (0.6, 0.3) (0.5, 0.6)

u3 (0.5, 0.8) (0.5, 0.8) (0.7, 0.5)

u4 (0.6, 0.3) (0.6, 0.3) (0.5, 0.6)

u5 (0.7, 0.4) (0.7, 0.4) (0.3, 0.8)

u6 (0.7, 0.4) (0.7, 0.4) (0.3, 0.8)

Next, we calculate

f −1
z1

(U′, Z ′)(u1) = U
′(h(z1))(g(u1)) = U

′(z′1)(u′
4) = (0.9, 0.3).

Similar calculations yield

f −1
z1

(U′, Z ′)(u2) = (0.6, 0.3), f −1
z1

(U′, Z ′)(u3) = (0.5, 0.8),

f −1
z1

(U′, Z ′)(u4) = (0.6, 0.3),

f −1
z1

(U′, Z ′)(u5) = (0.7, 0.4), f −1
z1

(U′, Z ′)(u6) = (0.7, 0.4),

f −1
z2

(U′, Z ′)(u1) = (0.9, 0.3), f −1
z2

(U′, Z ′)(u2) = (0.6, 0.3),

f −1
z2

(U′, Z ′)(u3) = (0.5, 0.8),

f −1
z2

(U′, Z ′)(u4) = (0.6, 0.3), f −1
z2

(U′, Z ′)(u5) = (0.7, 0.4),

f −1
z2

(U′, Z ′)(u6) = (0.7, 0.4),

f −1
z3

(U′, Z ′)(u1) = (0.6, 0.7), f −1
z3

(U′, Z ′)(u2) = (0.5, 0.6),

f −1
z3

(U′, Z ′)(u3) = (0.7, 0.5),

f −1
z3

(U′, Z ′)(u4) = (0.5, 0.6), f −1
z3

(U′, Z ′)(u5) = (0.3, 0.8),

f −1
z3

(U′, Z ′)(u6) = (0.3, 0.8),

Consequently, we get the inverse image f −1(I′) of Pythagorean fuzzy information
system I

′ given in Table 4.

3 Core, reduct and extended core of a Pythagorean fuzzy soft graph

Definition 5 [36] Let G = (U , E) be a simple graph. A simple Pythagorean fuzzy
soft graph G of graph G is denoted as G = (U, E, Z), where

(1) (U, Z) is a Pythagorean fuzzy soft vertex set over U ,
(2) (E, Z) is a Pythagorean fuzzy soft edge set over E ,
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(3) For each z, G(z) = (U(z), E(z)) represents Pythagorean fuzzy graph such that the
membership and non-membership values of Pythagorean fuzzy edge uiu j (i �= j)
in G(z) is given by

Eμ(z)(uiu j ) ≤ min{Uμ(z)(ui ), Uμ(z)(u j )},
Eν(z)(uiu j ) ≤ max{Uν(z)(ui ), Uν(z)(u j )},

such that 0 ≤ (Eμ(z)(uiu j ))
2 + (Eν(z)(uiu j ))

2 ≤ 1. We denote two adjacent
Pythagorean fuzzy vertices ui and u j in G(z) as ui ∼z u j .

Definition 6 [36] The order O(G) of a Pythagorean fuzzy soft graph G = (U, E, Z)

is defined as

O(G) =
∑

z∈Z

(
∑

u∈U
Uμ(z)(u),

∑

u∈U
Uν(z)(u)

)

The size S(G) of a Pythagorean fuzzy soft graph G = (U, E, Z) is defined as

S(G) =
∑

z∈Z

⎛

⎝
∑

ui u j∈E
Eμ(z)(uiu j ),

∑

ui u j∈E
Eν(z)(uiu j )

⎞

⎠

Definition 7 [36] The degree d(u) of a vertex u in a Pythagorean fuzzy soft graph
G = (U, E, Z) is defined as the sum of degrees dz(u) of that vertex in all Pythagorean
fuzzy graphs G(z), i.e.,

d(u) =
∑

z∈Z
dz(u) =

∑

z∈Z

⎛

⎝
∑

i �= j

Eμ(z)(uiu j ),
∑

i �= j

Eν(z)(uiu j )

⎞

⎠ .

The degree d(uiu j ) of an edge uiu j in a Pythagorean fuzzy soft graph G = (U, E, Z)

is defined as the sum of degrees dz(uiu j ) of that edge in all Pythagorean fuzzy graphs
G(z), i.e.,

d(uiu j ) =
∑

z∈Z
dz(uiu j ) =

∑

z∈Z
(dz(ui ) + dz(u j ) − 2(Eμ(z)(uiu j ), Eν(z)(uiu j ))).

We can represent the knowledge of a Pythagorean fuzzy soft graph in the form of a
Pythagorean fuzzy soft information system as described below.

Definition 8 An information system I of a Pythagorean fuzzy soft graph G =
(U, E, Z) is a parameterized family of Pythagorean fuzzy information systems, i.e.,
I = {I(z) : z ∈ Z}, where I(z) = (U , A, fz, Vz), ∀z. Here, U is the universe of
objects, A = U , f (z) : U × A → Vz is the Pythagorean fuzzy information mapping
defined by fz(uiu j ) = (Eμ(z)(uiu j ), Eν(z)(uiu j )) and Vz = [0, 1]2 is the value
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set. Note that the parameterized collection of Pythagorean fuzzy information tables
for a Pythagorean fuzzy soft graph is represented by the parameterized collection of
Pythagorean fuzzy adjacency matrices given by I = {I(z) : z ∈ Z}, where

I(z) = [(Eμ(z)(uiu j ), Eν(z)(uiu j ))]n×n,

denotes the information system corresponding to each Pythagorean fuzzy graph
G(z) = (U(z), E(z)) in G.

Definition 9 Let Z ′ ⊆ Z and U ′ ⊆ U . We define a parameterized family of U ′-
indiscernibility relations for a Pythagorean fuzzy soft graph G = (U, E, Z) as: for
ui , u j ∈ U and z ∈ Z ′,

ui RU ′(z)u j ⇔ fz(uiu) = fz(u ju),

for all u ∈ U ′. Note that RU ′ is an equivalence relation. [u]U ′(z) is an equivalence
class/symmetry block in PU ′(z) = {[u]U ′(z) : u ∈ U } known as theU ′-indiscernibility
partition relative to parameter z. RU ′ is also referred to asU ′-indiscernibility relations
of Pythagorean fuzzy soft information table I.

Definition 10 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph, then for a
Pythagorean fuzzy soft vertex u ∈ U, the neighborhood is defined as N(u) =
{〈z, N(z)(u)〉 : z ∈ Z}, where N(z)(u) = {〈u′, (Eμ(z)(uu′), Eν(z)(uu′))〉 :
Eμ(z)(uu′) > 0 or Eν(z)(uu′) > 0}.
Theorem 1 If G = (U, E, Z) is a Pythagorean fuzzy soft graph over U and G(z) =
(U(z), E(z)) is the Pythagorean fuzzy graph corresponding to parameter z, then the
following statements hold in each G(z):

(i) ui RU (z)u j ,
(ii) ui ∼z u ⇔ u j ∼z u such that (Eμ(z)(uiu), Eν(z)(uiu)) = (Eμ(z)(u ju),

Eν(z)(u ju)), for all u ∈ U,
(iii) N(z)(ui ) = N(z)(u j ).

Proof Let G = (U, E, Z) be a Pythagorean fuzzy soft graph over U and G(z) =
(U(z), E(z)) be the Pythagorean fuzzy graph corresponding to parameter z.

(i)⇒(ii) We prove that statement (i) implies (ii). For this, suppose that for
an arbitrary u ∈ U , ui ∼z u. We prove that u j ∼z u such
that (Eμ(z)(u ju), Eν(z)(u ju)) = (Eμ(z)(uiu), Eν(z)(uiu)). Note that
ui RU (z)u j indicates that for all u ∈ U , fz(uiu) = fz(u ju). Consequently,
(Eμ(z)(uiu), Eν(z)(uiu)) = (Eμ(z)(u ju), Eν(z)(u ju)) which implies that
u j ∼z u. Conversely, due to the symmetry of indiscernibility relation RU (z),
by assuming u j ∼z u, we can simply acquire ui ∼z u.

(ii)⇒(iii) Let N(z)(ui ) = {〈u, (Eμ(z)(uiu), Eν(z)(uiu))〉 : Eμ(z)(uiu) > 0 or
Eν(z)(uiu) > 0}. We want to show that N(z)(ui ) = N(z)(u j ). Note
that for an arbitrary u, ui ∼z u implies u ∈ N(z)(ui ). But according to
assumption, ui ∼z u implies u j ∼z u which shows that u ∈ N(z)(u j ).
Also (Eμ(z)(uiu), Eν(z)(uiu)) = (Eμ(z)(u ju), Eν(z)(u ju)). Therefore,
N(z)(ui ) = N(z)(u j ).
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Fig. 1 Pythagorean fuzzy soft graph G

(iii)⇒(i) Suppose that N(z)(ui ) = N(z)(u j ). We want to prove that ui RU (z)u j , i.e.,
fz(uiu) = fz(u ju), ∀u. Observe that if, for any arbitrary u, fz(uiu) =
fz(u ju) then ui ∼z u ⇔ u j ∼z u which means u ∈ N(z)(ui ) ⇔ u ∈
N(z)(u j ). Since u is arbitrary, statement (i) holds for each u ∈ U .

��
From previous theorem, we can obtain following result.

Proposition 1 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph over U and
G(z) = (U(z), E(z)) be the Pythagorean fuzzy graph corresponding to parameter z.
If ui RU (z)u j , then N(z)(ui ) ∩ U(z) = N(z)(u j ) ∩ U(z).

Proof The proof directly follows from Theorem 1. ��

Example 2 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph where U =
{u1, u2, u3, u4, u5, u6} and Z = {z1, z2, z3} is the set of parameters. The Pythagorean
fuzzy soft graph G is shown in Fig. 1.

The corresponding Pythagorean fuzzy soft information system I is a parameterized
family of Pythagorean fuzzy adjacency matrices, i.e., I(z), for all z and are given in
Tables 5, 6 and 7, respectively.

Let us consider U ′ = U , then
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Table 5 Pythagorean fuzzy information system I(z1)

I(z1) u1 u2 u3 u4 u5 u6

u1 (0, 0) (0, 0) (0.3, 0.8) (0, 0) (0.4, 0.7) (0.4, 0.7)

u2 (0, 0) (0, 0) (0, 0) (0.5, 0.3) (0.2, 0.6) (0.2, 0.6)

u3 (0.3, 0.8) (0, 0) (0, 0) (0.1, 0.7) (0, 0) (0, 0)

u4 (0, 0) (0.5, 0.3) (0.1, 0.7) (0, 0) (0, 0) (0, 0)

u5 (0.4, 0.7) (0.2, 0.6) (0, 0) (0, 0) (0, 0) (0, 0)

u6 (0.4, 0.7) (0.2, 0.6) (0, 0) (0, 0) (0, 0) (0, 0)

[u1]U (z1) = {u1}, [u2]U (z1) = {u2}, [u3]U (z1) = {u3}, [u4]U (z1) = {u4},
[u5]U (z1) = {u5, u6} = [u6]U (z1),

[u1]U (z2) = {u1}, [u2]U (z2) = {u2}, [u3]U (z2)

= {u3, u4} = [u4]U (z2), [u5]U (z2) = {u5}, [u6]U (z2) = {u6},
[u1]U (z3) = {u1, u3, u5} = [u3]U (z3) = [u5]U (z3), [u2]U (z3)

= {u2}, [u4]U (z3) = {u4}, [u6]U (z3) = {u6},

and the corresponding parameterized family of U−indiscernibility partitions of G is
given by

PU (z1) = {{u1}, {u2}, {u3}, {u4}, {u5, u6}},
PU (z2) = {{u1}, {u2}, {u3, u4}, {u5}, {u6}},
PU (z3) = {{u1, u3, u5}, {u2}, {u4}, {u6}}.

If U ′ = {u1, u2, u5}, then the corresponding U ′−indiscernibility partitions of G are

PU ′(z1) = {{u1}, {u2}, {u3}, {u4}, {u5, u6}},
PU ′(z2) = {{u1, u2, u5}, {u3, u4}, {u6}},
PU ′(z3) = {{u1, u3, u4, u5}, {u2}, {u6}}.

In this way, we can find different levels of granularity with respect to each parameter
by taking into account different subsets of universe U .

As already mentioned above, the Pythagorean fuzzy soft information system I

of a Pythagorean fuzzy soft graph G is, in fact, a parameterized family of adjacency
matrices ofG. In the following,wewill discuss some concepts related to parameterized
partitions of G, which are the partitions of corresponding Pythagorean fuzzy soft
information system I as well. So, it will not be mentioned over and over again in the
context.
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Table 6 Pythagorean fuzzy information system I(z2)

I(z2) u1 u2 u3 u4 u5 u6

u1 (0, 0) (0, 0) (0.4, 0.6) (0.4, 0.6) (0, 0) (0, 0)

u2 (0, 0) (0, 0) (0.6, 0.7) (0.6, 0.7) (0, 0) (0.6, 0.2)

u3 (0.4, 0.6) (0.6, 0.7) (0, 0) (0, 0) (0.5, 0.8) (0.7, 0.4)

u4 (0.4, 0.6) (0.6, 0.7) (0, 0) (0, 0) (0.5, 0.8) (0.7, 0.4)

u5 (0, 0) (0, 0) (0.5, 0.8) (0.5, 0.8) (0, 0) (0.2, 0.5)

u6 (0, 0) (0.6, 0.2) (0.7, 0.4) (0.7, 0.4) (0.2, 0.5) (0, 0)

Table 7 Pythagorean fuzzy information system I(z3)

I(z3) u1 u2 u3 u4 u5 u6

u1 (0, 0) (0.2, 0.9) (0, 0) (0, 0) (0, 0) (0.4, 0.5)

u2 (0.2, 0.9) (0, 0) (0.2, 0.9) (0.2, 0.9) (0.2, 0.9) (0.2, 0.8)

u3 (0, 0) (0.2, 0.9) (0, 0) (0, 0) (0, 0) (0.4, 0.5)

u4 (0, 0) (0.2, 0.9) (0, 0) (0, 0) (0, 0) (0, 0)

u5 (0, 0) (0.2, 0.9) (0, 0) (0, 0) (0, 0) (0.4, 0.5)

u6 (0.4, 0.5) (0.2, 0.8) (0.4, 0.5) (0, 0) (0.4, 0.5) (0, 0)

Definition 11 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph overU and G(z)
be the corresponding Pythagorean fuzzy graph relative to parameter z. Let u ∈ U ,
then u is said to be an indispensable element for G(z) ifU -indiscernibility partition is
not equals to the U \ {u}-indiscernibility partition with respect to that parameter, i.e.,
PU (z) �= PU\{u}(z). The set of all indispensable elements ofU for parameter z is called
core of G(z) and is denoted by C(G(z)). And, the parameterized family of core for the
Pythagorean fuzzy soft graph is denoted by C(G). Additionally, the core number of
G, denoted by, Cn(G) is an m-tuple of the cardinalities |C(G(z))| if |Z | = m.

Definition 12 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph overU and G(z)
be the corresponding Pythagorean fuzzy graph with respect to parameter z. The reduct
of G(z) is a set U ′ ⊆ U satisfying the following conditions:

(i) PU (z) = PU ′(z),
(ii) PU (z) �= PU ′\{u}(z), for all u ∈ U ′.

We represent the family of all reducts of G(z) by R(G(z)) and, the parameterized
collection of reduct families for all parameters z is the reduct of G denoted byR(G).

Example 3 Consider the Pythagorean fuzzy soft graph G = (U, E, Z) given in Fig. 1
together with the corresponding Pythagorean fuzzy soft information system I. Observe
that u6 is an indispensable element in G(z3) since PU (z3) �= PU\{u6}(z3). The core of
each Pythagorean fuzzy graph G(z) is given by

C(G(z1)) = ∅, C(G(z2)) = ∅, C(G(z3)) = {u6},
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and consequently, the core of G is a soft set

C(G) =
{

∅

z1
,

∅

z2
,
{u6}
z3

}

.

The core number of the considered Pythagorean fuzzy soft graph G is a 3-tuple
Cn(G) = (0, 0, 1). Further, using Definition 12, the reduct of G is obtained as

R(G) =
{ {{u1, u3}, {u1, u5}, {u1, u6}, {u2, u4}, {u2, u5}, {u2, u6}, {u3, u4}, {u3, u5, u6}, {u4, u5, u6}}

z1
,

{{u3}, {u4}, {u2, u6}, {u5, u6}}
z2

,
{{u1, u6}, {u2, u6}, {u3, u6}, {u5, u6}}

z3

}

.

We now introduce the concept of extended core for a Pythagorean fuzzy soft graph G

since we have seen in previous example that the ordinary core of G(z) is an empty set
for parameters z1, z2.

Definition 13 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph overU and G(z)
be the corresponding Pythagorean fuzzy graph with respect to parameter z. A subset
U ′ ⊆ U is said to be an essential of G(z) when:

(i) PU\U ′(z) �= PU (z),
(ii) For all other proper subsets V ⊂ U ′, PU\V (z) = PU (z).

The family of all essential subsets of G(z) is its extended core denoted by ESS(G(z)).
Further, ESSi (G(z)), 1 ≤ i ≤ n, where n = |U | is the collection

ESSi (G(z)) = {U ′ ∈ ESS(G(z)) : |U ′| = i}.

One can also write the essential numerical sequence of G(z) as an n-tuple

ENS(G(z)) = (|ESS1(G(z))|, |ESS2(G(z))|, ..., |ESSn(G(z))|).

Moreover, Edim(G(z)) = min{i : |ESSi (G(z))| �= 0} is the essential dimension of
G(z).

We present all these notions in the following example.

Example 4 Let us take into consideration the Pythagorean fuzzy soft graph G =
(U, E, Z) of Example 2. For all z, ESS1(G(z)) is given by

ESS1(G(z1)) = ∅, ESS1(G(z2)) = ∅, ESS1(G(z3)) = {{u6}}

or

ESS1(G) =
{

∅

z1
,

∅

z2
,
{{u6}}
z3

}

.

Similarly, for all i , the essential subsets obtained are given in Table 8.
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Table 8 Essential of Pythagorean fuzzy soft graph in Fig. 1

ESSi (G(z)) z1 z2 z3

i = 1 ∅ ∅ {u6}
i = 2 ∅ ∅ ∅

i = 3 ∅ {u3, u4, u6} ∅

{u1, u2, u3, u4}, {u1, u2, u3, u5}, {u1, u2, u3, u6}, {u1, u3, u5, u6}, {u1, u2, u3, u5}
i = 4 {u1, u2, u4, u5}, {u1, u2, u4, u6}, {u1, u4, u5, u6}, {u2, u3, u4, u5}

{u2, u3, u5, u6}, {u3, u4, u5, u6}
i = 5 ∅ ∅ ∅

i = 6 ∅ ∅ ∅

The corresponding essential numerical sequences are

ENS(G(z1)) = (0, 0, 0, 8, 0, 0), ENS(G(z2)) = (0, 0, 1, 2, 0, 0),

ENS(G(z3)) = (1, 0, 0, 1, 0, 0).

Finally, the essential dimensions of Pythagorean fuzzy graphs relative to each param-
eter are

Edim(G(z1)) = 4, Edim(G(z2)) = 3, Edim(G(z3)) = 1.

As a consequence, Edim(G) = (4, 3, 1) is the essential dimension of G.

Proposition 2 Let G = (U, E, Z) be a Pythagorean fuzzy soft graph over U. Then

C(G) =
{⋃

U ′ ∈ ESS1(G(z)) : z ∈ Z

}

.

Proof It can be deduced directly from the definitions of C(G) and ESS1(G). ��

4 Pythagorean fuzzy soft discernibility matrix

We now define the concept of discernibility matrix for a Pythagorean fuzzy soft
information system of a Pythagorean fuzzy soft graph. For a Pythagorean fuzzy soft
graph G = (U, E, Z), we can obtain a family of discernibility matrices termed as
Pythagorean fuzzy soft discernibility matrix Δ. Corresponding to each parameter z,
the entries Δ

z
i j of a discernibility matrix Δz should be Pythagorean fuzzy sets such

that every element belonging to this set possesses a Pythagorean membership grade
which depicts the extent to which the attributes i and j are discernible (through mem-
bership degree) and indiscernible (through non-membership degree) with one another.
To obtain the entries of Δz, we will use the Pythagorean fuzzy discernibility measure
given by Δ

z
i j = N (μS(z)(uiu j ), νS(z)(uiu j )), where N represents the negation of
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Pythagorean fuzzy set (μS(z)(uiu j ), νS(z)(uiu j )), where

(μS(z)(ui u j ), νS(z)(ui u j ))

= (

√
1 − max{(Eμ(z)(ui u) − Eμ(z)(u j u))2, (Eν(z)(ui u) − Eν(z)(u j u))2},

√
min{(Eμ(z)(ui u) − Eμ(z)(u j u))2, (Eν(z)(ui u) − Eν(z)(u j u))2} : u ∈ U ), (1)

obtained by using Pythagorean fuzzy similarity measure [1].

Example 5 Let us take into consideration the Pythagorean fuzzy soft graph G =
(U, E, Z) of Example 2. We can obtain the Pythagorean fuzzy soft discernibility
matrix by taking the negation of the Pythagorean fuzzy set computed by using Equa-
tion 1. The entries Δ

z
i j of this matrixΔz for all parameters z are given in Table 9. Note

that Δ is the collection of symmetric Pythagorean fuzzy discernibility matrices.

5 Application: protein–protein interaction networks

Proteins direct almost all activities within the cell of an organism. It includes dis-
tinct biological activities like the acceleration of metabolic reactions, transportation
of molecules, replication of DNA and the maintenance of a cell’s structure. Proteins
work independently as well as interact with each other to mutually carry out various
biological functions. The study of PPIs is essential to apprehend protein functioning
inside the living cell. This is because PPIs are involved in approximately all biological
processes which result in the construction of protein complexes.

A protein complex is a group of multiple proteins that are linked with each other
through non-covalent PPIs. Protein complexes are in the form of quaternary structures
and can be regraded as multimolecular machines that play a significant role in signal
transduction, mRNA transcription, DNA translation and in other biological processes.
There are numerous methods for the detection and identification of protein complexes.
Some of these methods determine them in the PPI networks of the corresponding
problem. Here a PPI network is, in fact, a graph each of whose vertex represents
a protein and its edges join the interacting protein pairs. The interaction prediction
methods can efficiently discover the interacting protein pairs in a PPI network. A PPI
networkmight be a disconnected graph consisting of isolated components out ofwhich
the largest component is referred to as main component.

PPI networks depict an enormous number of physical interactions among proteins
and are worthwhile because proteins possessing functional similarity are responsible
for complex formation. Additionally, the study of these networks assists in the under-
standing of those processes that either initiate or continue the disease development.
They can also be used for the examination of diseases. Since the disease genes try
to interact with one another therefore, PPI networks are significant to identify the
neighbors of known facilitating genes.
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5.1 Parkinson’s disease

Parkinson’s disease is a progressive neuro-degenerative disorder of human’s central
nervous system which affects nearly 1% of adults of age 60 and above. It initiates
due to the neural degeneration in midbrain and its cause is unknown in most cases. Its
symptoms are tremors at rest, cogwheel or plastic rigidity in muscles and bradykinesia
in which the diseased person has difficulty in the initiation of voluntary movement
that reduces walking speed. Postural instability can also be witnessed in severe cases.
Geneticmutations are also believed to be one of themajor causes of Parkinson’s disease
as almost 15% of victims already have a close relative with same disease. Genes are the
segments of DNA that are involved in the production of polypeptide chains of proteins
therefore, there exist a close relationship between genes associated with disease and
proteins [35]. A very little research has been done on protein interactions which are
associated to disease state.

Network science has made contributions in the study of many biological and bio-
chemical processes as it gives visual representation to the interacting entities. As an
example of Pythagorean fuzzy soft granular structures, we consider PPI networks
established on the basis of gene expression profiles of Parkinson’s disease [33]. Gene
expression profile is an approach to discover all those genes which are used in the
synthesis of proteins. With this technique, it is possible to investigate how body reacts
to a disease or to its treatment. Two statistical approaches namely, 2-tailed t-test (2ttt)
and significance analysis of microarrays (SAM) were adapted to acquire each possible
differentially expressed gene. Afterwards, the PPI networks were developed in such a
way that each protein appears only one time in either network.

The PPI networks whose data-sets were obtained from 2ttt and SAM are here
symbolically denoted by G(z1) and G(z2), respectively. We call it collectively a soft
graph G = {G(z1),G(z2)} whose visual representation is given in Figs. 2 and 3,
respectively. There are 406 vertices, 690 edges and 47 is largest degree of vertex in
G(z1). Likewise,G(z2) possesses 121 vertices, 172 edges and 21 is the highest degree.
The cumulative degree distribution for G(z1) and G(z2) are given in Figs. 4 and 5,
respectively. In order to construct granules in a network, there must be some form
of similarity in its entities. Since the PPI networks here are very complex therefore,
we assume protein complexes in these networks as granules. Table 10 reports protein
complexes in the considered PPI networks.

Each granule in a granular structure has a center c which is the vertex of highest
degree among all vertices of granule. In a granule, the distance of each vertex with
its center is the length of shortest path between them. We will use this distance so
as to determine the Pythagorean membership grades of each vertex of a granule.
These Pythagorean membership grades can be determined with the help of following
Pythagorean membership function:

Gkμ(z)(u) = 1

1 + dist(ck, u)
, Gkν(z)(u) = 1 −

(
1

1 + dist(ck, u)

)2

, (2)
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Fig. 2 PPI network G(z1) [33]

Fig. 3 PPI network G(z2) [33]
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Fig. 4 Cumulative degree distribution of G(z1)

Fig. 5 Cumulative degree distribution of G(z2)

where k denotes the kth complex and dist(ck, u) is the distance between ck and u in
G(z). The granules (protein complexes) of G(z1) and G(z2) with their Pythagorean
fuzzygrades are given inTables 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
and 27, respectively. The bold genes in each table represent the center of granule and,
degree of each vertex, distance of each vertex from center and the Pythagorean fuzzy
membership grades (computed using Eq. 2) are given in each Table. Notice that each
Pythagorean fuzzy granule G(z) of each graph G(z) is a Pythagorean fuzzy set.

We can also define the granular degree as the Pythagorean fuzzy cardinality of
Pythagorean fuzzy granule. The granular degrees dGk (z) of Gk(z), ∀z are given by

dG1(z1) = (4.20, 5.46), dG2(z1) = (2.91, 3.28), dG3(z1) = (2.74, 4.36),

dG4(z1) = (2.41, 3.47),

dG5(z1) = (2.24, 3.61), dG6(z1) = (2.16, 3.66), dG7(z1) = (2.41, 3.47),

dG8(z1) = (2.41, 3.47),

dG9(z1) = (2.75, 3.19), dG10(z1) = (3.00, 3.00),

dG1(z2) = (2.75, 3.19), dG2(z2) = (2.83, 3.14), dG3(z2) = (2.83, 3.14),

dG4(z2) = (1.98, 3.75),
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Table 11 G1(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

CD2BP2 5 1 (0.5, 0.75)

DDX17 2 1 (0.5, 0.75)

NF2 5 4 (0.2, 0.96)

PRPF8 2 1 (0.5, 0.75)

SF3A2 11 0 (1,0)

SF3B1 4 1 (0.5, 0.75)

SRRM2 4 1 (0.5, 0.75)

WBP11 5 1 (0.5, 0.75)

Table 12 G2(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

ACTB 29 0 (1,0)

ACTG1 23 1 (0.5, 0.75)

NF2 5 3 (0.25, 0.94)

SMARCA4 10 1 (0.5, 0.75)

SMARCC1 4 2 (0.33, 0.89)

SMARCC2 4 2 (0.33, 0.89)

Table 13 G3(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

MAP2K1 4 3 (0.25, 0.94)

MAPK1 20 2 (0.33, 0.89)

YWHAB 22 2 (0.33, 0.89)

YWHAE 22 1 (0.5, 0.75)

YWHAH 6 2 (0.33, 0.89)

YWHAZ 47 0 (1,0)

Table 14 G4(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

ACTB 29 0 (1,0)

NF2 5 3 (0.25, 0.94)

SMARCA4 10 1 (0.5, 0.75)

SMARCC1 4 2 (0.33, 0.89)

SMARCC2 4 2 (0.33, 0.89)

123



Granulation of protein–protein interaction networks... 315

Table 15 G5(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

ACTB 29 0 (1,0)

NF2 5 3 (0.25, 0.94)

SMARCC1 4 2 (0.33, 0.89)

SMARCC2 4 2 (0.33, 0.89)

VDR 4 2 (0.33, 0.89)

Table 16 G6(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

APC 11 2 (0.33, 0.89)

APP 15 0 (1,0)

PSMC4 5 3 (0.25, 0.94)

PSMD1 4 2 (0.33, 0.89)

PSMD4 9 3 (0.25, 0.94)

Table 17 G7(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

EEF1A1 12 0 (1,0)

MYB 4 3 (0.25, 0.94)

RPLP0 3 2 (0.33, 0.89)

RPLP1 2 1 (0.5, 0.75)

RPS3 5 2 (0.33, 0.89)

Table 18 G8(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

MAP2K1 4 3 (0.25, 0.94)

YWHAB 22 2 (0.33, 0.89)

YWHAE 22 1 (0.5, 0.75)

YWHAH 6 2 (0.33, 0.89)

YWHAZ 47 0 (1,0)

dG5(z2) = (2.08, 2.58), dG6(z2) = (2.25, 2.44), dG7(z2) = (2.16, 2.53).
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Table 19 G9(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

NF2 5 3 (0.25, 0.94)

SMARCA4 10 0 (1,0)

SMARCC1 4 1 (0.5, 0.75)

SMARCC2 4 1 (0.5, 0.75)

VDR 4 1 (0.5, 0.75)

Table 20 G10(z1) Genes Degree Distance from Pythagorean
center fuzzy grades

PNN 6 1 (0.5, 0.75)

PRPF8 2 1 (0.5, 0.75)

SF3A2 11 0 (1,0)

SF3B1 4 1 (0.5, 0.75)

SRRM2 4 1 (0.5, 0.75)

Table 21 G1(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

AMPH 5 1 (0.5, 0.75)

AP2A2 8 0 (1,0)

AP2M1 2 1 (0.5, 0.75)

EPS15 6 1 (0.5, 0.75)

TH 3 3 (0.25, 0.94)

Table 22 G2(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

AMPH 5 1 (0.5, 0.75)

CLTC 11 0 (1,0)

DNM1 5 2 (0.33, 0.89)

EPS15 6 1 (0.5, 0.75)

SYNJ1 5 1 (0.5, 0.75)

6 Conclusions

Information granulation is a technique whereby the objects of a system, which seem to
be different at the considered level of explanation, are put together in certain groups on
the basis of some coherency to form a granule at a lower level. Granules in real-world
systems are fuzzy in nature. For if we consider human head as a universe of discourse
then the granules of organs of head do not possess sharply defined boundaries. This
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Table 23 G3(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

AMPH 5 1 (0.5, 0.75)

CLTC 11 0 (1,0)

DNM1 5 1 (0.5, 0.75)

SYNJ1 5 1 (0.5, 0.75)

TH 3 2 (0.33, 0.89)

Table 24 G4(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

APC 6 0 (1,0)

PSMA1 4 4 (0.2, 0.96)

PSMB2 2 4 (0.2, 0.96)

PSMB7 4 3 (0.25, 0.94)

TH 3 2 (0.33, 0.89)

Table 25 G5(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

APC 6 2 (0.33, 0.89)

CDC42 10 0 (1,0)

IQGAP1 5 1 (0.5, 0.75)

TH 3 3 (0.25, 0.94)

Table 26 G6(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

CDC42 10 0 (1,0)

PARD3 4 1 (0.5, 0.75)

PRKCZ 7 1 (0.5, 0.75)

TH 3 3 (0.25, 0.94)

Table 27 G7(z2) Genes Degree Distance from Pythagorean
center fuzzy grades

CSNK2A1 12 2 (0.33, 0.89)

TH 3 1 (0.5, 0.75)

YWHAB 13 2 (0.33, 0.89)

YWHAZ 21 0 (1,0)
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scrutiny urged the researchers to study the concept of granularity in different extensions
of fuzzy set theory. Motivated by the advantages of Pythagorean fuzzy set theory and
soft set theory, we have considered the Pythagorean fuzzy soft environment to study
information granulation. Pythagorean fuzzy soft set theory efficiently represents both
parameter-wise and membership dependent uncertainties. In this manuscript, we have
described the transformation of Pythagorean fuzzy information systems obtained from
Pythagorean fuzzy soft sets into one another. Additionally, for a Pythagorean fuzzy
soft graph, Pythagorean fuzzy soft information system has been defined which is a
parameterized family of Pythagorean fuzzy information systems. The Pythagorean
fuzzy soft indiscernibility relation and the corresponding notions of reduct, core and
extended core are well explained with examples. The Pythagorean fuzzy soft discerni-
bility matrix obtained in this article is also very appealing since the discernibility
among attributes obtained is in the form of Pythagorean fuzzy sets. At the end, we
have presented protein complexes emerged in the PPI networks of Parkinson’s disease
as Pythagorean fuzzy soft granules. As the considered networks are constructed on the
basis of gene expression profiles, any diagnosis and treatment of disease can easily be
viewed in the victim. In future, we plan to extend our research in the following top-
ics: (i) Rough Pythagorean fuzzy granular structures, (ii) Rough bipolar neutrosophic
hypergraphs and (iii) Granulation of Pythagorean fuzzy soft hypergraphs.
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