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Abstract
In this paper,we present low-density periodical burst correcting linear codes. Existence
of such codes are studied. We also provide decoding error probability of such codes.
Weight distribution and Plotkin’s type bound for the set of low-density periodical burst
errors are also presented. Further, we present weight distribution and Plotkin’s type
bound for some other periodical bursts which will be detected by such codes.
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1 Introduction

To protect information in memory system from noise [2], or to protect quantum infor-
mation from errors due to decoherence and other quantum noise [14], or to analysis
biological information about the DNA molecule [12], error control codes are used.
Choice of error control code depends on what type of errors are required to be dealt
with and what type of communication channels are being used.

In 1994,Lange [13] observed that the disturbances in somecommunication channels
(e.g. power lines, car electric, compact discs, etc) are not only clustered but also
periodical in nature. Also, Schmitz et al. [19] found that mixing between the two
heterodyne frequencies in lithographic stages for semiconductor fabrication results
in periodical errors superimposed on the desired displacement data. Such type of
disturbances is called periodical burst error and defined as follows.
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Definition 1 [5] An s-periodical burst of length b is an n-tuple whose nonzero com-
ponents are confined to distinct sets of b consecutive positions such that the sets are
separated by s positions and first component of each set is nonzero.

Examples of 3-periodical bursts of length 4 in a 14-tuple are 1010 000 1100 000,
0 1000 000 1001 00, 00 1001 000 1000 0, etc.

In [13], detection of periodical bursts using cyclic code is studied. For correction
of periodical burst, two generator polynomials are presented. In [5], the correction
and Hamming weight distribution of periodical bursts using linear code, and error
decoding probability of such linear codes is also studied. Another paper [6] presents a
studyonperiodical bursts andmultiple burst-correctingMDScodes derived byVillalba
et al. [22]. In [23],Wyner introduced the concept of low-density in burst error in which
disturbances within a burst of length b normally affect only a few positions. Motivated
by this, we consider the number of disturbed bits within b consecutive positions of an
s-periodical burst error of length b does not exceed w (1 ≤ w ≤ b). We call them as
s-periodical bursts of length b with weight up to w. In this paper, we present a study
on linear codes correcting such errors and denote such a code by Ps,b|wBC-code. For
similar works in this direction, one may refer to [4, 8, 10, 11, 21]. Further, to measure
its goodness, we present the probability of decoding error PDw(E) of an Ps,b|wBC-
code (refer Section 3.7.2, [15]). Finally, we give some periodical burst errors other
than s-periodical bursts of length b of weight at most w, which will be detected by
Ps,b|wBC-code. Weight distribution and upper bound on the minimum weight of the
set consisting of such errors are derived. The weight are taken in the Hamming sense
only in this paper.

The rest of the paper is organized as follows. Section 2 derives necessary and
sufficient conditions for existence of a q-ary Ps,b|wBC-code. In Sect. 3, we derive
the total probability of s-periodical bursts of length b in an n-tuple. Then we give the
weight distribution of the error pattern and a bound on the largest attainable minimum
weight by a vector in the set of the errors. We also give the decoding error probability
of an Ps,b|wBC-code over a binary symmetric channel. Finally, Sect. 4 gives weight
distribution and upper bound on the minimum weight of some periodical burst errors
other than s-periodical bursts of length b of weight at most w that are detected by
Ps,b|wBC-code.

In what follows,
�x� : the floor function of x .
�x� : the ceiling function of x .
E(s,b|w),n,q : set of all s-periodical bursts of length bwith weight at mostw (w ≤ b)

in an n-tuple.
: a function from {1, 2, . . . , s + b − 1} to {1, 2, . . . , b} defined by

γ (r) =
{
r i f 0 ≤ r ≤ b

b i f b < r < b + s.
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2 Existence of Ps,b|wBC-code

This section presents necessary and sufficient conditions for existence of a q-ary
Ps,b|wBC-code. Examples are provided to support the results also. Toprove our results,
we start with the following lemma.

Lemma 1 For given non-negative integers n, b and s (n ≥ b + s), let N(s,b|w),n,q =
|E(s,b|w),n,q |. Then

N(s,b|w),n,q =
n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦
⌊n − i + 1

s + b

⌋

×
min{w−1,gi−1}∑

j=0

(
gi − 1

j

)
(q − 1)1+ j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where gi = γ
(
(n − i + 1) mod (b+ s)) and

min{w−1,gi−1}∑
j=0

(
gi − 1

j

)
(q − 1)1+ j = 1

if gi = 0.

Proof If periodical burst error starts from the i th position (1 ≤ i ≤ n) in a vector of
length n, the number of sets (excluding the last set) in which nonzero components of
s-periodical burst of length b with weight at most w (w ≤ b) are confined, is (see [5])

⌊n − i + 1

s + b

⌋
.

In each set, the first component is always nonzero and remaining b−1 components

we can choose by
∑w−1

j=1

(
b − 1

j

)
ways. The number of complete sets of b consec-

utive components is
⌊n − i + 1

s + b

⌋
, so total number of s-periodical bursts of length b

with weight at most w in these sets is

⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦
⌊n − i + 1

s + b

⌋
.
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The last set contains gi = γ
(
(n− i + 1) mod (b+ s)

)
components, out of which the

first one is nonzero if gi > 0. The number of ways the last set can be selected is⎧⎪⎪⎨
⎪⎪⎩
1 i f gi = 0
min{w−1,gi−1}∑

j=0

(
gi − 1

j

)
(q − 1)1+ j otherwise.

Therefore, the number of s-periodical bursts of length b with weight at most w if
it starts from the i th position is

⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦
⌊n − i + 1

s + b

⌋
×

min{w−1,gi−1}∑
j=0

(
gi − 1

j

)
(q − 1)1+ j ,

where
min{w−1,gi−1}∑

j=0

(
gi − 1

j

)
(q − 1)1+ j = 1 if gi = 0.

Summing for i from 1 to n, we get the total number of vectors in E(s,b|w),n,q as

N(s,b|w),n,q =
n∑

i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦
⌊n − i + 1

s + b

⌋

×
min{w−1,gi−1}∑

j=0

(
gi − 1

j

)
(q − 1)1+ j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where
min{w−1,gi−1}∑

j=0

(
gi − 1

j

)
(q − 1)1+ j = 1 if gi = 0. �	

Example 1 Taking n = 15, b = 2, s = 3, w = 1 and q = 2 in Lemma 1, we have

N(3,2|1),15,2 =
15∑
i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎡
⎣ 0∑

j=0

(
1

j

)
11+ j

⎤
⎦
⌊16 − i

5

⌋

×
0∑
j=0

(
γ
(
(16 − i) mod 5

) − 1

j

)
11+ j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 15.
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Then, the total number of 3-periodical bursts of length 2 with weight up to 1 in a
vector of length 15 are

100001000010000, 010000100001000, 001000010000100, 000100001000010,
000010000100001, 000001000010000, 000000100001000, 000000010000100, 000
000001000010, 000000000100001, 000000000010000, 000000000001000, 000000
000000100, 000000000000010, 000000000000001.

Now, a necessary condition for existence of a q-ary Ps,b|wBC-code is given below
which is equivalent to Fire bound [9] and Theorem 4.16 of [16].

Theorem 1 For given non-negative integers n, b and s (n ≥ b + s), an (n, k) q-ary
Ps,b|wBC-code (w ≤ b) must satisfy

qn−k ≥ 1 + N(s,b|w),n,q , (1)

where N(s,b|w),n,q is given by Lemma 1.

Proof For correction of errors by a linear code, all the errors should be in different
cosets of the code. So, by Lemma 1, we have

qn−k ≥ 1 + N(s,b|w),n,q .

�	
Remark 1 Equation (1) gives

qk ≤ qn

1 + N(s,b|w),n,q
.

That is, the cardinality of an (n, k) q-ary Ps,b|wBC-code is at most
qn

1 + N(s,b|w),n,q
.

Next,we provide a sufficient condition for existence of aq-ary Pw
s,b BC-code (equiv-

alent to Varshamov-Gilbert-Sacks Bound [18] and Campopiano Bound [1] (also see
Theorem 4.7 and Theorem 4.17 of [16])). The proof of the result gives a technique to
construct the code in which we keep on adding the columns one after another keeping
in mind that syndromes of the errors remain nonzero and distinct.

Theorem 2 For given non-negative integers n, b and s (n ≥ b + s), we can always
construct an (n, k) q-ary Ps,b|wBC-code (w ≤ b) provided

qn−k >

w−1∑
j=0

(
b − 1

j

)
(q − 1) j ×

⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦
⌊ n

s + b

⌋
−1

×
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j × N(s,b|w),n−b,q ,
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where g = γ
(
n mod (s + b)

)
,
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j = 1 if g = 0, and

N(s,b|w),n−b,q is given by Lemma 1.

Proof Take any nonzero (n − k)-tuple as the first column h1 of the (n − k) × n
parity-check matrix H of the code and suppose the columns h2, h3, . . . , hn−1 are
added suitably to H . Then a nonzero column hn is added to H provided that it is
not a linear combination of w − 1 or less columns within the set of the immediately
preceding b − 1 columns together with linear combinations of columns of previous
sets of b consecutive columns with at most w columns from each set, along with a
linear combination ofw or less columns taken from the last set of b or less consecutive
b columns with the condition that the sets are also at gap of s columns. This can be
written as

hn 
=
(
b−1∑
i=1

ai1hn−i +
b−1∑
i=0

bi1hn−(s+b)−i +
b−1∑
i=0

bi2hn−2(s+b)−i

+ · · · +
g−1∑
i=0

biλhn−λ(s+b)−i

⎞
⎠

+
(
b−1∑
i=0

αi1h j ′−i +
b−1∑
i=0

βi1h j ′−(s+b)−i +
b−1∑
i=0

βi2h j ′−2(s+b)−i

+ · · · +
g′−1∑
i=0

βiλ′h j ′−λ′(s+b)−i

⎞
⎠ , (2)

where ai j , bi j , αi j , βi j ∈ GF(q) such that with number of nonzero ai j ≤ w − 1, and
that of bi j , αi j , βi j ≤ w with b0i , α0i , β0i 
= 0; j ′ ≤ n − b; g = γ

(
n mod (s + b)

)
,

g′ = γ
(
(n − b − j ′ + 1) mod (s + b)

)
, λ =

⌊ n

s + b

⌋
and λ′ =

⌈n − b − j ′ + 1

s + b

⌉
.

Note that in Expression (2), g and g′ will be zero if n and n−b− j ′+1 aremultiples

of s+b and in that casewe take
g−1∑
i=0

biλhn−λ(s+b)−i = 0 and
g′−1∑
i=0

biλ′h j ′−λ′(s+b)−i = 0.

The condition (2) ensures that syndromes of any two error patterns are distinct.
We now calculate the linear combinations on right hand side (R.H.S.) of (2) as

follows:
The number of ways ai1’s in the first bracket on R.H.S. of (2) can be chosen is

w−1∑
j=0

(
b − 1

j

)
(q − 1) j .
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The number of ways bi j ’s (1 ≤ j ≤ λ − 1) can be chosen is

[w−1∑
j=0

(
b − 1

j

)
(q − 1)1+ j

]λ−1

.

The bi j ’s in the last summation of the first bracket can be chosen by

⎧⎪⎪⎨
⎪⎪⎩
1 i f g = 0
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j i f g > 0.

Therefore, total combinations of the first bracket on R.H.S. of (2) is

w−1∑
j=0

(
b − 1

j

)
(q − 1) j ×

⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦

λ−1

×
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j ,

where
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j = 1 if g = 0.

The second bracket on R.H.S. of (2) gives the number of s-periodical burst errors
of length b with weight up to w in a vector of length n − b. This number, including
the zero combination, is given by Lemma 1 as N(s,b|w),n−b,q .

Thus, the total number of all possible linear combinations on R.H.S. of (2) is

w−1∑
j=0

(
b − 1

j

)
(q − 1) j ×

⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦

λ−1

×
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j × N(s,b|w),n−b,q ,

where
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j = 1 if g = 0.
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Since there are qn−k available columns, we can add the nth column provided

qn−k >

w−1∑
j=0

(
b − 1

j

)
(q − 1) j ×

⎡
⎣w−1∑

j=0

(
b − 1

j

)
(q − 1)1+ j

⎤
⎦

λ−1

×
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j × N(s,b|w),n−b,q ,

where
min{w−1,g−1}∑

j=0

(
g − 1

j

)
(q − 1)1+ j = 1 if g = 0. �	

Now, we provide three examples of codes discussed in Theorem 2: two for binary
and one for ternary case.

Example 2 Consider n = 18, s = 5, b = 4, w = 2 and q = 2 in Theorem 2, then

λ = �18
9

� = 2, l = 0. Then

2n−k >

1∑
j=0

(
3

j

)
×

⎡
⎣ 1∑

j=0

(
3

j

)⎤⎦
1

×
min{1,g−1}∑

j=0

(
g − 1

j

)
× N(5,4|2),14,2.

Now

N(5,4|2),14,2 =
14∑
i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎡
⎣2−1∑

j=0

(
4 − 1

j

)
(2 − 1)1+ j

⎤
⎦
⌊n − i + 1

s + b

⌋

×
min{2−1,gi−1}∑

j=0

(
gi − 1

j

)
(2 − 1)1+ j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
14∑
i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⎡
⎣ 1∑

j=0

(
3

j

)
(2 − 1)1+ j

⎤
⎦
⌊14 − i + 1

9

⌋

×
min{1,gi−1}∑

j=0

(
gi − 1

j

)
(2 − 1)1+ j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

= 4� 14
9 � × 4 + 4� 13

9 � × 41 + 4� 12
9 � × 3 + 4� 11

9 � × 2 + 4� 10
9 � × 1 + 4� 9

9 � × 1
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+ 4� 8
9 � × 4 + 4� 7

9 � × 4 + 4� 6
9 � × 4 + 4� 5

9 � × 4 + 4� 4
9 � × 4 + 4� 3

9 � × 3

+ 4� 2
9 � × 2 + 4� 1

9 � × 1

= 42 + 42 + 4 × 3 + 4 × 2 + 4 × 7 + 3 + 2 + 1 = 86,

where gi = γ
(
(14 − i + 1) (mod 9)) and

0∑
j=0

(
gi − 1

j

)
(2 − 1)1+ j = 1 if gi = 0.

So

2n−k > 4 × 4 × 86 = 1376

⇒ n − k > 10.

We take n − k = 11 and this gives rise to a binary (18, 7) linear code whose parity
check matrix H of order 11 × 18 is given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
11×18

.

It can be verified that the syndromes of all 5-periodical burst errors of length 4
with weight up to 2 are nonzero and distinct, showing that the code can correct all
5-periodical burst errors of length 4 with weight up to 2. So, the code is a (18, 7)
binary P5,4|2BC-code.

Example 3 Consider n = 20, s = 5, b = 4, w = 3 and q = 2 in Theorem 2, then

λ = �20
9

� = 2, l = 2. Then Theorem 2 gives

2n−k >

2∑
j=0

(
4 − 1

j

)
(2 − 1) j ×

⎡
⎣ 2∑

j=0

(
4 − 1

j

)
(2 − 1)1+ j

⎤
⎦

λ−1

×
min{3−1,2−1}∑

j=0

(
2 − 1

j

)
(2 − 1)1+ j × N(5,4|3),16,2

⇒ 2n−k > 7 × 7 × 2 × 294 = 28812

⇒ n − k ≥ 15.
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Taking n − k = 18, we get a binary (20, 2) linear code whose parity check matrix H
of order 18 × 20 is given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
18×20

.

Here also the syndromes of all 5-periodical burst errors of length 4 with weight up
to 3 are found to be nonzero and distinct, showing that the code is a binary (20, 2)
P5,4|3BC-code.

Example 4 Consider n = 23, s = 5, b = 4, w = 1 and q = 3 in Theorem 2, then

λ = �23
9

� = 2, l = 5. Then Theorem 2 gives

3n−k > 1 × 2 × 2 × 62

⇒ n − k > 5.

Considering n − k = 6, we get a ternary (23, 17) linear code whose parity check
matrix H of order 6 × 23 is given by

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 1 0 0 1
0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 2 0 0 0 2 0 0 0 1 0 0 2 0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 1 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0
1 2 0 0 1 0 1 0 0 0 0 0 2 0 1 0 0 0 0 1 1 0 0
0 0 0 0 1 2 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
6×23

.

Here also the syndromes of all 5-periodical burst errors of length 4withweight up to
1 are nonzero and distinct, showing that the code is a (23, 17) ternary P5,4|1BC-code.
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3 Weight distribution and error decoding probability

This section presents the weight distribution of the errors in E(s,b|w),n,q . Onemay refer
to [3, 7, 20] and their references for weight distribution of other type of errors. We also
provide an upper bound on theminimumweight of a vector in the set E(s,b|w),n,q which
is equivalent to Plotkin bound [17] (also Lemma 4.1 of Peterson and Weldon [16]).
We then derive the total probability of the error pattern and decoding error probability
of an Ps,b|wBC-code in a binary symmetric channel.

Lemma 2 For0 ≤ j ≤ n, let E(s,b|w),n,q( j) = {e ∈ E(s,b|w),n,qsuch that weight o f e is j}
and N(s,b|w),n,q( j) = |E(s,b|w),n,q( j)|. Then

N(s,b|w),n,q( j) =
n∑

i=1

∑
j1, j2,..., jli , jl′

(
b − 1

j1

)(
b − 1

j2

)

. . .

(
b − 1

jli

)(
gi − 1

jl ′

)
(q − 1)λi+ j1+ j2+···+ jli + jl′ ,

where gi = γ
(
(n − i + 1) mod (b + s)

)
, λi =

⌈n − i + 1

s + b

⌉
, li =

⌊n − i + 1

s + b

⌋
and

j1, j2, . . . , jli , jl ′ are nonnegative integers such that λi + j1 + j2 +· · ·+ jli + jl ′ = j ,
0 ≤ j1, j2, . . . , jli ≤ w − 1 and 0 ≤ jl ′ ≤ min{gi − 1, w − 1}.

Proof The nonzero components of the error pattern that starts from i th position (1 ≤
i ≤ n) are confined to li =

⌊n − i + 1

s + b

⌋
sets of b consecutive components followed by

the last set consisting of gi = γ
(
(n−i+1) mod (b+s)

)
consecutive components, first

position of each set is nonzero. Then we can select any ji positions (i = 1, 2, . . . , li )
from b−1 positions for nonzero components by

(b−1
ji

)
ways and jl ′ positions from the

last set by
(gi−1

ji ′
)
ways, where ji ≤ w − 1 and jl ′ ≤ min{gi − 1, w − 1}. Therefore

the total number of s-periodical burst errors of length b with weight at most w that
has weight j is

(
b − 1

j1

)
(q − 1)1+ j1 ×

(
b − 1

j2

)
(q − 1)1+ j2 × . . .

×
(
b − 1

jli

)
(q − 1)1+ jli ×

(
gi − 1

jl ′

)
(q − 1)δ+ jl′

=
(
b − 1

j1

)(
b − 1

j2

)
. . .

(
b − 1

jli

)(
gi − 1

jl ′

)
(q − 1)li+δ+ j1+ j2+···+ jli + jl′ ,

where li +δ+ j1+ j2 +· · ·+ jli + jl ′ = j , δ =
{
0 if gi = 0

1 otherwise
, 0 ≤ j1, j2, . . . , jli ≤

w − 1 and 0 ≤ jl ′ ≤ min{gi − 1, w − 1}.
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So, total number of vectors in E(s,b|w),n,q( j) is

N(s,b|w),n,q( j)

=
n∑

i=1

+
∑

j1, j2,..., jli , jl′

(
b − 1

j1

)(
b − 1

j2

)
. . .

(
b − 1

jli

)(
gi − 1

jl ′

)
(q − 1)λi+ j1+ j2+···+ jli + jl′ ,

where λi = li + δ =
⌈n − i + 1

s + b

⌉
, and j1, j2, . . . , jli , jl ′ are nonnegative integers

such that λi + j1 + j2 + · · · + jli + jl ′ = j , 0 ≤ j1, j2, . . . , jli ≤ w − 1 and
0 ≤ jl ′ ≤ min{gi − 1, w − 1}. �	
Remark 2 Observe that for given non-negative integers n, b and s (n ≥ s + b), the
maximum number of nonzero components in a vector of E(s,b|w),n,q can be found
when the periodical burst starts from the first position. This number Wmax is given by

Wmax =
⌊ n

s + b

⌋
w + γ ′(g), where γ ′(g) =

{
g i f g ≤ w

w otherwise.
So, E(s,b|w),n,q( j) = 0 for Wmax < j ≤ n.

Theorem 3 The minimum weight of a vector in the set E(s,b|w),n,q is at most

∑wmax

j=1
j N(s,b|w),n,q( j)

N(s,b|w),n,q
,

where N(s,b|w),n,q is given by Lemma 1 and N(s,b|w),n,q( j) by Lemma 2.

Proof By Lemma 1 and Lemma 2, the average weight of a vector in E(s,b|w),n,q is

∑wmax

j=1
j N(s,b|w),n,q( j)

N(s,b|w),n,q
.

As the minimum weight of a vector in a set can be at most the average weight, this
follows the theorem. �	
Remark 3 If w is odd, we consider the two s-periodical bursts of length b:

(
x ′
10x

′
30x

′
50 . . . 0x ′

w00 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

x ′′
1 0x

′′
3 0x

′′
5 0 . . . 0x ′′

w00 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

. . . . . .
)
and

(
0x ′

20x
′
40x

′
60 . . . x ′

w−100 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

0x ′′
2 0x

′′
4 0x

′′
6 0 . . . x ′′

w−100 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

. . . . . .
)
,

where x ′
i , x

′′
i ∈ GF(q) \ {0}.
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If w is even, then consider the two s-periodical bursts of length b:

(
x ′
10x

′
30x

′
50 . . . x ′

w−100 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

x ′′
1 0x

′′
3 0x

′′
5 0 . . . x ′′

w−100 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

. . . . . .
)
and

(
0x ′

20x
′
40x

′
60 . . . 0x ′

w00 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

0x ′′
2 0x

′′
4 0x

′′
6 0 . . . 0x ′′

w00 . . . 0︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

. . . . . .
)
,

where x ′
i , x

′′
i ∈ GF(q) \ {0}.

In both cases, difference of the two vectors gives an s-periodical burst of length b
with weight Wmax . So, the minimum distance of the set E(s,b|w),n,q ≤ Wmax and the
maximum distance of the set E(s,b|w),n,q ≥ Wmax .

Now, total probability of vectors of E(s,b|w),n,q in a binary symmetric channel is
given in the following theorem.

Theorem 4 The total probability Pw(E) of errors from the set E(s,b|w),n,2 over a
memoryless binary symmetric channel with transition probability ε is given by

Pw(E) =
n∑

i=1

⎡
⎣ ∑

j1, j2,..., jli , jl′

(
b − 1

j1

)(
b − 1

j2

)
. . .

(
b − 1

jli

)(
gi − 1

jl ′

)

× ελi+( j1+ j2+···+ jli + jl′ )(1 − ε)n−λi− j1− j2−···− jli − jl′

⎤
⎦ ,

where gi = γ
(
(n − i + 1) mod (b + s)

)
, λi =

⌈n − i + 1

s + b

⌉
, li =

⌊n − i + 1

s + b

⌋
,

0 ≤ j1, j2, . . . , jli ≤ w − 1 and 0 ≤ jl ′ ≤ min{gi − 1, w − 1}.
Proof As the first position of each set of the error pattern has nonzero component,
the number of always nonzero components in a periodical burst that starts from i th

position (1 ≤ i ≤ n) is λi =
⌈n − i + 1

s + b

⌉
. The other nonzero components come

from the remaining positions such that each set contains not more than w nonzero

components. As the nonzero components are confined to li =
⌊n − i + 1

s + b

⌋
sets of

b consecutive components followed by a set of gi = γ
(
(n − i + 1) mod (b + s)

)
consecutive components, the total probability of s-periodical burst errors of length b
of weight at most w that starts from i th position is given by

∑
j1, j2,..., jli , jl′

(
b − 1

j1

)(
b − 1

j2

)
. . .

(
b − 1

jli

)(
gi − 1

jl ′

)
×

ελi+( j1+ j2+···+ jli + jl′ )(1 − ε)n−λi− j1− j2−···− jli − jl′ ,

where 0 ≤ j1, j2, . . . , jli ≤ w − 1 and 0 ≤ jl ′ ≤ min{gi − 1, w − 1}.
Taking i = 1, 2, . . . , n gives the result. �	
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Next, we give the probability of decoding error for a binary Ps,b|wBC-code as
follows.

Theorem 5 Let PDw(E) be the probability of decoding error of an (n, k) binary
Ps,b|wBC-code on amemoryless binary symmetric channel with transition probability
ε, then

PDw(E) = 1 −
Wmax∑
j=1

N(s,b|w),n,q( j).ε
j (1 − ε)n− j ,

where N(s,b|w),n,q( j) is given by Lemma 2.

Proof As the probability of correcting an error is the probability that the error is a coset
leader in the standard array for the code, the probability of a vector of E(s,b|w),n,q( j)
being one of the coset leaders is

N(s,b|w),n,q( j).ε
j (1 − ε)n− j .

Therefore, the probability PDw(E) of decoding error of the code is given by

PDw(E) = 1 −
Wmax∑
j=1

N(s,b|w),n,q( j).ε
j (1 − ε)n− j .

�	

4 Detection and weight distribution of some periodical bursts

In this section, we give detection of some periodical burst errors by Ps,b|wBC-code
(other than correctable errors). Weight distribution of those errors and upper bound on
the minimum weight of the set of such errors are given. For this, we first define two
sets.

For s > b, let A be the collection of all (s − b)-periodical bursts of length 2b of
the form:

(
x1 • • · · · •︸ ︷︷ ︸

b

x2 • • · · · •︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s−b

x3 • • · · · •︸ ︷︷ ︸
b

x4 • • · · · •︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s−b

x5 • • · · · •︸ ︷︷ ︸
b

x6 • • · · · •︸ ︷︷ ︸
b

. . . . . .
)
,

and for s ≤ b,A′ be the collection of all 1-periodical burst errors of length b+s−1
of the form:

(
x1 • • · · · •︸ ︷︷ ︸

b

x2 • • · · · •︸ ︷︷ ︸
s−1

0 x3 • • · · · •︸ ︷︷ ︸
b

x4 • • · · · •︸ ︷︷ ︸
s−1

0 x5 • • · · · •︸ ︷︷ ︸
b

x6 • • · · · •︸ ︷︷ ︸
s−1

0 . . . . . .
)
,

where xi ∈ GF(q) \ {0} and • ∈ GF(q) such that consecutive b − 1 bullets have at
most w − 1 nonzero components.
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Theorem 6 An q-ary Ps,b|wBC-code detects all periodical burst errors from the set
A and A

′.

Proof As every member of A or A′ can be expressed as the sum (difference) of two
s-periodical bursts of length b of weight at most w. So, no element of A or A′ can be
a codeword of Ps,b|wBC-code. This follows the theorem. �	

Now we give weight distribution of vectors of A and A
′.

Lemma 3 If A j be the collections of the vectors of A having weight j and g(1) =
γ1

(
n mod (b + s)

)
where γ1(r) =

{
r i f n (mod (b + s)) ≤ 2b

2b otherwise.
Then

1. if g(1) = γ1
(
n mod (b + s)

) = 0,

|A j | =
∑

j1, j2,..., j2l

⎡
⎣ 2l∏

ρ=1

(
b − 1

jρ

)⎤⎦ (q − 1)2l+ j1+ j2+···+ j2l ,

where 2l + j1 + j2 + · · · + j2l = j such that 0 ≤ j1, j2, . . . , j2l ≤ w − 1 and

l =
⌊ n

s + b

⌋
.

2. if 1 ≤ g(1) = γ1
(
n mod (b + s)

) ≤ b,

|A j | =
∑

j1, j2,..., j2l , jl′

⎡
⎣ 2l∏

ρ=1

(
b − 1

jρ

)⎤⎦(
g(1) − 1

jl ′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+1,

where 2l + j1 + j2 + · · · + j2l + jl ′ + 1 = j such that 0 ≤ j1, j2, . . . , jl ≤ w − 1,

0 ≤ jl ′ ≤ min{g(1) − 1, w − 1} and l =
⌊ n

s + b

⌋
.

3. if b + 1 ≤ g(1) = γ1
(
n mod (b + s)

) ≤ 2b,

|A j | =
∑

j1, j2,..., j2l , jl′ , jl′′

⎡
⎣ 2l∏

ρ=1

(
b − 1

jρ

)⎤⎦(
b − 1

jl ′

)

×
(
g(1) − b − 1

jl ′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+ jl′′+2,

where 2l+ j1+ j2 +· · ·+ j2l + jl ′ + jl ′′ +2 = j such that 0 ≤ j1, j2, . . . , jl , jl ′ ≤
w − 1, 0 ≤ jl ′′ ≤ min{g(1) − b − 1, w − 1} and l =

⌊ n

s + b

⌋
.

Further, maximum weight of elements of A is

W 1
max = 2w

⌊ n

s + b

⌋
+ γ ′′

1 (g(1)),
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where γ ′′
1 (g(1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g(1) i f 0 ≤ g(1) ≤ w

w i f w + 1 ≤ g(1) ≤ b

w + g(1) − b i f b + 1 ≤ g(1) ≤ b + w

2w i f b + w + 1 ≤ g(1) ≤ 2b.

Proof Observe that if n (mod (b + s)) = 0, all nonzero components in any vector

of A are confined to
⌊ n

s + b

⌋
sets that are separated by s − b consecutive zeros. If n

(mod (b+ s)) 
= 0, nonzero components in a vector ofA are confined to
⌊ n

s + b

⌋
+1

sets that are separated by s − b consecutive zeros, where each of
⌊ n

s + b

⌋
sets has 2b

consecutive components and the last set has g(1) = γ1
(
n mod (b + s)

)
components,

where γ1(r) =
{
r i f n (mod (b + s)) ≤ 2b

2b otherwise
. Then the cardinality of the set A j of

the vectors of A having weight j is calculated as follows.
Sub-case (i). If g(1) = 0, the number |A j | of the vectors of A having weight j is

given by

∑
j1, j2,..., j2l

(
b − 1

j1

)
(q − 1)1+ j1 ×

(
b − 1

j2

)
(q − 1)1+ j2 × · · · ×

(
b − 1

j2l

)
(q − 1)1+ j2l

=
∑

j1, j2,..., j2l

⎡
⎣ 2l∏

ρ=1

(
b − 1

jρ

)⎤
⎦ (q − 1)2l+ j1+ j2+···+ j2l ,

where 2l + j1 + j2 + · · · + j2l = j such that 0 ≤ j1, j2, . . . , j2l ≤ w − 1 and

l =
⌊ n

s + b

⌋
.

Sub-case (ii). If 1 ≤ g(1) ≤ b, the number |A j | of the vectors of A having weight
j is given by

∑
j1, j2,..., j2l , jl′

(
b − 1

j1

)
(q − 1)1+ j1 ×

(
b − 1

j2

)
(q − 1)1+ j2

× · · · ×
(
b − 1

j2l

)
(q − 1)1+ j2l ×

(
g(1) − 1

jl ′

)
(q − 1)1+ jl′

=
∑

j1, j2,..., j2l , jl′

⎡
⎣ 2l∏

ρ=1

(
b − 1

jρ

)⎤⎦(
g(1) − 1

jl ′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+1,

where 2l + j1 + j2 + · · · + j2l + jl ′ + 1 = j such that 0 ≤ j1, j2, . . . , jl ≤ w − 1,

0 ≤ jl ′ ≤ min{g(1) − 1, w − 1} and l =
⌊ n

s + b

⌋
.
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Sub-case (iii). If b + 1 ≤ g(1) ≤ 2b, the number |A j | of the vectors of A having
weight j is given by

∑
j1, j2,..., j2l , jl′ , jl′′

(
b − 1

j1

)
(q − 1)1+ j1 ×

(
b − 1

j2

)
(q − 1)1+ j2 × . . .

×
(
b − 1

j2l

)
(q − 1)1+ j2l ×

(
b − 1

jl ′

)
(q − 1)1+ jl′ ×

(
g(1) − b − 1

jl ′′

)
(q − 1)1+ jl′′

=
∑

j1, j2,..., j2l , jl′ , jl′′

⎡
⎣ 2l∏

ρ=1

(
b − 1

jρ

)⎤⎦(
b − 1

jl ′

)

×
(
g(1) − b − 1

jl ′′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+ jl′′+2,

where 2l+ j1+ j2+· · ·+ j2l+ jl ′ + jl ′′ +2 = j such that 0 ≤ j1, j2, . . . , jl , jl ′ ≤ w−1,

0 ≤ jl ′′ ≤ min{g(1) − b − 1, w − 1} and l =
⌊ n

s + b

⌋
.

Maximum weight can be calculated by taking 2w weight in each
⌊ n

s + b

⌋
sets of

complete 2b components and the last set having maximum weight

γ ′′
1 (g(1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g(1) i f 0 ≤ g(1) ≤ w

w i f w + 1 ≤ g(1) ≤ b

w + g(1) − b i f b + 1 ≤ g(1) ≤ b + w

2w i f b + w + 1 ≤ g(1) ≤ 2b.

This shows that

W 1
max = 2w

⌊ n

s + b

⌋
+ γ ′′

1 (g(1)).

�	
Lemma 4 Let A′

j be the set of all vectors of A′ whose weight is j and g(2) =

γ2
(
n mod (b + s)

)
where γ2(r) =

{
r i f n (mod (b + s)) ≤ b + s − 1

b + s − 1 otherwise.
Then

1. if g(2) = γ2
(
n mod (b + s)

) = 0,

|A′
j | =

∑
j1, j2,..., j2l

⎡
⎣ l∏

ρ=1

(
b − 1

j2ρ−1

) l∏
ρ=1

(
s − 2

j2ρ

)⎤
⎦ (q − 1)2l+ j1+ j2+···+ j2l ,

where 2l + j1 + j2 + · · · + j2l = j such that 0 ≤ j1, j3, . . . , j2l−1 ≤ w − 1,
0 ≤ j2, j4, . . . , j2l ≤ min{w − 1, s − 2} and l = � n

s+b �.
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2. if 1 ≤ g(2) = γ2
(
n mod (b + s)

) ≤ b,

|A′
j | =

∑
j1, j2,..., j2l , jl′

⎡
⎣ l∏

ρ=1

(
b − 1

j2ρ−1

) l∏
ρ=1

(
s − 2

j2ρ

)⎤⎦

×
(
g(2) − 1

jl ′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+1,

where 2l+ j1+ j2+· · ·+ j2l + jl ′ +1 = j such that 0 ≤ j1, j3, . . . , j2l−1 ≤ w−1,
0 ≤ j2, j4, . . . , j2l ≤ min{w − 1, s − 2}, 0 ≤ jl ′ ≤ min{w − 1, g(2) − 1} and
l =

⌊ n

s + b

⌋
.

3. if b + 1 ≤ g(2) = γ2
(
n mod (b + s)

) ≤ b + s − 1,

|A′
j | =

∑
j1, j2,..., j2l , jl′ , jl′′

⎡
⎣ l∏

ρ=1

(
b − 1

j2ρ−1

) l∏
ρ=1

(
s − 2

j2ρ

)⎤⎦

×
(
b − 1

jl ′

)(
g(2) − b − 1

jl ′′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+ jl′′+2,

where 2l+ j1+ j2+· · ·+ j2l+ jl ′ + jl ′′ +2 = j such that 0 ≤ j1, j3, . . . , j2l−1, jl ′ ≤
w−1, 0 ≤ j2, j4, . . . , j2l ≤ min{w−1, s−2}, 0 ≤ jl ′′ ≤ min{w−1, g(2)−b−1}
and l =

⌊ n

s + b

⌋
.

Further, maximum weight of elements of A′ is

W 2
max = 2w

⌊ n

s + b

⌋
+ γ ′′

2 (g(2)),

where γ ′′
2 (g(2)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g(2) i f 0 ≤ g(2) ≤ w

w i f w + 1 ≤ g(2) ≤ b

w + g(2) − b i f b + 1 ≤ g(2) ≤ b + w

2w i f b + w + 1 ≤ g(2) ≤ b + s − 1.

Proof In this case also, if n (mod (b+ s)) = 0, all nonzero components in any vector

of A are confined to
⌊ n

s + b

⌋
sets that are separated by one zero. If n (mod (b +

s)) 
= 0, nonzero components in a vector of A are confined to
⌊ n

s + b

⌋
+ 1 sets

that are separated by one zero, where each of
⌊ n

s + b

⌋
sets has b+ s − 1 consecutive

components and the last set has g(2) = γ2
(
n mod (b+s)

)
components,whereγ2(r) ={

r i f n (mod (b + s)) ≤ b + s − 1

b + s − 1 otherwise
. Then the cardinality of the set A′

j of

the vectors of A′ having weight j is calculated as follows.
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Sub-case (i). If g(2) = 0, the number |A′
j | of the vectors of A′ having weight j is

given by

∑
j1, j2,..., j2l

(
b − 1

j1

)
(q − 1)1+ j1 ×

(
s − 2

j2

)
(q − 1)1+ j2 ×

(
b − 1

j3

)
(q − 1)1+ j3

×
(
s − 2

j4

)
(q − 1)1+ j4 × · · · ×

(
b − 1

j2l−1

)
(q − 1)1+ j2l−1

×
(
s − 2

j2l

)
(q − 1)1+ j2l

=
∑

j1, j2,..., j2l

⎡
⎣ l∏

ρ=1

(
b − 1

j2ρ−1

) l∏
ρ=1

(
s − 2

j2ρ

)⎤⎦ (q − 1)2l+ j1+ j2+···+ j2l ,

where 2l + j1 + j2 + · · · + j2l = j such that 0 ≤ j1, j3, . . . , j2l−1 ≤ w − 1,
0 ≤ j2, j4, . . . , j2l ≤ min{w − 1, s − 2} and l = � n

s+b �.
Sub-case (ii). If 1 ≤ g(2) ≤ b, the number |A′

j | of the vectors of A′ having weight
j is given by

∑
j1, j2,..., j2l , jl′

(
b − 1

j1

)
(q − 1)1+ j1 ×

(
s − 2

j2

)
(q − 1)1+ j2

×
(
b − 1

j3

)
(q − 1)1+ j3 ×

(
s − 2

j4

)
(q − 1)1+ j4

× · · · ×
(
b − 1

j2l−1

)
(q − 1)1+ j2l−1

×
(
s − 2

j2l

)
(q − 1)1+ j2l ×

(
g(2) − 1

jl ′

)
(q − 1)1+ jl′

=
∑

j1, j2,..., j2l , jl′

⎡
⎣ l∏

ρ=1

(
b − 1

j2ρ−1

) l∏
ρ=1

(
s − 2

j2ρ

)⎤⎦

×
(
g(2) − 1

jl ′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+1,

where 2l + j1 + j2 +· · ·+ j2l + jl ′ + 1 = j such that 0 ≤ j1, j3, . . . , j2l−1,≤ w − 1,
0 ≤ j2, j4, . . . , j2l ≤ min{w − 1, s − 2}, 0 ≤ jl ′ ≤ min{w − 1, g(2) − 1} and

l =
⌊ n

s + b

⌋
.

Sub-case (iii). If b + 1 ≤ g(2) ≤ b + s − 1, the number |A′
j | of the vectors of A′

having weight j is given by
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∑
j1, j2,..., j2l , jl′ , jl′′

(
b − 1

j1

)
(q − 1)1+ j1

×
(
s − 2

j2

)
(q − 1)1+ j2 ×

(
b − 1

j3

)
(q − 1)1+ j3 ×

(
s − 2

j4

)
(q − 1)1+ j4

× . . . · · · ×
(
b − 1

j2l−1

)
(q − 1)1+ j2l−1 ×

(
s − 2

j2l

)
(q − 1)1+ j2l

×
(
b − 1

jl ′

)
(q − 1)1+ jl′ ×

(
g(2) − b − 1

jl ′′

)
(q − 1)1+ jl′′

=
∑

j1, j2,..., j2l , jl′ , jl′′

⎡
⎣ l∏

ρ=1

(
b − 1

j2ρ−1

) l∏
ρ=1

(
s − 2

j2ρ

)⎤
⎦

×
(
b − 1

jl ′

)(
g(2) − b − 1

jl ′′

)
(q − 1)2l+ j1+ j2+···+ j2l+ jl′+ jl′′+2,

where 2l+ j1+ j2+· · ·+ j2l + jl ′ + jl ′′ +2 = j such that 0 ≤ j1, j3, . . . , j2l−1, jl ′ ≤
w − 1, 0 ≤ j2, j4, . . . , j2l ≤ min{w − 1, s − 2}, 0 ≤ jl ′′ ≤ min{w − 1, g(2) − b− 1}
and l =

⌊ n

s + b

⌋
.

Maximum weight of a vector of A
′ can be calculated in the same way as

Lemma 3. �	
Finally, we put Plotkin’s type of bound for the set A and A′ whose proof is similar

to Theorem 3.

Theorem 7 The minimum weight of a vector is bounded by

∑W 1
max

j=1
j A( j)

∑W 1
max

j=1
A( j)

for the set

A and

∑W 2
max

j=1
j A′( j)

∑W 2
max

j=1
A′( j)

for the set A′, where A( j), A′( j), W 1
max and W 2

max are given

by Lemma 3-4.

5 Conclusion

This paper presents the conditions for existence of low-density periodical burst cor-
recting linear codes along with its decoding error probability. Weight distribution and
Plotkin’s type bound for the error set are also presented. The same is also studied
for some other periodical bursts which will be detected by such codes. There may
be a more systematic way of constructing such an error correcting code which can
be investigated. Optimum codes which correct only such errors and no others can be
interesting to look for.
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