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Abstract

This paper is concerned with second order iterative functional boundary value problem
with two-point boundary conditions on time scales. By utilizing Schauder fixed point
theorem and contraction mapping principle, we establish some sufficient conditions for
the existence, uniqueness and continuous dependence of bounded solutions. Finally,
we provide an example to support our main results.
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1 Introduction and preliminaries

Iterative differential equation, as a special type of functional differential equations,
in which the deviating argument depends on the state [19]. Many researchers have
concentrated on studying first order iterative functional differential equations by dif-
ferent approaches such as Picard’s successive approximation, fixed point theory and
the technique of nonexpansive operators, see [2,8,13,21]. But the literature related to
the second and higher order is very less since the presence of the iterates increases the
difficulty of studying them, see [5—7,11,12,15-18,20]. This motivates us to study the
following second order iterative functional boundary value problem on time scales
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z%%(s) + g(s, z(s), 2(s), 2PN(s), - -, 2l"(9)) = 0, s e [a. blr. (D)
subject to the two-point boundary conditions
z(a) = za, 2(0*(b)) = 2y, @)

where T is a time scale, g : [a, b]T x R — R is a continuous function and z/?!(s) =
z(z(8)), ---, zIM(s) = z[*"1(z(s)). For more details about the theory of time scales,
refer to [1,3]. By applying Schauder fixed point theorem and contraction mapping
principle, we establish the existence and uniqueness of solutions to the BVP (1)-(2).
Equation (1) in real continuous time scales describes diffusion phenomena with a
source or a reaction term [12]. We refer the interested reader to [9,10,14] and the
references therein for more details.

The commonly used technique in the theory of BVPs on time scales involving
transforming the BVP (1)-(2) as an equivalent integral equation (see, Chapter 7 of

(4D

Zp — Za

Z(S):Za+m

(s —a)

o(b)
+f (s, t)g(t. z(v), 2P (v, (b)), - - -, 2 () AL, s € [a, 7 (B)1B)

a

where
_ (s —a)(o*(b) —o(1), if s<t,
Gls. &)= o2(b) —a {(G(t) —a)(c?(b) —s), if o(t) <s. @)
Moreover, we note that G(s, t) is nonnegative on [a, o2(b)Ir x [a, by and
G(s, t) < G(a(t), t), (s.t) € [a, > (B)]r % [a. b]r. (5)
We difine
o(b)
M= max / G(s, t)At. (6)
s€la,a2(b)Ir Ja

Lemma1 Forany sy, s2 € |a, o? (D)1, the Green’s function (4) satisfies
a(b)
/ |G(s1, £) — G(s2, £)|At < N|s; — 2],
a

where N = 4(c2(b) — a).
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2 _ 2(h)—
Proof Set Gi(s,t) = %@;“(’” and Ga(s,t) = %ﬁf?s) Let

s1, S2 € [a, O'Z(b)]’]r with s < sy. Then

S2 1 S2
/ IG1(s1, £) — Gi(s2, £)|At = 2—/ I(s1 — a)(a*(b) — o(t))
; 02(b) —a J,
— (s2 — a)(c%(b) — o(1))|At

52
= mla _S2|/a (6> (b) — o(1)| At

S2
= mlﬁ _SZ|/a [(6*(b) — a)|At
< (6%(b) — a)|s| — sal.

S1

s 1
/S |G1(s1, £) — Ga(s2, B)|AL = m/ I(s1 — a) (0 (b) — o(t))

2 S2

— (0(t) — a)(c*(b) — s2)|At

1 Sl
= m/sz (s1 —a)(0*(b) — o())At
1 s1 ,
* mfsz (0(1) —a)(0°(b) — s2)At
= 51(51 —a)At + /SI(G(I) —a)At
S2 s2

<2(c*(b) — a)|s1 — sa|
and
o’ (b) 1 s2 5
/ IGa(s1, ) — Ga(s2, t)|AL = 2—/ [(o(t) — a) (0 (b) — s1)
. o2(b) —a J,
— (0(t) — a)(c*(b) — s2)|At
1 82
< m((f(ﬂ —a)/a [s1 — s2|At
< (6*(b) — a)ls| — s2l.

Thus,

o (b)
f |G(s1, £) — G(s2, t)|AL
a

s1

s2
=/ |G1(Sl,t)—G1(Sz,t)|At+/ IGi(s1, £) — Ga(s2, £)|AL
a S

2

a2(b)
+/ Ga(s1. £) — G, DAL < 4(02(b) — a@)lsi — sal.
S

1
]
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Consider the function space
Cla, 0?(b)] = {z | z : [a, 0>(b)]T — R is continuous}
and for L > 0, define
A1) = {z € Lla, PB)]| |1z <L, Vs € [a, *(B)]r).
Then Z(L) is a Banach space with the norm

lzll= max [z(s)].
sela.o?(®)lr

For . > 0 and k > 0, define the set

B(L, k) ={z € ZL)|llz|l < Land|z(s)
—2(s2)| < k|s1 — sal, Vs1, s2 € [a, 0°(b)]1}.

Then (L, k) is a closed convex and bounded subset of Z(L). Also, it can be seen
from the definition of A(L, k) that for every \, ¢ € A(L, k),

i—1
W — o< Y Ky — Il i=1.2,-- ©
3=0

Now define an operator X : A(L, k) — HA(L) as

Zb — Za

Rz)(s) = z4 + m

(s —a)
o(b)
+/ (s, t)g(t, z(v), 2P (v), 2B(t), - - -, 2" (v)) AL, s € [a, P (B)IR)

Then z is a solution of (1)—(2) if and only if z is a fixed point of R.

2 Existence and uniqueness of solutions

This section deals with existence and uniqueness of solutions for (1)—(2). In order to
reach our goal, we assume the following condition hold:

(H1) Let 1, o, - - -, &, be positive constants such that
n
lg(t. z1. 22, 20) — 9(£. 21, 22, - Z)| £ D 5]lz5 — 25
j=1
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Lemma 2 Suppose (H1) holds. Then operator N is continuous and compact on
AB(L, k).

Proof Let z,Z € A(L,k) and s € [a, 0>(b)]T. Then by (H;), (6) and (7),
o®) 2 3
I(8z)(s) — W2)(s)| < / |G(s, t)|\g(t, z(t), z%(0), 2Pl(v), -, 2" (b))
—g(t. 2(t), 2%(t), 230(t), - - -,E[’”(t))(At

o) n . .
/ G(s. ©)] ) o5z — 28T A
a

=1

IA

IA

n j—1
MY o5 Y Kz -z
=1 i=0

Thus, R is continuous. It can be seen by Arzela-Ascoli theorem that 8 is compact. O
Lemma 3 Suppose (H1) and the following hold.
(H2) 2lzal + |zsl + M[g"+ LY 05 Y K] = L. where ot =
MaX ¢ cq, 62(b)]p lo(t, 0,0, ---,0).
Then |(Rz)(s)| < L forall s € [a, 0*(b)]T and z € B(L, k).

Proof Let z € B(L, k) and s € [a, 02(b)]T. Then

Zp — Zg (S_a)

[(Rz)(s)| = 20 —a

Za +

o(b)
+f G(s, v)g(t, z(v), 2P (v), (v, - - -, 2M(p)) At

o(b)
< 2za+zz,+/ 6(s. O)lla(t, 2(0). 2P (0), 2P (c), - - -, 21 (©))
a
- g(ta 09 01 RS O)|At

o(b)
+/ |G(S’t)||g(t507 09."50)|At
a

n j—1

2z +zp+ MY o5 ) Kllz| +Mg*
j=1 i=0

IA

n j—1
274+ zp + M LZ(Xj Zk+g*
j=1 i=0

IA

L.

IA

O
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Lemma 4 Suppose (H1) and the following hold.
(Hs) Bzl +n[o* + LX) o T4 K| <k

Then |(Rz)(s1) — R2)(s2)] < k|s1 — s2| for all s1, s2 € |a, o2 (b))t and z €
AB(L, k).

Proof Let s1, s € [a, 02(b)]T and z € B(L, k) with s; < s5. Then

|2p — Zal o®
IRz)(s1) — Rz)(s2)| = ————Isi —Szl+/ IG(s1, £)
o(b) —a a

— G(s2. D)llg(t. z(t), 2P (v), 2Pl (), - - 2" (D)) 1At
|z — Zal

~ o2(b)—a
—6(s2, 0)l[g(t, 2(0), 2¥(), 2P (0), -, 2 (0) A

o(b)
|SI—S2|+/ IG(s1, £)
a

o(b)
- 90,00~ 0[ac+ [ [6(e1.0
a

— G(s2, 6)[19(t, 0,0, - -, O))At

|zp — Zal
= m%] — 82|
n j—1 )
+NY a5 Y Kzllsi — s2| + Ng*[s) — s2
j=I i=0
|zp — Zal
< m%l — s2|

n j—1
+N LZCXj Zkl +g* | |s1 — s3]
j=1 i=0

< k|s1 — sal.

Lemma5 Suppose (H1)—-(H3) hold. Then R(A(L,k)) C B(L, k).
Proof 1t is clear from Lemmas 3 and 4 that X maps (L, k) into itself. O
Theorem 1 Suppose (H1)—(H3) hold. Then BPV (1)—(2) has a solution in A(L, k).

Proof From Lemmas 2 to 5, we see that all the conditions of Schauder’s fixed point
theorem are satisfied on Z(L, k). thus there exists a fixed point z* in A(L, k) such
that Xz* = z*. Therefore, z* is a solution of (1)—(2). This completes the proof. O

Theorem 2 Suppose (H1)-(H3) and the following hold.
o
(H MY o5 Y05 K < 1.
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Then BPV (1)—(2) has a unique solution in B(L, k).

Proof Let z,Z € (L, k) and s € [a, 0%(b)]T. Then by Lemma 2,

n j—1
I(Rz)(s) = R2) ) <MY o5 Y Kz -2
j=1 i=0

Therefore, by the contraction mapping principle R has a unique fixed point in A (L, k).
This completes the proof.

3 Continuous dependence
In this section, we establish continuous dependence of the unique solution on g.

Theorem 3 Suppose (H1)—(H4) hold. Then unique solution of (1)—(2) obtained in
Theorem 2 depends continuously on g.

Proo/f\ Let g and g be two given functions and consider the corresponding operators N
and R defined by (8). Next by Theorem 2, there exist two unique functions z(s) and
Z(s) in B(L, k) such that z = Rz and z = NXzZ. Then,
N o (b)
INZ — RZ|| < / |G(s, t>|\g(t,E(t)ﬁm(t),zm(tx - 2M(E))
a
~3(t. 2(0), 2% (0), 2B(p), -, 2M(p)) At
o(b)
= [ et onffole 2. 270, 2 ). - 2 0)
a
—g(t. z(0), 2P (0). 2Pl(w), - - 2(D)

+ ‘fj(t, 2(t), 22(t), 2P(), - -, 2" ()

—g(t. 2(0), 2%(0), 2B p), - - 2 (b)) ]At

o(b)
5/ ETIE

n j—1
~Gl+ "o Y Kz -] At
i=1 i=0
n

31
=ulllg =8+ a5 Y Klz—21].
j=I i=0
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Therefore,

Iz — ZIl <INz — 8Z|| + |RZ — RZ|

n n

j—1 -1
<MY o5y Kz —Z| +M[||g—§|| + oy Y Kz —an].
j=1 i=0 3 i—=0

1

That is

-1
n

j—1
lz—2l<M|1-2M) o5 > K | [g—3l.
j=1 i=0

This completes the proof. O

Example 1 Consider the time scale T = {10"|m € Z}U{0}and z, = 1,2z, =2,a =
0, b = 1 in the (1)—(2). It follows from (6) that, for s = 1(+m’ m=-1,0,1,---,

10 1
" 1
max / G(s, t)At = max | lim /‘10 10£(102 — —)At
0 m 10m

s€[0,100]T k——+00 Lk
10
10 1 )
+/01 10—m(10 — 10t)At
1 1

10

— — max [101 % 1072 — 1073 _ 10—2]
11

— 8181.818182.

So, M = 8181.818182 and N = 400. Next, consider the function

Tt
g(t, z(v), 2 (t), 2P1(t)) = cos(t) + 12 ®
b sin(z?(0) + ——— cos(zP(t))
256 x 103 323 x 103 ’
Then
la(t, z1, z2, 23) — 9(t, 21, 22, 23)| < «1llz1 — 21|
+xallz2 — 22|l + «3llz3 — Z3],
— 7T _ T _ s
where o1 = {7455, 02 = 5553 03 = 335,708 and

s
£,0,0,0) = cos(t) + —————— < 1.000009726 := g*.
g )= cos(®) + 103 g
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Further, letL = W and k = W Then
_ o
2lzq| + |zpl +M | g* +LZcx]Zk‘ = 12692.87935 < L,
L j=1 i=0 i
2 —zal || thl
— 4a
22 24N L) « ki | = 620.3552127 < k
02(b)_a+ g+ ;]2(; <
and
n j—1 )
MY a5 Y K =0.3471772648 < 1.
j=l1 i=0

Thus, all assumptions (H1)—(H4) hold. Therefore, the BVP

228 (s) + cos(s) + z(s)

T
154 x 103

+ o sin(z(8)) + = cos(z1¥)(s)) = 0, s € [0, 111
256 x 103 323 x 107

z(0) = 1, z(c*(1)) = 2,

. L - -
has a unique solution in % (2_42“074, T05 %103

) and depends continuously on the
function g.

4 Conclusion

Iterative differential equation, as a special type of functional differential equations,
in which the deviating arguments depend on the state. Many researchers have con-
centrated on studying first order iterative functional differential equations by different
approaches such as Picard’s successive approximation, fixed point theory and the tech-
nique of nonexpansive operators. But the literature related to the second and higher
order is very less since the presence of the iterates increases the difficulty of studying
them. This work gives a criteria for the existence, uniqueness and continuous depen-
dence of solutions for nonlinear second order iterative functional boundary values
with two-point boundary conditions on time scales. In the future, we study higher
order iterative functional boundary value problems on time scales and fractional order
iterative boundary value problems on time scales.
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