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Abstract
In this paper, we develop anHIV infectionmodelwith intracellular delay, Beddington–
DeAngelis incidence rate, saturated CTL immune response and immune impairment.
We begin model analysis with proving the positivity and boundedness of solutions of
the model. By calculations, we derive immunity-inactivated and immunity-activated
reproduction ratios. By analyzing corresponding characteristic equations, the local
stabilities of feasible equilibria are addressed. With the help of suitable Lyapunov
functionals and LaSalle’s invariance principle, it is proven that the global dynamics
of the system is completely determined by the immunity-inactivated and immunity-
activated reproduction ratios: if the immunity-inactivated reproduction ratio is less
than unity, the infection-free equilibrium is globally asymptotically stable; if the
immunity-inactivated reproduction ratio is greater than unity, while the immunity-
activated reproduction ratio is less than unity, the immunity-inactivated equilibrium is
globally asymptotically stable; if the immunity-activated reproduction ratio is greater
than unity, the immunity-activated equilibrium is globally asymptotically stable. Fur-
thermore, sensitivity analysis is carried out to illustrate the effects of parameter values
on the two thresholds.
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1 Introduction

Virus dynamics has attracted worldwide attention in the academic field [1–3]. During
the past decades, a large number of mathematical models have been employed to
quantitatively or qualitatively analyze the transmission and treatment of HIV [2–5].
Nowak and Bangham [1] proposed the following model to describe virus dynamics:

ẋ (t) = s − dx (t) − βx (t) v (t) ,

ẏ (t) = βx (t) v (t) − ay (t) ,

v̇ (t) = ky (t) − uv (t) . (1.1)

Here x(t), y(t), v(t) represent the concentrations of uninfected CD4+T cells, infected
CD4+T cells and free virus particles at time t , respectively. The constant s represents
the rate at which uninfected CD4+T cells are produced. Free viruses infect the unin-
fected cells at rate βxv. Uninfected cells, infected cells and virus particles die at rate
dx , ay and uv, respectively. Infected cells produce free virus at rate ky. However,
the immune system is necessary to control the disease. In most virus infections, cyto-
toxic T lymphocytes (CTLs) could reduce viral load by attacking infected cells, which
plays a vital role in protecting infected individuals against virus-related diseases. As
a consequence, much attention has been paid to the dynamics of HIV-1 infection with
CTLs response (see, for example, [1,6–9]). In addition, we notice that system (1.1)
assumes the rate of infection to be bilinear. Nevertheless, during the process of virus
infecting target cells, the actual incidence rate is probably not linear. Hence, it is more
reasonable to consider the nonlinear infection rate, such as Beddington–DeAngelis
type incidence (see, for example, [4,10–12]). Based on system (1.1), to consider the
joint effects of CTL immune response and Beddington–DeAngelis type incidence on
the HIV infection, Wang et al. [11] investigated the following system:

ẋ (t) = s − dx (t) − βx (t) v (t)

1 + a1x (t) + a2v (t)
,

ẏ (t) = βx (t) v (t)

1 + a1x (t) + a2v (t)
− ay (t) − py (t) z (t) ,

v̇ (t) = ky (t) − uv (t) ,

ż (t) = cy (t) z (t) − bz (t) , (1.2)

where the state variable z (t) represents the concentration of CTL cells at time t . The
rate for infected cells to be killed by CTLs is chosen as pyz. CTL cells are activated
by infected CD4+T cells at rate cyz and die at rate bz. The infection rate is denoted
by Beddington–DeAngelis function βxv/(1 + a1x + a2v), which was proposed by
Beddington [13] and DeAngelis et al. [14]. The Beddington–DeAngelis incidence
rate reduces to a saturation response [15,16] when a1 = 0, a2 > 0. It is supposed in
systems (1.1) and (1.2) that as long as free viruses enter the target cells, target cells are
immediately infected and new free viruses are produced simultaneously. Herz et al.
[17] introduced the intracellular phase of the life-cycle into the virus dynamics model
first. There is a fixed time delay τ between infection of a cell and production of new free
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viruses. Scholars have incorporated time delay intoHIV infectionmodels and analyzed
the effect of the intracellular delay on HIV infection dynamics (see, for instance,
[5,12,16,17]). Usually, the rate of CTL cells production stops increasing and reaches a
saturation state when the concentration of infected cells reaches some level. Thus, De
Boer [18] stated that the bilinear rate cannot model several immune responses that are
together controlling a chronic infection and proposed an immune response function
basedon a competitive saturation term.WhileWangandLi [19] chose z/(1 + εz) as the
CTL response function, where ε is a positive constant. Moreover, it is often supposed
that the presence of antigen could only simulate the immune response and ignore the
immune impairment. As a matter of fact, immune responses could be suppressed by
several human pathogens. Thereby, Iwami et al. [20] reported that HIV could cause
the impairment in CTL cells during the HIV infection. Further researches have been
carried out on HIV infection with immune impairment [20–23], which helped us to
better understand the biological interactions between virus and immune system. In
[22], Wang et al. discussed a viral infection model with immune impairment denoted
by the term nyz.

Inspired by the above works, in this paper, we consider the joint effects of intracel-
lular delay, Beddington–DeAngelis incidence rate, saturated CTL immune response
and immune impairment on the dynamics of HIV infection. For this purpose, we study
the following delay differential equations:

ẋ (t) = s − dx (t) − βx (t) v (t)

1 + a1x (t) + a2v (t)
,

ẏ (t) = e−mτ βx (t − τ) v (t − τ)

1 + a1x (t − τ) + a2v (t − τ)
− ay (t) − py (t) z (t) ,

v̇ (t) = ky (t) − uv (t) ,

ż (t) = cy (t) z (t)

1 + εz (t)
− bz (t) − ny (t) z (t) , (1.3)

where the parameters have the same meanings as in systems (1.1) and (1.2). The
parameter τ is the lag between viral entry into the target cells and the production
of new virus particles. Assume that the generation of virus producing cells at time
t is related to the infection of target cells at time t − τ . The term e−mτ represents
the surviving rate of infected cells before it becomes productively infected. The term
cyz/(1 + εz) denotes the rate of saturated CTL immune response activated by infected
cells. nyz is assumed to be the immune impairment rate. It is supposed that c > n. All
parameters of system (1.3) are positive.

Let C = C
(
[−τ, 0] ,R4+

)
be the Banach space of continuous mapping

the interval [−τ, 0] into R
4+ with the sup-norm, where R

4+ =
{(x, y, v, z) : x ≥ 0, y ≥ 0, v ≥ 0, z ≥ 0} . It is biologically reasonable to assume the
initial condition of system (1.3) having the following form:

x (θ) = ϕ1 (θ) , y (θ) = ϕ2 (θ) , v (θ) = ϕ3 (θ) , z (θ) = ϕ4 (θ) ;
ϕi (θ) ≥ 0, θ ∈ [−τ, 0] , ϕi (0) > 0 (i = 1, 2, 3, 4) . (1.4)
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In the light of the fundamental theory of functional differential equations [24], system
(1.3) has a unique solution (x (t) , y (t) , v (t) , z (t)) satisfying the initial condition
(1.4).

The organization of the paper is as follows. In the next section, the positivity and
boundedness of solutions of system (1.3) with the initial condition (1.4) are proved. In
Sect. 3, we derive two reproduction ratios of system (1.3) and investigate the existence
of the feasible equilibria. InSect. 4, the local asymptotic stabilities of feasible equilibria
are discussed by analyzing the corresponding characteristic equations. In Sect. 5, the
global asymptotic stabilities of feasible equilibria are studied by constructing proper
Lyapunov functionals and usingLaSalle’s invariance principle. In Sect. 6,we performa
sensitivity analysis to show the effects of parameter values on the immunity-inactivated
and the immunity-activated reproduction ratios. Finally, we make a conclusion on our
work.

2 Preliminaries

In this section, we verify that system (1.3) with the initial condition (1.4) is well-posed.

Theorem 1 All solutions of system (1.3) with the initial condition (1.4) are positive
for all t ≥ 0.

Proof We prove that x (t) > 0 for all t ≥ 0 first. Assume the contrary and let t1 > 0
be some time such that x (t1) = 0, and x (t) > 0, if t ∈ [0, t1), we have

ẋ (t) ≥ −dx (t) − βx (t) v (t)

1 + a1x (t) + a2v (t)
.

It then follows that

x (t1) ≥ x (0) exp

[∫ t1

0

(
−d − βv (t)

1 + a1x (t) + a2v (t)

)
dt

]
> 0.

It is a contradiction with x (t1) = 0. Hence, we obtain that x (t) > 0.
As for the second equation of system (1.3), for t ∈ [0, τ ], namely, t − τ ∈ [−τ, 0],
according to the initial condition (1.4), we have

ẏ (t) = βe−mτ x (t − τ) v (t − τ)

1 + a1x (t − τ) + a2v (t − τ)
− ay (t) − py (t) z (t)

≥ −ay (t) − py (t) z (t) .

It yields that y (t) ≥ y (0) e− ∫ t
0 (a+pz(θ))dθ > 0, for all t ∈ [0, τ ]. By the method

of induction, we make a recursive argument on [τ, 2τ ], [2τ, 3τ ],· · · , and then obtain
that y (t) > 0 for all t ≥ 0. As for the third and fourth equations of system (1.3), by
calculations, we have that

v (t) = v (0) e−ut +
∫ t

0
my (θ) e−u(t−θ)dθ,
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z (t) = z (0) e
∫ t
0

(
cy(θ)

1+εz(θ)
−b−ny(θ)

)
dθ

.

It is apparent that v (t) > 0 and z (t) > 0 for all t ≥ 0. This completes the proof. ��

Theorem 2 All solutions of system (1.3) satisfying the initial condition (1.4) are ulti-
mately bounded for all t ≥ 0.

Proof Let (x (t) , y (t) , v (t) , z (t)) be any positive solution of system (1.3) with the
initial condition (1.4). Define

G (t) = x (t) + emτ y (t + τ) .

Differentiating G (t) along positive solutions of system (1.3) with the initial condition
(1.4), we have

Ġ (t) ≤ s − dx (t) − emτay (t + τ)

≤ s − σG (t) ,

yielding that lim supt→∞ G (t) ≤ s/σ , where σ = min {a, d}. Thereby, for δ > 0
sufficiently small, there is a T > 0 such that if t > T , we have

G (t) ≤ s

σ
+ δ.

Further, we derive from the third and fourth equations of system (1.3) that for t > T ,

v̇ (t) ≤ ke−mτ
( s

σ
+ δ

)
− uv (t) ,

ż (t) ≤ e−mτ c

ε

( s

σ
+ δ

)
− bz (t) .

Since δ > 0 is arbitrarily sufficiently small, we conclude that

lim sup
t→∞

v (t) ≤ ks

σu
e−mτ , lim sup

t→∞
z (t) ≤ cs

εσb
e−mτ .

Hence, x (t), y (t), v (t), z (t) are ultimately bounded for all t ≥ 0, and the following
set

Ω =
{
(x, y, v, z) : x ≤ s

σ
, y ≤ s

σ
e−mτ , v ≤ ks

σu
e−mτ , z ≤ cs

bεσ
e−mτ

}

is positively invariant for system (1.3). ��
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3 Feasible equilibria and reproduction ratios

It is easy to see that system (1.3) always has an infection-free equilibrium
E0(s/d, 0, 0, 0).

We now calculate the immunity-inactivated reproduction ratio of system (1.3).
Using the method of next generation matrix proposed by van den Driessche and Wat-
mough [25], we obtain

F =
(

e−mτ βx(t−τ)v(t−τ)
1+a1x(t−τ)+a2v(t−τ)

0

)

,V =
(
ay(t) + py(t)z(t)
−ky(t) + uv(t)

)
.

Then, we have

F =
(
0 e−mτ βs

a1s+d
0 0

)

, V =
(

a 0
−k u

)
.

So the next generation matrix is given as follows:

FV−1 =
(

kβse−mτ

au(a1s+d)
βse−mτ

u(a1s+d)

0 0

)

.

Thus, the immunity-inactivated reproduction ratio has the following form:

R0 = ρ(FV−1) = kβse−mτ

au(a1s + d)
.

R0 represents the expected number of secondary infectious produced by an infective
cell in a totally susceptible population. It is easy to prove that ifR0 > 1, system (1.3)
has a unique immunity-inactivated equilibrium E1 (x1, y1, v1, 0), where

x1 = s − aemτ y1
d

, v1 = ky1
u

, y1 = u (a1s + d) (R0 − 1)

kβ − aa1uemτ + ka2d
.

Denote

R1 = (c − n) y1
b

= (c − n) u (a1s + d) (R0 − 1)

b (kβ − aa1uemτ + ka2d)
,

where R1 is called immunity-activated reproduction ratio of system (1.3). In the
following, we show that ifR1 > 1, besides E0 and E1, system (1.3) has an immunity-
activated equilibrium E2 (x2, y2, v2, z2) satisfying the following system:

s − dx − βxv

1 + a1x + a2v
= 0,

βe−mτ xv

1 + a1x + a2v
− ay − pyz = 0,
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ky − uv = 0,
cyz

1 + εz
− bz − nyz = 0. (3.1)

Denote

f1 (y) � z = 1

ε

(
cy

b + ny
− 1

)
, (3.2)

f2 (z) � y = kβse−mτ − u (a + pz) (a1s + d)

[kβ − a1uemτ (a + pz) + ka2d] (a + pz)
. (3.3)

As is shown in Eq. (3.2), z is an increasing function of the variable y. By calculations,
we obtain that z = 0 when y = b/(c − n), and z = −1/ε when y = 0. Moreover,
cy/(b + ny) → c/n as y → ∞. Hence, the graph of function f1 (y) has an asymptote
f1 = z = (c − n)/(εn).
In Eq. (3.3), we know that y is a decreasing function of the variable z. It is easy to

get that y = y1 when z = 0, and y = 0 when z = a (R0 − 1)/p. When R1 > 1, we
have y1 > b/(c − n). Besides, by calculations, we get that f2 (z) → 0 as z → ∞.
So the graph of function f2 (z) has an asymptote f2 = y = 0. Then, the curves
of two functions defined in (3.2) and (3.3) have only one intersection (z2, y2) when
z ∈ (0, (c − n)/εn) (see Figure 1).

Fig. 1 The curves of functions y and z
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Thus, y2 > 0, z2 > 0, v2 = ky2/u > 0. In addition, deriving from the first equation
of system (3.1) at E2, we have

(s − dx) (1 + a1x + a2v2) − βxv2 = 0. (3.4)

For the fixed v2, solving (3.4) yields that

x2 = −[d (1 + a2v2) + βv2 − a1s] + √
Δ

2a1d
,

where Δ = [d (1 + a2v2) + βv2 − a1s]2 + 4a1ds (1 + a2v2) . Noting that

√
Δ − [d (1 + a2v2) + βv2 − a1s] ≥ √

Δ − |d (1 + a2v2) + βv2 − a1s|
= 4a1ds (1 + a2v2)√

Δ + |d (1 + a2v2) + βv2 − a1s|
,

we therefore have x2 > 0.

4 Local asymptotic stability

We are now in a position to study the local dynamics of system (1.3).

Theorem 3 If R0 < 1, the infection-free equilibrium E0(s/d, 0, 0, 0) of system (1.3)
is locally asymptotically stable; ifR0 > 1, E0 is unstable.

Proof By calculation, we have the following characteristic equation of system (1.3) at
E0:

(λ + d) (λ + b)

[
(λ + a) (λ + u) − e−(λ+m)τ kβs

a1s + d

]
= 0. (4.1)

Obviously, Eq. (4.1) has negative real roots λ∗
0 = −d and λ∗∗

0 = −b, and other roots
depend on the following equation:

(
λ

a
+ 1

)(
λ

u
+ 1

)
= R0e

−λτ . (4.2)

We now claim that all roots of Eq. (4.2) have negative real parts. Otherwise, Eq.
(4.2) has a root λ0 = Reλ0 + iImλ0 with Reλ0 ≥ 0, then it is easy to see that
|λ0/a + 1| ≥ 1 > R0 and |λ0/u + 1| ≥ ∣∣e−λ0τ

∣∣.
Thus, it follows that

∣∣∣∣

(
λ0

a
+ 1

) (
λ0

u
+ 1

)∣∣∣∣ >
∣∣R0e

−λ0τ
∣∣ ,
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which contradicts Eq. (4.2). Therefore, all roots of Eq. (4.1) have negative real parts
if R0 < 1. Accordingly, E0(s/d, 0, 0, 0) of system (1.3) is locally asymptotically
stable.
Define

H (λ) = (a1s + d) (λ + a) (λ + u) − kβse−(λ+m)τ . (4.3)

Apparently, H (λ) is a continuous function in terms of λ. And H (0) = au (a1s + d)

(1 − R0) < 0. Moreover, H (λ) → +∞ as λ → ∞. Hence, Eq. (4.3) has a positive
root λ∗ such that H (λ∗) = 0 if R0 > 1. That is to say, E0 is unstable if R0 > 1. ��
Theorem 4 IfR1 < 1 < R0 , the immunity-inactivated equilibrium E1 (x1, y1, v1, 0)
of system (1.3) is locally asymptotically stable.

Proof The corresponding characteristic equation of system (1.3) at E1 has the follow-
ing form:

[λ − (c − n) y1 + b] g (λ) = 0, (4.4)

where

g (λ) = (λ + a) (λ + u)

(
λ + d + βv1 (1 + a2v1)

(1 + a1x1 + a2v1)2

)

− kβx1 (1 + a1x1)

(1 + a1x1 + a2v1)2
(λ + d) e−(λ+m)τ . (4.5)

SinceR1=(c − n) y1/b < 1, Eq. (4.4) always has a negative root λ∗
1 = (c − n) y1−b,

other roots are determined by

g (λ) = 0. (4.6)

Next, we verify that all roots of Eq. (4.6) have negative real parts. Otherwise, Eq. (4.6)
has a root λ1 = Reλ1 + iImλ1 with Reλ1 ≥ 0. Then it is easy to obtain

|(λ1 +a) (λ1 +u)| =
∣
∣∣∣∣∣

λ1 + d

λ1 + d + βv1(1+a2v1)
(1+a1x1+a2v1)2

kβx1 (1 + a1x1)

(1 + a1x1 + a2v1)2
e−(m+λ1)τ

∣
∣∣∣∣∣

<
kβ x1 e−mτ

1 + a1 x1 + a2 v1
= au.

Nevertheless, it is obvious that |(λ1 +a) (λ1 +u)| ≥ au, which leads to a contradiction.
As a result, if R1 < 1 < R0, E1 is locally asymptotically stable. ��
Theorem 5 If R1 > 1, the immunity-activated equilibrium E2 (x2, y2, v2, z2) of sys-
tem (1.3) is locally asymptotically stable.
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Proof The characteristic equation at E2 is given as follows:

[(
λ − cy2

(1 + εz2)2
+ b + ny2

)
(λ + a + pz2) + (c − n) − εnz2

1 + εz2
py2z2

]

×
[
λ + d + βv2 (1 + a2v2)

(1 + a1x2 + a2v2)2

]
(λ + u)

= (λ + d)

[
λ − cy2

(1 + εz2)2
+ b + ny2

]
kβx2 (1 + a1x2)

(1 + a1x2 + a2v2)2
e−(λ+m)τ . (4.7)

We now claim that all roots of Eq. (4.7) have negative real parts. If not, Eq. (4.7) has
a root λ2 = Re λ2 +iIm λ2 with Re λ2 ≥ 0, then we get

∣
∣∣
∣∣
∣

λ2 +d

λ2 +d + β v2(1+a2 v2)

(1+a1 x2 + a2 v2)
2

(
λ2 − c y2

(1 + ε z2)2
+ b + n y2

)
kβ x2 (1 + a1 x2)

(1 + a1 x2 + a2 v2)
2
e−(m+λ2)τ

∣
∣∣
∣∣
∣

(4.8)

<

∣
∣∣
∣λ2 − cy2

(1 + εz2)2
+ b + ny2

∣
∣∣
∣

kβx2 (1 + a1x2)

(1 + a1x2 + a2v2)2
e−mτ .

At the same time, it follows from system (3.1) that

β x2 v2

1 + a1 x2 + a2 v2
e−mτ = (a + p z2) y2, v2 = k y2

u
. (4.9)

Substituting Eq. (4.9) into Eq. (4.8), we obtain

∣∣∣(λ2 +u)
[(

λ2 − c y2
(1+ε z2)2

+ b + n y2
)

(λ2 +a + p z2) + (c−n)−ε z2
1+ε z2

p y2 z2
]∣∣∣

>

∣∣
∣λ2 − cy2

(1+εz2)2
+ b + ny2

∣∣
∣ kβx2(1+a1x2)

(1+a1x2+a2v2)2
e−mτ .

It results in a contradiction. Consequently, if R1 > 1, all roots of Eq. (4.7) have
negative real parts. That is, E2 is locally asymptotically stable. ��

5 Global asymptotic stability

In this section, we are ready to study the global asymptotic stability of each feasible
equilibriumof system (1.3)with the help of proper Lyapunov functionals andLaSalle’s
invariance principle.

First, we define a function

h(x) = x − 1 − ln x . (5.1)

It is readily seen that h(1) = 0 and h(x) attains its minimum at x = 1.

123



Mathematical analysis of a delayed HIV infection model... 2375

Theorem 6 If R0 < 1, the infection-free equilibrium E0 = (s/d, 0, 0, 0) of system
(1.3) is globally asymptotically stable.

Proof Let (x (t) , y (t) , v (t) , z (t)) be any positive solution of system (1.3) with the
initial condition (1.4). Define

V0 (t) = 1

1 + a1x0

(
x (t) − x0 − x0 ln

x (t)

x0

)
+ emτ y (t) + a

k
emτ v (t)

+ p

c
emτ z (t) +

∫ t

t−τ

βx (θ) v (θ)

1 + a1x (θ) + a2v (θ)
dθ, (5.2)

where x0 = s/d . Calculating the derivative of V0 (t) along positive solutions of system
(1.3), we have

V̇0 (t) = − d(x (t) − x0)2

x (t) (1 + a1x0)
− emτ (1 − R0)

au

k

v (t) (1 + a1x (t))

1 + a1x (t) + a2v (t)

− emτ aa2u

k

v2 (t)

1 + a1x (t) + a2v (t)
− bp

c
emτ z (t)

− εpemτ y (t) z2 (t)

1 + εz (t)
− np

c
emτ y (t) z (t) . (5.3)

SinceR0 < 1, we have V̇ 0 (t) ≤ 0 and V̇ 0 (t) = 0 if and only if x = x0, y = v = z =
0. Obviously, the largest invariant subset of

{
(x (t) , y (t) , v (t) , z (t)) : V̇0 (t) = 0

}

is S0 = {E0} ⊂ Ω . Furthermore, based on Theorem 3, E0 is locally asymptotically
stable ifR0 < 1. Hence, it follows from LaSalle’s invariance principle [24] that E0 is
globally asymptotically stable. ��
Theorem 7 If R1 < 1 < R0, the immunity-inactivated equilibrium E1 (x1, y1, v1, 0)
of system (1.3) is globally asymptotically stable.

Proof Let (x (t) , y (t) , v (t) , z (t)) be any positive solution of system (1.3) with the
initial condition (1.4). Define

V1 (t) = emτ

(

x (t) − x1 −
∫ x(t)

x1

(1 + a1θ + a2v1) x1
(1 + a1x1 + a2v1) θ

dθ

)

+ y1h

(
y (t)

y1

)
+ av1

k
h

(
v (t)

v1

)
+ py1

b
z (t)

+ ay1

∫ t

t−τ

h

(
e−mτ βx (θ) v (θ)

ay1 (1 + a1x (θ) + a2v (θ))

)
dθ, (5.4)

where the function h is defined in (5.1).
Calculating the derivative of V1 (t) along positive solutions of system (1.3), we have

V̇1 (t) = −e−mτ d (1 + a2v1) (x (t) − x1)2

x (t) (1 + a1x1 + a2v1)
− ay1h

(
(1 + a1x (t) + a2v1) x1
(1 + a1x1 + a2v1) x (t)

)
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− ay1h

(
(1 + a1x1 + a2v1) x (t − τ) v (t − τ) y1
(1 + a1x (t − τ) + a2v (t − τ)) x1v1y (t)

)
− ay1h

(
v1y (t)

v (t) y1

)

− ay1h

(
1 + a1x (t) + a2v (t)

1 + a1x (t) + a2v1

)
+ py (t) z (t)

1 + εz (t)
(R1 − 1)

− pε (b + ny1) y (t) z2 (t)

b (1 + εz (t))
− aa2y1 (1 + a1x (t)) (v (t) − v1)

2

v1 (1 + a1x (t) + a2v (t)) (1 + a1x (t) + a2v1)
. (5.5)

Due to R1 < 1, it is apparent to know V̇1 (t) ≤ 0 with equality if and
only if x = x1, y = y1, v = v1, z = 0. The largest invariant subset of{
(x (t) , y (t) , v (t) , z (t)) : V̇1 (t) = 0

}
is S1 = {E1} ⊂ Ω . From Theorem 4, if

R1 < 1 < R0, E1 is locally asymptotically stable. Consequently, in light of LaSalle’s
invariance principle [24], we conclude that E1 is globally asymptotically stable if
R1 < 1 < R0. ��
Theorem 8 If R1 > 1, the immunity-activated equilibrium E2 (x2, y2, v2, z2) of sys-
tem (1.3) is globally asymptotically stable.

Proof Let (x (t) , y (t) , v (t) , z (t)) be any positive solution of system (1.3) with the
initial condition (1.4). Define

V2 (t) = e−mτ

(

x (t) − x2 −
∫ x(t)

x2

(1 + a1θ + a2v2) x2
(1 + a1x2 + a2v2) θ

dθ

)

+ y2h

(
y (t)

y2

)
+ (a + pz2) v2

k
h

(
v (t)

v2

)
+ py2z2

b
h

(
z (t)

z2

)

+ (a + pz2) y2

∫ t

t−τ

h

(
e−mτ βx (θ) v (θ)

(a + pz2) y2 (1 + a1x (θ) + a2v (θ))

)
dθ,

(5.6)

where the function h is defined in (5.1).
Noting that E2 is the equilibrium of system (1.3), we have the following expressions:

λ = dx2 + βx2v2
1 + a1x2 + a2v2

, (a + pz2) y2 = e−mτ βx2v2
1 + a1x2 + a2v2

,

u = ky2
v2

, b = cy2
1 + εz2

− ny2. (5.7)

Calculating the derivative of V2 (t) along positive solutions of system (1.3), and sub-
stituting (5.7) into Eq. (5.6), we obtain

V̇2 (t) = −e−mτ d (1 + a2v2) (x (t) − x2)2

x (t) (1 + a1x2 + a2v2)

− (a + pz2) y2

[
h

(
(1 + a1x (t) + a2v2) x2
(1 + a1x2 + a2v2) x (t)

)
+ h

(
1 + a1x (t) + a2v (t)

1 + a1x (t) + a2v2

)]

− (a + pz2) y2

[
h

(
v2y (t)

v (t) y2

)
+ h

(
(1 + a1x2 + a2v2) x (t − τ) v (t − τ) y2
(1 + a1x (t − τ) + a2v (t − τ)) x2v2y (t)

)]
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− a2 (a + pz2) y2 (1 + a1x (t)) (v (t) − v2)
2

v2 (1 + a1x (t) + a2v (t)) (1 + a1x (t) + a2v2)
− εcpy2y (t) (z (t) − z2)2

b (1 + εz2) (1 + εz (t))
.

(5.8)

It is evident that V̇2 (t) ≤ 0.Andwe have V̇2 (t) = 0 iff x = x2, y = y2, v = v2, z =
z2. Clearly, the largest invariant set in

{
(x (t) , y (t) , v (t) , z (t)) : V̇2 (t) = 0

}
is the

singleton S2 = {E2}. Moreover, Theorem 5 implies that E2 is locally asymptotically
stable if R1 > 1. On the basis of LaSalle’s invariance principle [24], we claim that
E2 is globally asymptotically stable. ��

6 Sensitivity analysis

In this section, the effects of parameter values on the immunity-inactivated repro-
duction ratio R0 and the immunity-activated reproduction ratio R1 will be shown by
performing sensitivity analysis.
The parameter values are chosen as follows [26–28]:

λ = 46 cells ml−1day−1, d = 0.0046 day−1, β = 4.8 × 10−7 ml virion−1 day−1,

p = 0.00094 ml cells−1 day−1, k = 11.349 virion cells−1 day−1, u = 0.25 day−1,

m = 1.39 day−1, τ = 0.5 day, a = 0.01 day−1, c = 0.01 day−1, b = 0.5 day−1.

(6.1)

In the meantime, suppose that a1 = 0.1 ml virion−1, a2 = 0.0003 ml virion−1,
n = 0.005 cells−1day−1, ε = 0.01 cells ml−1. Firstly, we perform sensitivity analysis
of the immune-inactivated reproduction ratio R0 on the parameters τ , u, m, k, a1, a
and β with the method of Latin Hypercube Sampling and Partial Rank Correlation
Coefficients (PRCCs) developed in [29] (see Fig. 2). In Fig. 2, it is clearly that β, k are
positively related withR0, and β contributes more toR0 compared to k. However, τ ,
u, m, a1 and a are negatively correlated with R0, and m makes the least contribution
to R0 compared to τ , u, a1 and a. It shows that we should reduce β or increase the
intracellular delay τ to decrease the value of R0.

Secondly, sensitivity analysis of the immune-activated reproduction ratio R1 in
regard to the parameters τ , u, m, k, b, n, c and β is carried out. As is shown in Fig. 3,
it is obvious that R1 is positively correlated with β, k and c, while R1 is negatively
correlated with τ , u, m, b and n. In addition, in order to more effectively reduce R1,
we can decrease the virus-to-cell infection rate and the activation rate of CTL immune
response.

7 Conclusion

In this paper, we developed an HIV infection model for the interaction of HIV, host
cells and CTL immune cells. In system (1.3), we used Beddington–DeAngelis type
incidence to describe the rate of contact between the HIV and host cells. Moreover,
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Value of Correlation Coefficient for outcome R0

beta

a

a1

k

m

u

tau

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 2 Tornado plots of PRCCs in regard to R0 with parameter values assumed in (6.1)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Value of Correlation Coefficient for outcome R1

beta

c

n

b

k

m

u

tau

Fig. 3 Tornado plots of PRCCs in regard to R1 with parameter values assumed in (6.1)

the intracellular delay, saturated CTL immune response and immune impairment were
considered in system (1.3). We derived immunity-inactivated and immunity-activated
reproduction ratios: R0 and R1. The expression of R1 implies that R1 is positively
related to c andR0, negatively correlated to n and b. The immune impairment has an
effect on the immunity-activated equilibriumof system (1.3).Moreover, we studied the
local asymptotic stability of feasible equilibria, and the global asymptotic stability was
investigated with the help of constructing Lyapunov functionals and using LaSalle’s
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invariance principle. It is obvious that R0 and R1 play crucial roles in the stabilities
of feasible equilibria of system (1.3).

Furthermore, intracellular delay does not affect the stabilities of equilibria, so it does
not induce periodic solutions or Hopf bifurcation. As is shown in sensitivity analysis,
the two thresholdsR0 andR1 are positively associated to the parameter values β and
k. The immunity-inactivated reproduction ratio and immunity-activated reproduction
ratio gradually decrease as intracellular delay increases, which could help us to better
control the viral load.
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