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Abstract
This article deals with two different methods to solve a time fractional partial integro-
differential equation. The fractional derivatives are defined here in Caputo sense. The
model problem is solved using the Adomian decomposition method and homotopy
perturbation method. Moreover, this paper proves the convergence analysis of the
solution based on the present methods. Numerical evidences are illustrated in support
of the theoretical analysis.
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1 Introduction

This article considers a non-linear time fractional partial integro-differential equation
(FPIDE) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
t w(x, t) = g(x, t) +

∫ t

0
K(x, t − s)F(w(x, s))ds,

(x, t) ∈ ([a, b] × (0, T ]),
w(x, 0) = λ0(x), ∀x ∈ [a, b],

(1)
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where fractional order derivative Dβ
t is represented in Caputo sense and 0 < β < 1.

Here the kernel function is symbolized as K. w(x, t) be the unknown continuous
function defined ∀(x, t) ∈ ([a, b] × (0, T ]) and g(x, t) is the given function.

The theory and generalizations of fractional calculus expanded greatly over the
early twentieth century, though it was already developed in the mid eighteenth cen-
tury [44]. Numerous contributions by mathematicians have given several definitions
for fractional derivatives and integrals. The fractional calculus is applicable in dif-
ferent fields of pure and applied sciences such as aerodynamics, viscoelasticity, heat
conduction, mechanics [27,45] which have attracted several researchers to investigate
more in this subject. Many authors have also experimented to find the solution of
integral equations, fractional differential equations (FDEs) [36] and fractional partial
differential equations (FPDEs) [17]. The numerical and approximation techniques are
broadly implemented on most of the FDEs since there is no exact procedure. Many
methods including the finite difference method [47,49], variational iteration method
(VIM) [35], homotopy perturbation method (HPM) [50], Adams Bashforth Moulton
method [12], generalized differential transform method and the Adomian decomposi-
tion method (ADM) [2,5,41] have been developed to solve FDEs. Over the years many
theories regarding the existence and uniqueness of solutions of FDEs, FPIDEs, frac-
tional integro-differential equations (FIDEs)were developed.Onemay refer [5,11,18].
Recently Hussain et. al. [28] gave the existence and uniqueness of FPIDEs.

The study of FPIDEs have become an indispensable mathematical tool to describe
and analyze real world problems in several areas of science and technology. One
can refer [3,4,21,43,48] for the application of FPIDEs. Several numerical techniques
involving collocation methods, pseudo operational matrix method have been derived
to approximate the solutions of FPIDEs in [24,25]. Though several works are done
with respect to numerical approximation of FPIDEs but very few contributions are
there in developing a semi-analytical method to solve FPIDEs involving convergence
and uniqueness results. ADM introduced by mathematician G.Adomian [1] in 1984,
is a powerful tool to solve large amount of real world problems. The decomposition
method is an effective technique to get semi-analytical solutions of the extensive class
of dynamical systems without closure approximation, perturbation theory, assump-
tions of linearization andweak nonlinearity or restrictive assumptions on stochasticity.
Momani and Noor [42] applied the ADM to solve the fourth-order FIDE in which
the derivatives are defined in Caputo sense. Further, the solution is computed using
the homotopy perturbation method (HPM) proposed by He [30] which gives the
semi-analytical solution of both the linear and nonlinear problems. One may refer
[21,22,33,37] for the solutions of FDE using HPM techniques. The present method
requires the aprioi structure of solutionwith higher order smoothness as series solution
is used. However there are plenty of applied models where these are not available. For
these type of cases, one need to use the moving mesh methods for the analysis. These
methods are available in [13–16,20,46]. The He-Laplace method, which is a mod-
ification of homotopy perturbation technique is extremely effective in solving FDE
as cited in [6,7,34]. The significant benefit of He’s HPM includes the independent
construction of perturbation equation by homotopy in topology and the independent
decision of selecting the initial approximation. Further convergence ofmodified homo-
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topy method has largely been discussed in [8,30,40]. Recently HPMwas used to solve
the singularly perturbed differential equations [19,33,39]. The results obtained in this
paper were helpful for the optimal design of the Fangzhu device. However the reliabil-
ity of a numerical method and its convergence analysis for parametric problems with
singular perturbed nature are considered in several papers [10,23,38]. In this work, the
time fractional partial integro-differential equation is solved using ADM and HPM
techniques. The main advantage of using these methods is that, it gives analytical as
well as numerical approximation of the solution which does not involve any mesh
discretization. In addition, these methods do not require any large computer memory
or power and are also free from rounding off errors. Further, it is noticed that the meth-
ods, ADM and HPM work smoothly when the order of the time fractional derivative
β ∈ (0, 1) but it may have some complication for HPM if β > 1.

Throughout the article, Ω is defined as {Ω : (x, t) ∈ ([0, 1] × (0, T ])}. Caputo
operator of fractional derivative is denoted by Dβ

t and the fractional integral is denoted
by Iβt . For a function w(x, t), defined on Ω , we define ‖w(x, t)‖∞ = ‖w(x, t)‖ =
sup
x∈Ω

|w(x, t)| is used.
The arrangement of this article is made in such a way that the basic definitions,

notations and theorems are discussed in Sect. 2. Section 3 is devoted to the analysis
of the proposed methods. In Sect. 4 the existence, uniqueness and convergence of
solution is provided. Section 5 briefly describes the error bounds. Some test examples
with rigorous numerical results are given in Sect. 6 and finally Sect. 7 is ended with
some concluding remarks.

2 Preliminaries

Some fundamental definitions and associated properties are discussed here which will
be helpful in the future.

Definition 1 The Gamma function Γ (τ) is specified as:

Γ (τ) =
∫ ∞

0
tτ−1e−t dt,

which is valid for all τ ∈ C, the complex field, such that Re(τ ) > 0. The generalization
of the factorial function can be written as follows:

Γ (n) = (n − 1)!, ∀n ∈ N.

Definition 2 The Grünwald-Letnikov fractional derivative is a basic extension of the
derivative in fractional calculus that allows one to take the derivative a non-integer
number of times. It is defined as:

GL Dβw(x) = lim
h→0

1

hα

x−a
h∑

r=0

(−1)r Γ (β + 1)

r !Γ (β − r + 1)
w(x − rh).
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Here β is the order of the derivative and considered as a positive real number.

Definition 3 Letβ ≥ 0 be a real number and suppose thatw(x, t) ∈ C([a, b]×(0, T ]).
The Riemann-Liouville fractional integral of the function denoted as Iβt w(x, t) is
defined by:

Iβt w(x, t) :=
⎧
⎨

⎩

1

Γ (β)

∫ t

0
(t − s)β−1w(x, s)ds, β > 0,

w(x, t), β = 0.
(2)

The exponent β ∈ R
+, be the order of the integral.

Definition 4 Let β ≥ 0 be any real number and m ∈ N such that m − 1 < β ≤ m. If
w(x, t) is a function that has continuous nth partial derivative with respect to t , then
the Riemann-Liouville fractional derivative RLDβ

t is defined by:

RLDβ
t w(x, t) :=

⎧
⎨

⎩

1

Γ (β)

∂n

∂tn

∫ t

0
(t − s)n−β−1w(x, s)ds, β > 0,

w(x, t), β = 0.
(3)

Definition 5 The He’s fractional derivative of order β which is the fractal dimensions
of the fractal medium is defined as:

∂βw

∂tβ
= 1

Γ (n − β)

dn

dtn

∫ t

t0
(s − t)n−β−1[w0(s) − w(s)]ds. (4)

In classical mechanics, the space is always assumed to be continuous, the air flow is
continuous, the water flow is continuous and the continuum hypothesis works well
for many practical applications. However, if we want to study, for example, molecule
diffusion in water, the water becomes discontinuous, and the fractal calculus has to
be adopted to describe the motion of molecules, otherwise molecule motion becomes
completely unpredictable in the frame of the continuum hypothesis. Similarly, in case
of Camassa–Holm (C–H) equation, when time tends to infinitively small, the classic
C–H equation will not be continuous, while (4) can describe the motion well. One
may refer [32] for details.

Definition 6 The Caputo fractional derivative of order β > 0 is defined as:

Dβ
t w(x, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

[

Im−β
t

(∂mw

∂tm

)]

(x, t), m − 1 < β < m,

∂mw

∂tm
(x, t), β = m.

(5)

If w is a constant function, then Dβ
t w = 0. For any ν ∈ R, m ∈ N, we have,

1. Dβ
t tν =

⎧
⎨

⎩

0, if 0 < β < 1, ν ≤ 0,
Γ (ν + 1)

Γ (ν − β + 1)
tν−β, if 0 < β < 1, ν > 0.
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2. Iβt tν = Γ (ν + 1)

Γ (ν + β + 1)
tν+β, if 0 < β < 1, ν ≥ 0.

For any continuous functionw(x, t)wherew(x, t) ∈ C([0, 1]×(0, T ]), the following
properties holds true:

1. Dβ
t I

β
t w(x, t) = w(x, t).

2. Iβt D
β
t w(x, t) = w(x, t) − w(x, 0), 0 < β < 1.

Definition 7 Let (D, || · ||) be a normed space and 	 : D → D be a mapping such
that x ∈ D is called a fixed point of 	 if 	x = x .

Definition 8 	 is called a contraction mapping on (D, || · ||) if there exists a real
number c ∈ (0, 1) such that,

||	(x) − 	(y)|| ≤ c||x − y|| ∀x, y ∈ D .

Theorem 1 (Banach fixed point theorem) Let 	 : D → D be a contraction mapping
on a complete normed space (D, || · ||). Then 	 has a unique fixed point.

Definition 9 Let F : Q → D be a function where Q ⊆ R
n . F satisfies Lipschitz

condition if ∃ a constant L ≥ 0 such that ||F y1 −F y2|| ≤ L||y1 − y2|| ∀ y1, y2 ∈ Q.

3 Methodology

3.1 Analysis of ADM

According to this method, the solution of (1) can be dictated as an infinite series:

w(x, t) =
∞∑

n=0

wn(x, t). (6)

In order to solve (1) using ADM, Iβt is operated on both sides of (1), so as to get,

w(x, t) =
m−1∑

k=0

∂k

∂tk
w(x, 0)

tk

k! + Iβt

(

g(x, t) +
∫ t

0
K(x, t − s)F(w(x, s))ds

)

. (7)

The decomposition of nonlinear function F can be written as:

F =
∞∑

n=0

An . (8)

Here An , the Adomian polynomial is defined as:

An = 1

n!
[

dn

dυn
F

( n∑

j=0

υ jw j

)]

υ=0

. (9)
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The Adomian polynomials [1,2,5] are one of the most important mathematical tools
to approximate the nonlinear functions in the numerical algorithm which can be easily
calculated by the above formula (9). The first few terms are given below:

A0 = F(w0),

A1 = w1F ′(w0),

A2 = w2F ′(w0) + 1

2!w
2
1F ′′(w0),

A3 = w3F ′(w0) + w1w2F ′′(w0) + 1

3!w
3
1F ′′′(w0).

The components w0, w1, w2, . . . wn, are determined recursively by

⎧
⎨

⎩

w0 = w(x, 0) + Iβt g(x, t),

wn+1 = Iβt

( ∫ t

0
K(x, t − s)Ands

)

, f or n = 0, 1, 2, . . . .
(10)

Here w(x, t) = lim
n→∞

n∑

i=0

wi (x, t) gives us the solution. By truncating the series,

the required numerical solution is obtained by (8) up to finite (say N ) number of

terms. The N terms numerical approximation is defined as: ΨN =
N−1∑

n=0

wn(x, t). In

this method w0 is defined by the initial condition g(x, t) and the other components
namely w1, w2, . . . wn, are thereby derived recursively.

3.2 Analysis of HPM

Homotopy H : Ω × [0, 1] → R for (1) is constructed as in [30]:

H(w, p̃) = (1 − p̃)(Dβ
t w(x, t) − g(x, t))

+ p̃

(

Dβ
t w(x, t) − g(x, t) −

∫ t

0
K(x, t − s)F(w(x, s))ds

)

, (11)

or

H(w, p̃) = Dβ
t w(x, t) − g(x, t) − p̃

(∫ t

0
K(x, t − s)F(w(x, s))ds

)

, (12)

where embedding parameter p̃ ∈ [0, 1]. Putting p̃ = 0, now (12) turns to be a linear
equation and when p̃ = 1, then (12) boils down to (1). Further, the solution of (1) can
be expressed in the form of series:

w(x, t) =
∞∑

n=0

wn(x, t) p̃n . (13)
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Taking p̃ = 1 in (13), approximated solution of (1) is obtained as,

w(x, t) =
∞∑

n=0

wn(x, t). (14)

The convergence of series (14) has been proved in [31]. In order to obtain the solution,
identical power of p̃ are equated by substituting (14) into (12) and a set of linear
equations are attained as follows:

p̃0 : Dβ
t w0 = g(x, t), w0(0) = g(x, t). (15)

p̃1 : Dβ
t w1 =

∫ t

0
K(x, t − s)F(w0(x, s))ds, w1(0) = 0. (16)

p̃2 : Dβ
t w2 =

∫ t

0
K(x, t − s)F(w1(x, s))ds, w2(0) = 0. (17)

...

Computation of approximated solution is obtained by applying Iβt to the IVPs in (15)–
(17). Finally the series solution of HPM is approximated by the following N-term
truncated series:

ϕN =
N−1∑

n=0

wn(x, t). (18)

One can clearly observe that each non-homogeneous part of these linear differential
equations gives Adomian polynomials respectively. Also because ADM assumes a

series solution for (1) given by w(x, t) = lim
n→∞

n∑

i=0

wi (x, t), consequently, the usage

of the Taylor series expansion in HPM makes some reduction on the method and it
coincides with the ADM.

4 Existence and convergence

For further analysis, the following assumptions are needed.

Assumption 1 A nonlinear function F(w) is considered such that F(w) satisfies Lip-
schitz constant L . Therefore, we have

∣
∣
∣
∣F(w1) − F(w2)

∣
∣
∣
∣ ≤ L||w1 − w2||.

Assumption 2 The kernel K defined in (1) is continuous and bounded on (x, t) ∈
([0, 1] × (0, T ]). Then there exists M > 0 such that ||K|| ≤ M.

123



2072 A. Panda et al.

In this section, the proof of the existence and uniqueness of the solution for FPIDE
(1) is established. Consider the FPIDE (1):

Dβ
t w(x, t) = g(x, t) +

∫ t

0
K(x, t − s)F(w(x, s))ds, ∀(x, t) ∈ ([0, 1] × (0, T ]),

with initial condition w(x, 0) = λ0(x). Applying Iβt on both the sides of (1) yields
w = 	w, ∀(x, t) ∈ ([0, 1] × (0, T ]), where 	w is defined as

	w(x, t) = λ0(x) + Iβt g(x, t) + 1

Γ (β)

∫ t

0

∫ ζ

0
(t − ζ )β−1K(x, ζ − s)F(w(x, s))dsdζ.

(19)

Theorem 2 Consider that assumption (1)–(2) holds true. For the FPIDE (1) with
initial condition, there exists a unique w(x, t) for all (x, t) ∈ ([0, 1] × (0, T ]) if

L <
Γ (β + 2)

MT β+1 .

Proof The set of all continuously differentiable functions defined over the region Ω

form a complete normed space with supremum norm. Also, as it is seen that (19) is
given in operator form	w = w and therefore, it remains to show that	 is a contraction
mapping and for this purpose we take w1, w2 ∈ C(Ω). So,

‖	w1(x, t) − 	w2(x, t)‖

=
∥
∥
∥
∥λ0(x) + Iβt g(x, t) + 1

Γ (β)

∫ t

0

∫ ζ

0
(t − ζ )β−1K(x, ζ − s)F(w1(x, s))dsdζ

− λ0(x) + Iβt g(x, t) + 1

Γ (β)

∫ t

0

∫ ζ

0
(t − ζ )β−1K(x, ζ − s)F(w2(x, s))dsdζ

∥
∥
∥
∥

≤
∥
∥
∥
∥

1

Γ (β)

∫ t

0

∫ ζ

0
(t − ζ )β−1[K(x, ζ − s)F(w1(x, s))

− K(x, ζ − s)F(w2(x, s))]dsdζ

∥
∥
∥
∥

≤ ML

Γ (β)

∫ t

0

∫ ζ

0
(t − ζ )β−1‖w1(x, s) − w2(x, s)‖dsdζ

≤ ML

Γ (β)
‖w1 − w2‖

∫ t

0

∫ ζ

0
(t − ζ )β−1dsdζ

≤ ML

Γ (β + 2)
T β+1‖w1 − w2‖, (20)

and since L <
Γ (β + 2)

MT β+1 , which implies that
MLT β+1

Γ (β + 2)
< 1. Therefore, by general

Banach contraction mapping principle, 	 has a unique fixed point, which means that
(1) has a unique solution. Hence, this proves the uniqueness and existence of solution
for the model problem. One may refer [28] for more details. �
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4.1 Convergence analysis

Theorem 3 Suppose that assumption (1) and (2) hold. If the series solution

w(x, t) =
∞∑

i=0

wi (x, t), (21)

and ||w1||∞ < ∞ obtained by qth-order deformation is convergent, then it converges
to the exact solution of (1).

Proof LetC(Ω, ‖·‖) be theBanach space of all continuous functionswith |w1(x, t)| ≤
∞ ∀ (x, t) ∈ ([0, 1] × (0, T ]).

First we define the sequence of partial sums as sp. Let sp and sq be arbitrary partial
sums with p ≥ q. We claim that

sp =
n∑

i=0

wi (x, t),

is a Cauchy sequence in this Banach space. To do so,

‖sp − sq‖∞ = max
∀x∈Ω̃

|sp − sq |

= max
∀x∈Ω̃

∣
∣
∣
∣

n∑

i=0

wi (x, t) −
m∑

i=0

wi (x, t)

∣
∣
∣
∣

= max
∀x∈Ω̃

∣
∣
∣
∣

n∑

i=m+1

wi (x, t)

∣
∣
∣
∣

= max
∀x∈Ω̃

∣
∣
∣
∣

n∑

i=m+1

1

Γ (β)

∫ t

0
(t − s)β−1

[ ∫ t

0
K(x, t − s)

n−1∑

i=m

Ai (x, s)ds

]

dζ

∣
∣
∣
∣.

(22)

From (8) and (9), we have

n−1∑

i=m

Ai = F(sp−1) − F(sq−1),

n−1∑

i=m

wi = w(sp−1) − w(sq−1).
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So,

‖sp − sq‖∞ = max
∀x∈Ω̃

(∣
∣
∣
∣

∫ t

0
K(x, t − s)(F(sp−1) − F(sq−1))ds

∣
∣
∣
∣dζ

)

≤ max
∀x∈Ω̃

1

Γ (β)

[ ∫ t

0
|K(x, t − s)||(F(sp−1) − f (sq−1))|ds

]

dζ

≤ MLT β+1

Γ (β + 2)
‖sp−1 − sq−1‖∞

= ϑ‖sp−1 − sq−1‖∞,

where,

ϑ =
(
MLT β+1

Γ (β + 2)

)

. (23)

Let p = q + 1, then

‖sp − sq‖∞ ≤ ϑ‖sq − sq−1‖∞
≤ ϑ2‖sq−1 − sq−2‖
...

≤ ϑq‖s1 − s0‖. (24)

So,

‖sp − sq‖∞ ≤ ‖sq+1 − sq‖∞ + ‖sq+2 − sq+1‖∞ + · · · + ‖sp − sp−1‖∞
≤ [ϑq + ϑq+1 + · · · + ϑ p−1]‖s1 − s0‖∞
≤ ϑm[1 + ϑ + ϑ2 + · · · + ϑ p−q−1]‖s1 − s0‖
≤ ϑm

(
1 − ϑ p−q

1 − ϑ
‖w1‖∞

)

.

Since 0 < ϑ < 1, we have (1 − ϑ p−q) < 1, and then

‖sp − sq‖∞ ≤ ϑq

1 − ϑ
‖w1‖∞.

But ‖w1(x, t)‖∞ < ∞, so as m → ∞, then

‖sp − sq‖∞ → 0.

We conclude that sp is a Cauchy sequence in C([0, 1] × (0, T ]). Therefore

w = lim
n→∞ wn .
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Then, the series is convergent. Readers may go through [9] for the proof of ADM for
nonlinear problems. �

5 Error bounds

The exact solution for (1) is given by w(x, t) = lim
N→∞ΨN and the numerical solution

can be obtained by truncating the series (8) up to finite number of terms. If ΨN gives
the N terms approximate solution then the absolute point-wise error bound depends

on the partial sum
N−1∑

n=0

wn(x, t) and which is bounded by M
ϑq

1 − ϑ
, where ϑ is defined

in (23) satisfying 0 < ϑ < 1. Refer [29].

6 Illustrative examples

Here are some test problems to show the effectiveness of proposed methods.

Example 1 Consider the following test problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
t w(x, t) +

∫ t

0
K(x, t − s)w(x, s)ds = f (x, t),

∀(x, t) ∈ ([0, 1] × (0, T ]),
w(x, 0) = 0, ∀x ∈ [0, 1],

where 0 < β < 1. f (x, t) andK are given by f (x, t) = (sin πx)t0.25

Γ (1.25)
− 1

4
xt4 sin2 πx

and K = xt respectively. The exact solution for the given test problem is w(x, t) =
t sin πx .

Example 2 Consider the following nonlinear FPIDE:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
t w(x, t) +

∫ t

0
K(x, t − s)w(x, s)ds = f (x, t),

∀(x, t) ∈ ([0, 1] × (0, T ]),
w(x, 0) = 0, ∀x ∈ [0, 1],

where the kernel function is given by K = tex and β ∈ (0, 1). The exact solution for
the given test problem is w(x, t) = ex t2.

Example 3 Consider the following test problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
t w(x, t) +

∫ t

0
K(x, t − s)w(x, s)ds = f (x, t),

∀(x, t) ∈ ([0, 1] × (0, T ]),
w(x, 0) = 0, ∀x ∈ [0, 1].
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Table 1 E
∞
N with β = 0.2 for

Example 1 using ADM
x E

∞
1 E

∞
2

0.1 5.6874e-2 4.4619e-3

0.2 1.0818e-1 8.4870e-3

0.3 1.4890e-1 1.1681e-2

0.4 1.7504e-1 1.3732e-2

0.5 1.8405e-1 1.4439e-2

0.6 1.7504e-1 1.3732e-2

0.7 1.4890e-1 1.1681e-2

0.8 1.0818e-1 8.4870e-3

0.9 5.6874e-2 4.4619e-3

1.0 2.2539e-17 1.7683e-18

Table 2 E
∞
N with β = 0.75 for

Example 1 using HPM
x E

∞
1 E

∞
2

0.1 7.4089e-3 9.5827e-5

0.2 1.4093e-2 1.8227e-4

0.3 1.9397e-2 2.5088e-4

0.4 2.2802e-2 2.9493e-4

0.5 2.3976e-2 3.1010e-4

0.6 2.2802e-2 2.9493e-4

0.7 1.9397e-2 2.5088e-4

0.8 1.4093e-2 1.8227e-4

0.9 7.4089e-3 9.5827e-5

1.0 2.9362e-18 3.7977e-20

The exact solution for the given test problem is w(x, t) = xtβ . 0 < β < 1 and the
kernel function is given by K = ex .

The absolute point-wise error is defined by:

E
∞
N =

∣
∣
∣w(x, t) − ΦN

∣
∣
∣ =

∣
∣
∣w(x, t) −

N−1∑

n=0

wn(x, t)
∣
∣
∣. (25)

6.1 Results and discussion

The absolute point-wise errors for Example 1 with β = 0.2 is presented in Table 1
using ADM and Table 2 with β = 0.75 using HPM. Similarly, the absolute point
wise errors for Example 2 at t = 0.5 and β = 0.75 are viewed in tabular form in
Table 3 using ADM. Also, Table 4 represent the errors for Example 2 using HPM for
t = 0.8 at β = 0.25. Incase of Example 3 for t ∈ (0, 2], absolute point-wise errors are
represented in Table 5 for β = 0.85. Further Table 6 show the errors for Example 3 at
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Table 3 E
∞
N with β = 0.75 at

t = 0.5 for Example 2 using
ADM

x E
∞
1 E

∞
2 E

∞
3

0.1 4.7642e-3 2.9543e-5 1.2390e-5

0.2 6.4309e-3 4.4035e-5 1.5808e-5

0.3 8.6809e-3 6.5617e-5 1.9183e-5

0.4 1.1718e-2 9.7734e-5 2.1391e-5

0.5 1.5818e-2 1.4549e-4 2.0052e-5

0.6 2.1351e-2 2.1642e-4 1.0469e-5

0.7 2.8821e-2 3.2161e-4 1.6224e-5

0.8 3.8905e-2 4.7725e-4 1.6268e-5

0.9 5.2516e-2 7.0688e-4 1.4875e-4

1.0 7.0889e-2 1.0443e-3 4.3486e-4

Table 4 E
∞
N with β = 0.25 at

t = 0.8 for Example 2 using
HPM

x E
∞
1 E

∞
2 E

∞
3

0.1 3.4758e-2 1.7386e-3 9.1131e-4

0.2 4.6919e-2 2.8562e-3 1.5121e-3

0.3 6.3333e-2 4.6883e-3 2.5118e-3

0.4 8.5491e-2 7.6879e-3 4.1778e-3

0.5 1.1540e-1 1.2591e-2 6.9590e-3

0.6 1.5578e-1 2.0589e-2 1.1609e-2

0.7 2.1027e-1 3.3604e-2 1.9397e-2

0.8 2.8384e-1 5.4716e-2 3.2456e-2

0.9 3.8315e-1 8.8827e-2 5.4371e-2

1.0 5.1719e-1 1.4366e-1 9.1139e-2

Table 5 E
∞
N with β = 0.85 and

x = 0.5 for Example 3 using
ADM

t E
∞
1 E

∞
2

0.2 0.0007 0.0000

0.4 0.0047 0.0001

0.6 0.0139 0.0005

0.8 0.0303 0.0018

1.0 0.0554 0.0050

1.2 0.0906 0.0114

1.4 0.1374 0.0230

1.6 0.1970 0.0422

1.8 0.2708 0.0721

2.0 0.3599 0.1165
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Table 6 E
∞
N with β = 0.85 and

x = 0.3 for Example 3 using
HPM

t E∞
1 E∞

2

0.3 0.0003 0.00001

0.6 0.0018 0.0001

0.9 0.0053 0.0003

1.2 0.0115 0.0012

1.5 0.0209 0.0034

1.8 0.0343 0.0077

2.1 0.0520 0.0155

2.4 0.0745 0.0285

2.7 0.1024 0.0487

3.0 0.1361 0.0787

Table 7 Comparison of results
with β = 0.5 for Example 3

t E
∞
2 using ADM E

∞
2 using VIM

0.2 1.5266e-5 2.0033e-3

0.4 2.9048e-4 1.1333e-2

0.6 1.6274e-3 3.1229e-2

0.8 5.5270e-3 6.4107e-2

1.0 1.4268e-2 1.1199e-1

1.2 3.0965e-2 1.7666e-1

1.4 5.9621e-2 2.5972e-1

1.6 1.0516e-1 3.6264e-1

1.8 1.7349e-1 4.8681e-1

2.0 2.7148e-1 6.3351e-1

Table 8 Comparison of results
with β = 0.75 for Example 3

t E
∞
2 using HPM E

∞
2 using VIM

0.2 2.7809e-6 1.7903e-4

0.4 3.1463e-5 7.1611e-4

0.6 1.3005e-4 1.6112e-3

0.8 3.5596e-4 2.8644e-3

1.0 7.7730e-4 4.4757e-3

1.2 1.4714e-3 6.4450e-3

1.4 2.5237e-3 8.7723e-3

1.6 4.0272e-3 1.1458e-2

1.8 6.0819e-3 1.4501e-2

2.0 8.7941e-3 1.7903e-2
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(a) (b)

Fig. 1 Solution and error plots with different values of β for Example 1

(a) (b)

Fig. 2 Solution and error plots at t = 0.8 for Example 2

β = 0.85 for t ∈ (0, 3]. It can be easily seen that for different values of β, error E∞
N

decreases as the number of terms in the series increases. Comparison of results for
both the methods are made. Table 7 compares the error using two terms between ADM
and VIM. Similarly comparison between HPM and VIM is shown in Table 8 which
proves the robustness of our proposed methods. One may refer [26] for the details on
VIM.

The graphical representation of the absolute point-wise errors is shown in Figs. 1
and 2. The graphs depict the convergence of the proposed methods for various values
of β. Fig. 1(a) represent the exact solution along with the approximated solutions for
two terms taking β = 0.2 usingADMand Fig. 1(b) represent the error plot usingHPM
by taking two terms in the series. Similarly in case of nonlinear FPIDE, Fig. 2(a) shows
the exact solution and the aproximated solutions for Example 2 using three terms in
the series wih β = 0.75 using HPM. It can be observed that approximated solutions
gradually converges with the exact solution. The error plot for Example 2 is shown in
Fig. 2(b) which represents that the error curves moves towards zero as the number of
terms in the series increases.
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7 Conclusion

This article successfully operated the Adomian decomposition and the homotopy per-
turbation method to solve the time fractional partial integro-differential equation. The
methods are free from discretization. In addition, the reliability of the methods and
the reduction in the computational work scale gives them greater applicability. The
uniqueness and convergence analysis of the technique is briefly described. Finally
convergence to the exact solution is shown with the help of graphs and tables.
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